
Optimal Planning for Architecture-Based Self-Adaptation
Via Model Checking of Stochastic Games

Javier Cámara, David Garlan, Bradley Schmerl, Ashutosh Pandey
Institute for Software Research, Carnegie Mellon University

Pittsburgh, PA 15213, USA
{jcmoreno, garlan, schmerl, ashutoshp}@cs.cmu.edu

ABSTRACT
Architecture-based approaches to self-adaptation rely on ar-
chitectural descriptions to reason about the best way of
adapting the structure and behavior of software-intensive
systems at runtime, either by choosing among a set of pre-
defined adaptation strategies, or by automatically generat-
ing adaptation plans. Predefined strategy selection has a
low computational overhead and facilitates dealing with un-
certainty (e.g., by accounting explicitly for contingencies de-
rived from unexpected outcomes of actions), but requires ad-
ditional designer effort regarding the specification of strate-
gies and is unable to guarantee optimal solutions. In con-
trast, runtime plan generation is able to explore a richer
solution space and provide optimal solutions in some cases,
but is more limited when dealing with uncertainty, and in-
curs higher computational overheads. In this paper, we
propose an approach to optimal adaptation plan genera-
tion for architecture-based self-adaptation via model check-
ing of stochastic multiplayer games (SMGs). Our approach
enables: (i) trade-off analysis among different qualities by
means of utility functions and preferences, and (ii) explicit
modeling of uncertainty in the outcome of adaptation ac-
tions and the behavior of the environment. Basing on the
concepts embodied in the Rainbow framework for self-adap-
tation, we illustrate our approach in Znn.com, a case study
that reproduces the infrastructure for a news website.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; D.2.4 [Software
/Program Verification]: Formal methods

Keywords
Self-adaptation, Planning, Probabilistic Model Checking

1. INTRODUCTION
During the last decade, advances in self-adaptive systems [12,

14, 15, 17] have addressed the rising development and oper-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

ation costs, as well as the reduction in reliability of increas-
ingly complex software-intensive systems that operate in dy-
namically changing environments. Specifically, architecture-
based self-adaptation approaches [12, 15, 17] rely on archi-
tectural descriptions to reason at runtime about the best way
to adapt the structure and behavior of a software system to
changes in its environment (e.g., resource availability), re-
quirements, and the system itself (e.g., faults).

Architecture-based self-adaptation approaches address a-
daptation planning mainly in two different ways. On the
one hand, approaches that rely on selection of adaptation
strategies defined by a designer at development time [12, 17]
have a low runtime overhead, often enable candidate solu-
tion ranking by analyzing trade-offs among different quality
concerns, and are sometimes able to deal with some aspects
of uncertainty [12]. However, these approaches are limited
to a restricted solution space (hence being unable to guaran-
tee optimal solutions) and require additional designer effort
to specify adaptation strategies. On the other hand, ap-
proaches that automatically generate adaptation plans at
runtime [18, 19] free the designer from specifying strate-
gies at development time, but incur a significantly higher
computational overhead compared to predefined strategy se-
lection approaches. Moreover, although some of the latter
approaches are able to rank candidate solutions by analyz-
ing trade-offs among different qualities [18] or consider un-
certainty for tuning the operation of the system (e.g., by
dynamically adjusting parameters [4, 10]), there is no ap-
proach to the best of our knowledge able to factor in all
these elements for adaptation plan generation.

In this paper, we contribute a novel approach to auto-
matically synthesize optimal reactive adaptation plans via
model checking of stochastic multiplayer games (SMGs) [6]
that enables: (i) trade-off analysis among different qualities
by means of utility functions and preferences, and (ii) mod-
eling of uncertainty both as probabilistic outcomes of adap-
tation actions and through explicit modeling of the behavior
of the system’s environment.

We employ some of the concepts in Rainbow [12] as a
reference framework to illustrate our approach in the context
of Znn.com, a benchmark case study that reproduces the
typical infrastructure for a news website.

Our results show a reasonable scalability for plan synthe-
sis when it just considers probabilistic outcomes of actions.
Although scalability is more limited for large problem in-
stances that consider the environment’s behavior, the richer
modeling of uncertainty reduces the need to replan when
action executions deviate from their expected outcome.

