
The Architect in the Maze: On the Effective Usage of Automated
Design Exploration

J. Andres Diaz-Pace

andres.diazpace@isistan.unicen.edu.ar

ISISTAN, CONICET and UNICEN University

Tandil, Buenos Aires, Argentina

David Garlan

garlan@cs.cmu.edu

Software and Societal Systems Department

Carnegie Mellon University

Pittsburgh, PA, USA

ABSTRACT
Designing a software architecture that satisfies a set of quality-

attribute requirements has traditionally been a challenging activity

for human architects, as it involves the exploration and assessment

of alternative design decisions. The development of automated

optimization tools for the architecture domain has opened new

opportunities, because these tools are able to explore a large space

of alternatives, and thus extend the architect’s capabilities. In this

context, however, architects need to efficiently navigate through

a large space and understand the main relations between design

decisions and feasible quality-attribute tradeoffs in a maze of possi-

ble alternatives. Although Machine Learning (ML) techniques can

help to reduce the complexity of the task by sifting through the

data generated by the tools, the standard techniques often fall short

because they cannot offer architectural insights or relevant answers

to the architect’s questions. In this paper, and based on previous

experiences, we argue that ML techniques should be adapted to the

architecture domain, and propose a conceptual framework towards

that goal. Furthermore, we show how the framework can be instan-

tiated by adapting clustering techniques to answer architectural

questions regarding a client-server design space.

KEYWORDS
Design exploration, automated tools, applied machine learning,

quality attributes, explainability.

ACM Reference Format:
J. Andres Diaz-Pace and David Garlan . 2024. The Architect in the

Maze: On the Effective Usage of Automated Design Exploration. In 2024
International Workshop on Designing Software (Designing ’24), April 15–14,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 6 pages. https://doi.org/

10.1145/3643660.3643947

1 INTRODUCTION
Designing a software architecture to meet its main requirements

is a complex and frequently error-prone process for human archi-

tects. This process usually involves exploring design options, and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Designing ’24, April 15–14, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0563-2/24/04

https://doi.org/10.1145/3643660.3643947

assessing and making decisions (e.g., patterns, tactics, or technol-

ogy choices) to address a set of quality attributes (e.g., performance,

reliability, or cost, among others) that trade off with each other.

The exploration proceeds in iterations until the architect reaches a

solution that best fulfills the architectural drivers [3].

Since the process above is mostly manual, the number of design

decisions and alternatives analyzed by humans usually comprises

a relatively small set of options, because the complexity of explor-

ing a large design space is beyond humans’ cognitive capabilities.

Over the last years, however, several architecture tools relying on

automated search and optimization have been developed [1, 12, 13].

These tools are able to search through a wide range of alternatives

and recommend the most promising ones (e.g., those close to the

Pareto front) for the objectives posed by the architect (e.g., quality-

attribute metrics). A first challenge for architecting using these

tools is that their working is opaque to the architect. Therefore,

it is difficult for a human to understand how and why a given so-

lution was recommended, particularly in cases of multi-objective

optimization that imply quality-attribute tradeoffs. In general, the

architect’s mindset is driven by abstractions such as quality at-

tributes, tradeoffs, patterns and tactics, which do not match the

abstractions internally employed by the tools. This situation creates

a gap between the tool outputs and the architect’s expectations.

As an automated tool runs its search for solutions, it generates

vast amounts of data. In this context, some approaches have used

Machine Learning (ML) techniques (e.g., dimensionality reduction,

decision tree learning, and clustering, among others) to process the

resulting data and provide digested insights to architects about the

design exploration [4, 9, 14]. Nonetheless, such techniques are not

primarily designed to address architects’ concerns and their outputs

are often not directly usable by architects. For instance, applying a

dimensionality reduction technique on a multi-variate dataset and

then using clustering might not shed light on the key architecture

variables that the architect might act upon, or quality-attribute

variables exposing tradeoffs. Thus, a second challenge is how to

adapt ML techniques to serve the architect’s information needs. In

previous works, we have investigated how ML techniques can be

used to answer design questions with a focus on quality-attribute

tradeoffs [6], and also performed user studies [7].