In the remainder of the paper, Section 2 presents Znn.com.
Section 3 introduces some background on SMGs and the
adaptation model that we assume. Section 4 describes the
approach. Section 5 presents results, and Section 6 describes
related work. Section 7 discusses conclusions and future
work.

2. EXAMPLE
Znn.com [8] is a case study portraying a representative

scenario for the application of self-adaptation in software
systems. It has been extensively used to assess different
research advances in self-adaptive systems. Znn.com em-
bodies the typical infrastructure for a news website, and its
architecture includes a set of servers that provide contents
from backend databases to clients via front-end presenta-
tion logic (Figure 1). The system uses a load balancer to
balance requests across a pool of replicated servers, the size
of which can be adjusted according to service demand. A
set of clients makes stateless requests, and the servers deliver
the requested contents.

c0

c1

c2

lbproxy

s0

s1

s2

s3

Figure 1: Znn.com system architecture

The main objective for Znn.com is to provide content to
customers within a reasonable response time, while keeping
the cost of the server pool within a certain operating budget.
Znn.com can experience spikes in requests that it cannot
serve adequately, even at maximum pool size. To prevent
losing customers, the system can maintain functionality at
a reduced level of fidelity by setting servers to return only
textual content during such peak times, instead of not pro-
viding service to some of its customers. Concretely, there
are three main quality objectives for the self-adaptation of
the system: (i) performance, which depends on request re-
sponse time, server load, and network bandwidth, (ii) cost,
which is associated with the number of active servers, and
(iii) the fidelity of the contents served.

In Znn.com, when response time becomes too high, the
system is able to increment its server pool size if it is within
budget to improve performance; or switch servers to textual
mode if the cost is near to budget limit.

We assume that there is information available regarding
the reliability of the different servers in the pool (derived
from observations of previous system executions). This in-
formation can be exploited to prioritize the activation of the
most reliable servers when trying to increase performance.

3. BACKGROUND
This section introduces the adaptation model that we as-

sume in this paper, and overviews probabilistic model check-
ing of SMGs, the technique on which we build our approach.

3.1 Adaptation Model
Although there are many proposals that rely on a closed-

loop control approach to self-adaptation that exploit archi-
tectural models for adaptation [12, 15, 17], in this paper we

use some of the high-level concepts in Rainbow [12] as a ref-
erence framework to illustrate our approach. Rainbow has
among its distinct features an explicit architecture model
of the target system, a collection of adaptation tactics, and
utility preferences to guide adaptation.

We assume a model of adaptation that represents adap-
tation knowledge using the following high-level concepts:1

• Tactic: is a primitive action that corresponds to a sin-
gle step of adaptation, and has an associated cost/ben-
efit impact on the different quality dimensions. For in-
stance, in Znn.com we can specify pairs of tactics with
opposing effects for enlisting/discharging servers and rais-
ing/lowering the fidelity level of contents served. Table 1
shows the different tactics in Znn, and their impacts on
quality dimensions: enlistServer adds a new server, re-
ducing response time and increasing cost, whereas dis-
chargeServer has the opposite effect. In contrast, lowerFi-
delity/raiseFidelity marginally impact cost, having a mod-
erate impact on response time (compared to server enlist-
ing/discharging) at the expense of lowering fidelity.

Table 1: Cost/benefit for Znn.com tactics.
Tactic ∆Response time(ms) ∆Cost(usd/hr) ∆Fidelity level
enlistServer -1000 +1.0 0
dischargeServer +1000 -1.0 0
lowerFidelity -500 -0.1 -1
raiseFidelity +500 +0.1 +1

• Utility Profile: To enable the selection of tactics at run-
time, we assume that adaptation is driven by utility func-
tions and preferences, which are sensitive to the context
of use and able to consider trade-offs among multiple po-
tentially conflicting objectives. The different qualities of
concern are characterized as utility functions that map
them to architectural properties. In this case, we assume
that utility functions are defined by an explicit set of value
pairs (with intermediate points linearly interpolated). Ta-
ble 2 summarizes an example of utility functions for Znn.
Function UR maps low response times (up to 100ms) with
maximum utility, whereas values above 2000ms are highly
penalized. Function UC maps higher cost (derived from
the number of active servers) to lower utility values. Func-
tion UF maps a low fidelity level to a utility value of 0.5,
whereas maximum fidelity level yields maximum utility.
Utility preferences capture business preferences over the
quality dimensions, assigning a weight to each one of them
(e.g., wUR = 0.5, wUC = 0.3, and wUF = 0.2 indicate per-
formance as the main concern, followed by cost).

Table 2: Utility functions and preferences.
UR UC UF

0 : 1.00 1000 : 0.75 0 : 1.00 3 : 0.30 1 : 0.50
100 : 1.00 1500 : 0.50 1 : 1.00 4 : 0.00 2 : 1.00
200 : 0.99 2000 : 0.25 2 : 0.90
500 : 0.90 4000 : 0.00

3.2 Model Checking Stochastic Games
Probabilistic model checking provides a means to model

and analyze systems that exhibit stochastic behavior, en-
abling quantitative reasoning about probability and reward-
based properties (e.g., resource usage, time, etc.).

Competitive behavior may also appear in (stochastic) sys-
tems when some component cannot be controlled, and could

1We use a simplified version of Stitch [9] to illustrate the
main ideas in this paper.

behave according to different or even conflicting goals with
respect to other components in the system. In such situ-
ations, a natural fit is modeling a system as a game be-
tween different players, adopting a game-theoretic perspec-
tive. This perspective is particularly useful in self-adaptive
systems, since the environment can be modeled as a player
whose actions cannot be controlled by the system.

Our approach to synthesizing adaptation plans builds upon
a recent technique for modeling and analyzing stochastic
multi-player games (SMGs) [6] where systems are modeled
as turn-based games. Hence, in each state of the model, only
one player can choose between several actions, the outcome
of which can be probabilistic.

Definition 1 (SMG). A turn-based SMG is a tuple G =
〈Π, S,A, (Si)i∈Π,∆, AP, χ, r〉, where Π is a finite set of play-
ers; S 6= ∅ is a finite set of states; A 6= ∅ is a finite set of
actions; (Si)i∈Π is a partition of S; ∆ : S × A → D(S) is
a (partial) transition function; AP is a finite set of atomic
propositions; χ : S → 2AP is a labeling function; and r :
S → Q≥0 is a reward structure mapping each state to a non-
negative rational reward. D(X) denotes the set of discrete
probability distributions over finite set X.

In each state s ∈ S, the set of available actions is denoted
by A(s) = {a ∈ A | ∆(s, a) 6= ⊥}. We assume that A(s) 6= ∅
for all states. Moreover, the choice of which action to take in
every state s is under the control of a single player i ∈ Π, for
which s ∈ Si. Once a player selects action a, the successor
state is chosen according to probability distribution ∆(s, a).

Definition 2 (Path). A path of SMG G is an (in)finite
sequence λ = s0a0s1a1 . . . s.t. ∀j ∈ N • aj ∈ A(sj) ∧
∆(sj , aj)(sj+1) > 0. Ω+

G denotes the set of finite paths in G.

Players in the game can follow strategies for choosing ac-
tions in the game, cooperating with each other in coalition
to achieve a common goal, or competing to achieve their own
(potentially conflicting) goals.

Definition 3 (Strategy). A strategy for player i ∈ Π
in G is a function σi : (SA)∗Si → D(A) which, for each path
λ · s ∈ Ω+

G where s ∈ Si, selects a probability distribution
σi(λ · s) over A(s).