These challenges about the opaqueness of automated tools, and

the mismatches between the architect’s abstractions and those

used by the optimization and ML techniques, negatively affect the

architect’s trust in the generated solutions and diminishes the value

of an automated design exploration. This calls for architecture-

driven explainability mechanisms for design spaces. In this paper,

we propose a conceptual framework towards that objective, which

https://orcid.org/0000-0002-1765-7872
https://orcid.org/0000-0002-6735-8301
https://orcid.org/0000-0002-1765-7872
https://orcid.org/0000-0002-6735-8301
https://doi.org/10.1145/3643660.3643947
https://doi.org/10.1145/3643660.3643947
https://doi.org/10.1145/3643660.3643947


Designing ’24, April 15–14, 2024, Lisbon, Portugal Diaz-Pace and Garlan

is outlined in Fig. 1. The main building blocks in this framework are:

(i) the identification of architecturally-relevant information needs

that can be translated to questions for an automated tool (step 3○),

and (ii) the provision of mechanisms for combining standard ML

techniques and tailoring them to an architectural context (step 5○).

To demonstrate our approach, we present an example of apply-

ing the framework to a client-server design space using clustering.

We provide a walkthrough of how clustering can be tailored to

condense the spaces of both architecture configurations and quality

attributes, and present visualizations helping to address the archi-

tect’s information needs. The rest of the paper elaborates on the

different phases of our framework, discussing pros and cons of the

proposed techniques, and closes with perspectives for future work.

ad
ap

ta
tio

n 
/ 

su
m

m
ar

iza
tio

n

architectural 
questions

architect

optimization
tool(s)

data

ML techniquesdesign space
analytics (dashboard)

initial architecture + 
quality-attibute goals

translations

1
2

3

4

5

Figure 1: Conceptual framework for effective design explo-
ration by human architects.

2 ARCHITECT’S INFORMATION NEEDS
A conceptualization of a design space typically involves two spaces:

(i) the space of architectural configurations (AC), and (ii) the quality-
attribute (QA) space, as depicted in Fig. 2. The AC space (or search

space) refers to all the feasible architectures that can be derived from

a collection of design decisions. Often times, the architect starts

with an initial architecture configuration (step 1○ in Fig. 1) and asks

an optimization tool to generate several children configurations

by applying predefined transformations (e.g., refactoring opera-

tions, tactics, etc.) to the initial architecture (step 2○). This search

cycle is repeated for each generated architecture in order to derive

additional configurations, until a maximum number of iterations

is reached or a property is met. The architecture configurations

returned by the tool are often arranged as a graph-like structure, in

which the nodes correspond to the configurations and the directed

edges capture the transformations between a source and a target

configuration. The QA space refers to the quality-attribute values

resulting from evaluating the architecture configurations in the AC
space. The QA space is defined by the attributes of interest for the

architect (e.g., performance, reliability, etc.).

In this context, the exploration and understandability challenges

for a human stem from the complexity (e.g., in terms of size and

number of dimensions) of each individual space, and also from the

correspondences (or mapping) between the instances in the two

spaces. That is, any configuration in one space is mapped to multi-

valued instance on the other space. For this reason, we argue that

a human-oriented strategy for dealing with a large design space

A0

SPACE OF
ARCHITECTURAL
CONFIGURATIONS

MAPPING

QUALITY-ATTRIBUTE
SPACE

Figure 2: A typical design space: a graph of architecture con-
figurations (left) mapped to a multi-valued space (right).

should be primarily driven by architectural questions that seek to

address specific information needs of the architect (step 3○). These

questions can pertain to the AC space, to the QA space, or to both

of them. Based on prior works and user studies [6, 7], a sample of

typical architectural questions are listed below.

• Q1: What are the categories of feasible quality-attribute

tradeoffs? (QA space)

• Q2: What architectural configurations are representative

of each category of quality-attribute tradeoffs? (QA and

AC spaces)

• Q3: What are the categories of architectural configura-

tions?

• Q4: How are the categories of architectural configurations

and tradeoffs correlated?