In this paper, we always refer to strategies σi that are
memoryless (i.e., σi(λ · s) = σi(λ

′ · s) for all paths λ · s, λ′ · s
∈ Ω+

G), and deterministic (i.e., σi(λ · s) is a Dirac distribu-

tion for all λ ·s ∈ Ω+
G). Memoryless, deterministic strategies

resolve the choices in each state s ∈ Si for player i ∈ Π,
selecting actions based solely on information about the cur-
rent state in the game. These strategies are guaranteed to
achieve optimal expected rewards for the kind of cumulative
reward structures that we use in our models.2

Reasoning about strategies is a fundamental aspect of
model checking SMGs, which enables checking for the exis-
tence of a strategy that is able to optimize an objective ex-
pressed as a quantitative property in a logic called rPATL,
which extends ATL [1], a logic extensively used to reason
about the ability of a set of players to collectively achieve
a particular goal. Properties written in rPATL can state
that a coalition of players has a strategy which can ensure

2See Appendix A.2 in [6] for details.

that the probability of an event’s occurrence or an expected
reward measure meet some threshold.

rPATL is a CTL-style branching-time temporal logic that
incorporates the coalition operator 〈〈C〉〉 of ATL, combin-
ing it with the probabilistic operator P./q and path formulae
from PCTL [2]. Moreover, rPATL includes a generalization
of the reward operator Rr

./x [11] to reason about goals related
to rewards. An example of typical usage combining coali-
tion and reward operators is 〈〈{1, 2}〉〉Rr

≥5[Fcφ] meaning that
“players 1 and 2 have a strategy to ensure that the reward r
accrued along paths leading to states satisfying state formula
φ is at least 5, regardless of the strategies of other players.”
Moreover, extended versions of the rPATL reward operator
〈〈C〉〉Rr

max=?[Fc φ] and 〈〈C〉〉Rr
min=?[Fc φ], enable the quan-

tification of the maximum and minimum accrued reward
r along paths that lead to states satisfying φ that can be
guaranteed by players in coalition C, independently of the
strategies followed by the rest of players.

Model checking of rPATL properties supports optimal strat-
egy synthesis for a given property. In the following section,
we show how model checking of rPATL reward-based prop-
erties can be used to generate optimal adaptation plans.

4. APPROACH
This section describes our approach to planning via model

checking of SMGs. In a nutshell, the approach is based on
modeling the self-adaptive system and its environment as
two players of a SMG, in which the system’s objective is
reaching a goal state that maximizes a (utility) reward.

By expressing properties that enable us to quantify the
maximum reward that a player can achieve, independently of
the strategy followed by the rest of players, we can synthesize
the corresponding optimal strategy that a decision maker
would follow to maximize that reward.

The approach consists of two stages:

1. SMG Model Specification of the solution space as a
SMG G = 〈Π, S,A, (Si)i∈Π,∆, AP, χ, r〉, where:

• Π = {sys, env} is the set of players formed by the self-
adaptive system and its environment.

• S = Ssys ∪ Senv is the set of states, where Ssys and
Senv are the states controlled by the system and the en-
vironment players, respectively (Ssys ∩ Senv = ∅).
• A = Asys ∪ Aenv is the set of actions, where Asys and
Aenv are the actions available to the system and the en-
vironment players, respectively.

• AP is a subset of all the predicates that can be built
over the state variables. AP always includes:

– goal, which is satisfied in states where the goal of
adaptation is achieved.

– end, which labels explicitly all absorbing states of
the model (for a state s ∈ S, we say that s |= end iff
∀s′ ∈ S, a ∈ A •∆(s, a)(s′) 6= 0⇔ s = s′).

• r is a reward structure labeling goal states with their
associated utility, computed based on the preferences
defined in the utility profile. Specifically, the reward
of an arbitrary state s is defined as r(s) =

∑q
i=1 wi ·

ui(v
s
i) if s |= goal (r(s) = 0 if s 2 goal), where ui and

wi ∈ [0, 1] are the utility function and weight for quality
dimension i ∈ {1, . . . , q}, respectively. vsi is the value
that the state variable associated with the architectural
property representing quality attribute i takes in state s.

The state space and behaviors of the game are generated
by performing the alphabetized parallel composition of a
set of stochastic processes under the control of the two
players in the game (i.e., processes synchronize only on
actions appearing in more than one process). Specifically:

• The self-adaptive system (player sys) controls the choices
made by two different processes:

The controller, which corresponds to a specification of
the behavior followed by the adaptation layer of the self-
adaptive system, and can trigger the execution of tactics
on the target system under adaptation. The set of ac-
tions available to the controller process Asys corresponds
to the set of available tactics in the adaptation model.
Each action a ∈ Asys is encoded in a command:3

[a] Ca ∧ ¬goal ∧ t = sys -> t′ = env

Where the guard includes: (i) the conjunction of archi-
tectural constraints that limit the applicability of tactic a
(abstracted by Ca, e.g., a new server cannot be activated
in Znn.com’s pool if all of them are already active, List-
ing 4, line 4), (ii) a predicate ¬goal to avoid expanding
the state space beyond the satisfaction of the adaptation
goal, and (iii) a predicate to constrain the execution of
actions of player sys to states s ∈ Ssys (control of player
turns is made explicit by variable t).
An additional command in the controller introduces ab-
sorbing states that succeed every state satisfying goal:

[] goal ∧ ¬end ∧ t = sys -> end′ = true

All the local choices regarding the execution of controller
actions are specified nondeterministically in the process,
since this will enable the unfolding of all the potential
adaptation executions when performing the parallel com-
position of the different processes in the model.

The target system, whose set of available actions is also
Asys. Action executions in the target system synchronize
with those in the controller process on the same action
names. In this case, each action can be encoded in one
or more commands of the form:

[a] prea -> p1
a : post1a + · · ·+ pna : postna

[a] pre′a -> p′1a : post′1a + · · ·+ p′na : post′na . . .

Hence, a specific action in the controller can synchronize
with any of the alternative executions of the same action
in the target system. This models the different execution
instances that the same tactic can have on the target sys-
tem (e.g., when the controller enlists a server in Znn.com
in Listing 4, line 4, the target system can activate any of
the alternative available servers, as specified in Listing 3,
line 9). Each one of these commands is guarded by the
precondition of a tactic’s execution instance, denoted by

3We illustrate our approach to modeling the SMG using
the syntax of the PRISM language [16] for Markov Decision
Processes (MDPs), which are encoded as commands:

[action] guard -> p1 : u1+ . . . + pn : un

Where guard is a predicate over the model variables. Each
update ui describes a transition that the process can make
(by executing action) if the guard is true. An update is
specified by giving the new values of the variables, and has
an assigned probability pi ∈ [0, 1]. Multiple commands with
overlapping guards (and probably, including a single update
of unspecified probability) introduce local nondeterminism.

prea (e.g., a specific server needs to be active to be dis-
charged). Moreover, the execution of a command can
result in a number of alternative updates on state vari-
ables (along with their assigned probabilities pia) that
correspond to the different probabilistic outcomes of a
given tactic execution instance, denoted by postia (e.g.,
the activation of a specific server can result in a success
with probability p, and fail with 1− p).
• The environment (player env) controls a single process
environment, which models potential disturbances in the
execution context that are out of the system’s control
(e.g., network latency). The environment process is spec-
ified as a set of commands with asynchronous actions
a ∈ Aenv, and similarly to the controller process, its lo-
cal choices are specified nondeterministically to obtain
a rich specification of the environment’s behavior. Each
one of the commands follows the pattern:

[a] Ce
a∧¬end∧t=env->p1

a :post1a∧t
′ =sys+. . . +pn

a :postna∧t
′ =sys

Where Ce
a abstracts the conjunction of environment con-

straints for the execution of action a (e.g., a threshold
for the maximum latency that can be introduced in the
network, in the case of Znn.com), and ¬end prevents
the generation of further states for the game. The com-
mand includes one or more updates, along with their
associated probabilities. Each alternative update corre-
sponds to one probabilistic outcome of the execution of
a (postia), and yields the turn to the system player.

2. Strategy Synthesis. Consists of generating a memo-
ryless, deterministic strategy in G for player sys that has
the objective of reaching a state satisfying goal that maxi-
mizes the value of reward r (i.e., utility). The specification
for the synthesis of such a strategy is given as a rPATL
property following the pattern 〈〈sys〉〉Rr

max=?[Fc end], which
enables the quantification of the maximum accrued utility
reward r along paths leading to states satisfying end that
can be guaranteed by the system player, independently of
the strategy followed by the environment player.4

In the remainder of this section, we illustrate our approach
by describing a SMG model of Znn.com. We then show how
to synthesize optimal adaptation plans wrt a given utility
profile encoded as a reward structure. Finally, we present
some results that indicate the scalability of the approach.