• Q5: For a given architecture configuration, which alterna-

tive configurations lead to similar quality-attribute trade-

offs? (AC and QA spaces)

• Q6: For a given architecture configuration, which alter-

native configurations lead to different quality-attribute

tradeoffs? (AC and QA spaces)

We argue that answering these types of questions above requires:

(i) summarization mechanisms that can identify representative in-

stances and features in the two spaces; (ii) a translation of those

instances and features to architectural abstractions, and (iii) ap-

propriate visualizations to render those abstractions to the archi-

tect. ML techniques can support summarization, but if used in a

standalone fashion, they often fail to convey abstractions that are

architecturally meaningful to architects. In sections 3 and 4 we

exemplify how these capabilities can be achieved.

Client-server model problem. Let us consider a design space for

a family of systems that adhere to a client-server architectural

style [7]. In this style, the client submits requests through a load

balancer that assigns the requests to a number of available service

instances for processing. A service instance is hosted on a device.

In terms of possible architecture configurations, let us assume three

devices, each one with the ability to host up to six service instances.

Each device might have different hardware characteristics, which

influence its cost, processing power, and level of availability. The

main quality attributes of the system are: average processing time

for individual requests (i.e., latency), deployment cost for the whole

system (i.e., services plus devices), and global system availability



The Architect in the Maze: On the Effective Usage of Automated Design Exploration Designing ’24, April 15–14, 2024, Lisbon, Portugal

(a) Agglomerative clustering of the AC space
(7 clusters), incorporating the connectivity of
the nodes. Nodes correspond to architecture
configurations and edges show design trans-
formations among them.

(b) Clustering of theQA space using k-Medoids
(5 clusters). Each point corresponds to a differ-
ent quality-attribute value resulting from the
feasible architecture configurations.

Figure 3: Basic clustering of the AC and QA spaces (partial support for Q1, Q2 and Q3).

(i.e., probability of having at least one device serving requests).

This design space entails 342 possible architecture configurations

with different values for performance, cost and availability. The

configurations were generated with the PRISM model checker [10]

(step 2○ of the framework), although other tools could have been

used for this purpose. The generated data is shown in Fig. 2.

For simplicity, an architecture configuration in this case can be

defined by the number of active services per device. Some examples

of architecture configurations are given in Fig. 6, which also shows

the hardware characteristics of each type of device. More complex

configurations, including variations in the properties of individual

services and devices, are possible but left out of scope for this paper.

3 APPLYING ML TECHNIQUES
A first, intuitive technique to tame the complexity of our example

design space is clustering [15], which corresponds to step 4○ in

Fig. 1. Clustering is a type of unsupervised learning for grouping

a set of instances in such a way that instances in the same group

(or cluster) are more similar to each other than to those in other

groups. An instance is a vector of numeric values, and similarity

among instances is computed by means of a distance function

(e.g., Euclidean or Cosine). In the QA space, instances are already

numeric vectors, so the usage of clustering is straightforward. In our

example, we can consider triples for the performance, availability

and cost values of architecture configurations. In the AC space,

however, identifying adequate variables for the instance vector can

be challenging, and several representation options might exist (e.g.,

complex features, or graph embeddings) [4]. In our example, let

us assume that the configurations are represented by a triple <

𝑑𝑒𝑣𝑖𝑐𝑒1, 𝑑𝑒𝑣𝑖𝑐𝑒2, 𝑑𝑒𝑣𝑖𝑐𝑒3 >, which indicates the number of services

allocated to the three devices. An additional aspect in the AC space

is that the architectures are generally connected, depending on the

transformations (or design decisions) made for transitioning from

a given architecture to its neighbors. This interconnected structure

of the data can influence the clustering process results.

When running the clustering process, there are a variety of tech-

nical parameters to be determined, such as: the specific clustering

algorithm, the number of clusters (or a metric for choosing an ap-

propriate number), and the distance function to compare instances.

In this example, for each space we chose the number of clusters that

minimized the silhouette score, and relied on the Euclidean distance

to assess similarity among instances, according to standard ML

guidelines for clustering [15].

Figs. 3a and 3b show the results of clustering the AC and QA
spaces, respectively. Although these charts provide an intuition to

the architect about groups of instances, partially contributing to

Q1, Q2 and Q3; the charts have information overloading issues, and

the architectural characteristics of each group are not easy to see.

Furthermore, the links between the seven groups of configurations

(Fig. 3b) and the five quality-attribute groups (Fig. 3a) are unclear.

Thus, many architectural questions remain unanswered.

4 TAILORING CLUSTERING TO DESIGN
In this section, we showcase how the results of a pure clustering

approach can be progressively simplified and enriched to convey ar-

chitectural information about design decisions and quality-attribute

tradeoffs (step 5○ in Fig. 1). To this end, we introduce techniques

for reducing the complexity of the spaces for our model problem.

4.1 Value discretization
To improve the architect’s understanding of the instances in either

the QA space or the AC space, we apply a discretization procedure

that partitions the range of values for each quality attribute or archi-

tecture variable into an ordinal (or Likert-like) scale. For instance,

for cost, we use a 5-point scale <very-cheap,cheap,average,expensive,
very-expensive>which converts the numeric values for the attribute

into categorical ones, as depicted in Fig. 4. For any instance in the

QA space, we can then assign a label as a concatenation of the

categorical values for the three quality attributes, which the ar-

chitect can interpret as a quality-attribute tradeoff. An example of



Designing ’24, April 15–14, 2024, Lisbon, Portugal Diaz-Pace and Garlan

averagecheapvery-cheap very-expensiveexpensive

Figure 4: Example of discretization of values into categories.

such a label can be very-slow/very-cheap/unreliable for performance,

cost and reliability, respectively. Similarly, for the possible config-

urations in our client-server style, we can apply a discretization

of the architecture variables, which generates categorical values

with respect to the number of services allocated to the devices. For

example, we use the scale <no-services, few-services, some-services,
many-services>, and then obtain labels such as no-services/many-
services/few-services for the three available devices, respectively.

The main goal of the discretization is to reduce the combinations

of values to a small set of labels. For the QA space, a 5-point scale
results in 125 potential tradeoff categories; while for AC space, the

4-point scale results in 64 categories of architecture configurations.

These represent information reductions of 37% and 19%, respec-

tively. Alternative discretizations, such as quartiles, are possible.

4.2 Prototype selection and distances
Once clusters are identified and labels are assigned to their in-

stances, we can simplify a space by selecting an instance that best

reflects the cluster characteristics. In particular, we select a prototyp-

ical instance that is closest to the mean of the instances belonging

to a cluster (also known as the medoid of the cluster). Furthermore,

we use the label of the medoid as the label to characterize the whole

cluster. Figs. 5b and 5a show how the spaces of Figs. 3a and 3b look

like after condensing them by keeping only the cluster prototypes.

These charts help architects to reason about Q1 and Q3.
For the spatial layout of the figures, we rely on amulti-dimensional

scaling (MDS) technique [5], which creates a 2D projection of the

space that shows the dissimilarities among the prototypes by trying

to preserve the distances between them (in the original space). In the

QA space, the number of feasible tradeoffs has been now reduced to

five categories (out of 125). In this way, the architect can clearly see

that themost common tradeoff (0) is 𝑣𝑒𝑟𝑦−𝑓 𝑎𝑠𝑡/𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒/ℎ𝑖𝑔ℎ𝑙𝑦−
𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 , and other related tradeoffs are also well-represented in

the space. Note also that tradeoff 3 is shown far part from the other

tradeoffs, as its label 𝑣𝑒𝑟𝑦 − 𝑠𝑙𝑜𝑤/𝑣𝑒𝑟𝑦 − 𝑐ℎ𝑒𝑎𝑝/𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 is quite
different from the others. Other visualizations, such as parallel plots

or radar charts, can also help to expose the feasible tradeoffs.

As a complement, Fig. 6 depicts the structural characteristics of

the configurations for the five prototypes, highlighting the differ-

ences in the assignment of the services to devices with different

hardware, and contributing to Q2. For instance, a visual inspec-

tion of the architecture of prototype 3 (at the top-right corner)

corroborates a preference for cost over performance and reliability.

The notion of distance (or separation) among the prototypes

should be chosen in such a way that it conveys an architectural

meaning. Since the QA space often involves a handful of objectives,

the Euclidean distance between the (numeric) quality-attribute val-

ues is a standard choice, and it was used in our example. For the

AC space, we interpret the distance between two configurations in

terms of their delta of changes [2]. For simplicity, we considered

the Euclidean distance between the architecture variables of the

configurations; however, more-complex proposals can be explored.

For instance, the architectural distance between a pair of configura-

tions can be expressed in terms of the sequences of transformations

(or decisions) applied on the initial architecture in order to reach

those configurations, using a variant of the hamming distance [7].

Analogously to the condensed QA space, we can compute the

prototypes for the clusters in the AC space, as shown in Fig. 5a.

In this case, the feasible groups of configurations are simplified

to 7 clusters (out of 64). An MDS projection has been applied to

visually arrange the prototypes. Here, the architect can see that the

configurations are evenly distributed across the groups, with some

exceptions for clusters 5 and 6 being less represented than the rest.

Note that, unlike Fig. 3a, the condensed clustering of architecture

configurations preserves the edges from the original graph, which

can help architects to identify the changes required to move from

one configuration to another. Although this condensed view is use-

ful for understanding the alternatives in AC space, if the architect

would like to reason about the connections of these prototypes to

the quality-attribute tradeoffs, that need is not supported.

4.3 Correlation between the two spaces
The relations between the prototypes (and their underlying clus-

ters) of the two spaces is seldom a one-to-one mapping. A group of

architecture configurations will likely have heterogeneous quality-

attribute characteristics, which means that subsets of instances can

map to different quality-attribute tradeoffs. For instance, configura-

tions with many services allocated to both the high-end and low-

end devices but with few (or no) services allocated to the medium

device, can have slight variations in their cost tradeoffs. To account

for this situation, we need to check the mappings and eventually

split the initial configuration clusters to ensure that the groups

become homogeneous (with respect to their tradeoffs). When do-

ing so, prototypes for the new groups need to be selected again.

Fig. 7 shows the resulting clusters after performing the splitting

process. The original clustering, based solely on the architecture

configurations, is depicted by the shaded areas around subsets of

graph nodes. Note that the 𝐴𝐶 space now has 21 prototypes. This

number is larger than those for the condensed spaces, but is still

small part (6%) of the initial design space generated by the tool.

This chart provides a more detailed view of the (whole) space,

and helps to address Q2, Q4, A5 and Q5. The new prototypes at-

tempt to be representative but also diverse with respect to both

architectural structure and quality-attribute tradeoffs. As in pre-

vious graphs, the edges denote paths to transition from one (type

of) configuration to another, but we also expose how the tradeoffs

might change due to those transitions. As mentioned in section

4.2, the distance between prototypes indicates their proximity in

terms of architectural changes. The architect can further inspect

the architecture behind any prototype, as in Fig. 6.

5 RELATEDWORK
Several tools for automated architecture optimization that generate

a set of alternatives have been proposed [1, 2]. These tools work



The Architect in the Maze: On the Effective Usage of Automated Design Exploration Designing ’24, April 15–14, 2024, Lisbon, Portugal

(a) Condensed view of the space of architecture configurations.
Only cluster prototypes are shown. Node sizes are proportional
to the number of cluster instances. Edges indicate architecture
transformations to move among clusters.

Categories of Qualityattribute Tradeoffs 
 [performance,cost,reliability]

veryfast,expensive,highlyreliable (62.6%)
veryfast,verycheap,average (3.2%)
veryfast,cheap,mostlyreliable (12.6%)
veryslow,verycheap,unreliable (0.3%)
veryfast,average,highlyreliable (21.3%)

0

1

2

3

4

(b) Condensed view of the quality-attribute space. Only cluster
prototypes are shown. Square sizes are proportional to the num-
ber of cluster instances.

Figure 5: Improved clustering of the two spaces (support for Q1 and Q3).

prototype cluster-0
very-fast, expensive, highly-reliable

prototype cluster-3
very-slow, very-cheap, 
unreliable

prototype cluster-2
very-fast, cheap, mostly-reliable

prototype cluster-1
very-fast, very-cheap, 
average

prototype cluster-4
very-fast, average, highly-reliable

High-end device

Medium device

Low-end device

Figure 6: Architecture configurations of the 5 prototypes for the (condensed) quality-attribute space (support for Q2).

mostly as black boxes, and their internal search space is not com-

prehensible by humans. Recent approaches, like SQuAT-Viz [8] and
Voyager [11], have investigated visualization techniques for helping
architects to understand tradeoffs, and have also evaluated their

usability. Among other techniques, SQuAT-Viz [8] uses radar charts
and scatter plots for the QA space, showing all possible combina-

tions of tradeoffs. Voyager [11], in turn, combines tradeoff analysis

along with architectural structure visualizations, aiming to connect

these two spaces, which is a concern shared by our framework.

However, it does not consider space reduction issues.

Other authors have attempted to explain tradeoff spaces using di-

mensionality reduction and clustering techniques. Camara et al. [4]

propose PCA (Principal Component Analysis) loading plots to re-

late quality-attribute and architectural variables. In the planning

domain, Wohlrab et al. [14] complement the previous PCA plots

with clustering and decision trees. The usage of clusters differs from

our framework, as they refer to policies sharing similar characteris-

tics and provide a high-level tradeoff explanation. The clustering

process is applied on top of the PCA plots, which often implies

some information loss when going to a 2D representation.

The GATSE tool [12] allows architects to visually inspect AADL
(Architecture Analysis and Description Language) models from a

previously computed dataset. It offers several visualizations to sup-

port quality-attribute analyses of AADL models (e.g., via a Pareto

diagram), enabling the architect to focus on regions of the QA space

to narrow down or deepen the search for alternatives.

Kinneer and Herzig [9] investigate metrics of dissimilarity and

clustering for a set of spacecraft architectures within a space mis-

sion domain. Since a large number of architecture candidates are

automatically synthesized, but some candidates might be similar to

each other, the architect has to waste time sifting through the space.

Thus, a clustering process is proposed to group the architectures



Designing ’24, April 15–14, 2024, Lisbon, Portugal Diaz-Pace and Garlan

Figure 7: Combining prototypes for the architecture configurations and quality-attribute spaces (support for Q2, Q4, Q5 and Q6).

and select a representative instance from each group. The clustering

is tied to the notion of architecture distance, like in our framework.

Carts 
(Figures)

Inspection of 
configuration(s)

Condensed (tailored) clusteringBasic 
clustering

Question 
(or need) Combination of 

the 2 spaces
Distance 
& layout

Prototype 
selection

Discretization

4a, 5bn/an/a✓✓✓⌽Q1
4a, 6, 7✓✓n/a✓✓⌽Q2
4a, 5a✓n/a✓✓⌽⌽Q3

7⌽✓⌽✓⌽✕Q4
7⌽⌽✓✓⌽✕Q5
7⌽⌽✓✓⌽✕Q6

✓ Good support ⌽ Partial support ✕ No support

Figure 8: Summary of contributions of the different tech-
niques and charts to the driving architectural questions.

6 CONCLUSIONS AND PERSPECTIVE
In this work, we proposed a framework for making automated de-

sign exploration more effective from the architect’s point of view. In

particular, we argue that the process should be driven by architec-

tural questions. We exercised this framework using clustering and

other related techniques
1
. Fig. 8 gives a summary of how those tech-

niques supported our initial set of questions. Naturally, including

more questions might require additional techniques. For instance,

the architect could ask about the key design decisions behind par-

ticular architecture configurations. This type of question focuses on

the edges of the graph (AC space) rather than on the nodes. Further-

more, we foresee that questions that require combined information

from the AC and QA spaces can be challenging. Making progress

on the questions and supporting architect’s interactions will serve

us to improve the workflow for the proposed framework (Fig. 1).

As future work, we plan to enhance our repertoire of questions

and techniques, providing a better integration among them, for

instance, by means of storytelling mechanisms. User studies will

be also needed as important instruments to validate our tooling

effort. Additionally, we will investigate the development of a design

assistant for the framework using generative AI.

1Colab notebook with the techniques and visualizations: https://shorturl.at/fnrw6.

REFERENCES
[1] Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., and Meedeniya, I. Software

architecture optimization methods: A systematic literature review. IEEE Trans.
on Soft. Eng. 39, 5 (2013), 658–683.

[2] Arcelli, D., Cortellessa, V., D’Emidio, M., and Di Pompeo, D. Easier: An

evolutionary approach for multi-objective software architecture refactoring. In

2018 IEEE Int. Conf. on Software Architecture (ICSA) (2018), pp. 105–115.
[3] Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice. SEI

series in software engineering. Addison-Wesley, 2003.

[4] Cámara, J., Silva, M., Garlan, D., and Schmerl, B. Explaining architectural

design tradeoff spaces: A machine learning approach. In Software Architecture:
15th European Conf., ECSA 2021, Sweden, Proceedings (Berlin, Heidelberg, 2021),
Springer-Verlag, p. 49–65.

[5] Cox, M. A. A., and Cox, T. F. Multidimensional Scaling. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2008, pp. 315–347.

[6] Cámara, J., Wohlrab, R., Garlan, D., and Schmerl, B. Focusing on what

matters: Explaining quality tradeoffs in software-intensive systems via dimen-

sionality reduction. IEEE Software (2023), 1–10.
[7] Diaz-Pace, J. A., Wohlrab, R., and Garlan, D. Supporting the exploration

of quality attribute tradeoffs in large design spaces. In Software Architecture
(Cham, 2023), B. Tekinerdogan, C. Trubiani, C. Tibermacine, P. Scandurra, and

C. E. Cuesta, Eds., Springer Nature Switzerland, pp. 3–19.

[8] Frank, S., and van Hoorn, A. Squat-vis: Visualization and interaction in soft-

ware architecture optimization. In Software Architecture - 14th European Conf.,
ECSA 2020 Tracks and Workshops, Proc. (2020), vol. 1269, Springer, pp. 107–119.

[9] Kinneer, C., and Herzig, S. J. I. Dissimilarity measures for clustering space mis-

sion architectures. In Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems (New York, NY, USA, 2018),

MODELS ’18, ACM, p. 392–402.

[10] Kwiatkowska, M., Norman, G., and Parker, D. PRISM 4.0: Verification of prob-

abilistic real-time systems. In Proc. 23rd Int. Conf. on Computer Aided Verification
(CAV’11) (2011), vol. 6806 of LNCS, Springer, pp. 585–591.

[11] Mashinchi, J., and Cámara, J. Voyager: Software architecture trade-off explorer.

In Software Architecture - 14th European Conf., ECSA 2020 Tracks and Workshops,
Proceedings (2020), vol. 1269, Springer, pp. 55–67.

[12] Procter, S., and Wrage, L. Guided architecture trade space exploration: Fusing

model based engineering and design by shopping. In 2019 ACM/IEEE 22nd Int.
Conf. on Model Driven Eng., Languages and Systems (MODELS) (2019), pp. 117–127.

[13] Quesada, A. R., Romero, J. R., and Ventura, S. Interactive multi-objective

evolutionary optimization of software architectures. Inf. Sci. 463-464 (2018).
[14] Wohlrab, R., Cámara, J., Garlan, D., and Schmerl, B. Explaining quality

attribute tradeoffs in automated planning for self-adaptive systems. Journal of
Systems and Software 198 (2023), 111538.

[15] Xu, D., and Tian, Y. A comprehensive survey of clustering algorithms. Annals
of Data Science 2 (2015), 165 – 193.

https://shorturl.at/fnrw6

	Abstract
	1 Introduction
	2 Architect's information needs
	3 Applying ML techniques
	4 Tailoring Clustering to Design
	4.1 Value discretization
	4.2 Prototype selection and distances
	4.3 Correlation between the two spaces

	5 Related work
	6 Conclusions and Perspective
	References