4.1 SMG Model Specification
Our formal model of Znn.com is implemented in PRISM-

games [7], a probabilistic model-checker for modeling and
analyzing SMGs. The game is played in turns by two players
in control of the behavior of the environment and the system
(i.e., controller plus target system), respectively. The SMG
model consists of:

Player definition. Listing 1 illustrates the definition of the
players in the stochastic game: player env is in control of all
the (asynchronous) actions that the environment can take
(as defined in the environment module, Listing 2). Player sys
controls all transitions that belong to the controller module

4Note that the accrued reward along paths quantified in a
path formula Fφ does not account for the utility in states
where φ is satisfied. That is why in order to account for the
utility reward in goal states, we need to introduce additional
absorbing states succeeding goal states where end is satisfied
(in contrast with using a formula 〈〈sys〉〉Rr

max=?[Fc goal]).

(Listing 4), including all the transitions that synchronize
with the target system module (Listing 3), which represent
the execution of tactics upon the target system (explicitly
listed between square brackets in Listing 1, line 2). Global
variable t in Listing 1, line 3 is used to control turns in the
game and make players alternate, ensuring that for every
state of the model, only one player can take action.

1 player env environment endplayer
2 player sys [enlist server], [discharge server], [raise fidelity],[lower fidelity],

controller, target system endplayer
3 const TE=0, TS=1; global t:[TE..TS] init TE;

Listing 1: Player definition for Znn.com’s SMG.

Environment. Listing 2 shows the encoding used for a
simple version of Znn.com’s environment, which is able to
introduce a disturbance in response time by placing an ar-
bitrary amount of network latency in the execution context.
Line 1 defines the constants that parameterize its behavior: 5

• MIN LATENCY and MAX LATENCY are the minimum
and maximum magnitude of the disturbance (i.e., net-
work latency) that the environment can introduce in the
system’s state after the execution of a tactic.

• MAX TOTAL LATENCY constrains the maximum total
disturbance that the environment can introduce through-
out plan execution (and hence, that the plan can tolerate
without requiring replanning).

1 const MIN LATENCY, MAX LATENCY, MAX TOTAL LATENCY;
2 module environment
3 rt delta:[MIN LATENCY..MAX LATENCY] init MIN LATENCY;
4 rt delta total:[0..MAX TOTAL LATENCY] init 0;
5 [](t=TE)&(!end)&(X+rt delta total<MAX TOTAL LATENCY)−>(

rt delta’=X)&(rt delta total’=rt delta total+X)&(t’=TS); ...
6 endmodule

Listing 2: environment module.

Moreover, lines 3-4 declare the different variables that de-
fine the state of the environment: rt delta corresponds to the
additional latency introduced by the environment in the cur-
rent step, and rt delta total keeps track of the accumulated
latency introduced by the environment during the plan.

Each turn of the environment consists of setting the amount
of network latency for the current step in the plan. This is
achieved through a set of commands that follow the pattern
shown in Listing 2, line 5: the guard in the command checks
that (i) it is the turn of the environment to move, (ii) an ab-
sorbing state has not been reached yet (!end), and (iii) the
value of accrued network latency has not reached its limit.
If the guard is satisfied, the command: (i) sets the value of
network latency for the current plan step (represented by X
in the command), (ii) adds the value of network latency to
the accumulator rt delta total, and (iii) modifies the value
of t, yielding control to the system player. Note that there
may be as many of these commands as possible values can
be assigned to the network latency for the current plan step.

Target System. Module target system (Listing 3) models
the behavior of the target system (including the execution
of tactics upon it), and is parameterized by the constants:

• MIN SERVERS and MAX SERVERS, which specify the
minimum and maximum number of active servers that
a valid system configuration can have, respectively.

5Constant values not defined in the model are provided as
command-line input parameters to the tool.

• MAX RT and INIT RT, which specify the system’s maxi-
mum and initial response times, respectively.
• MAX FIDELITY, MIN FIDELITY, and STEP FIDELITY, which

specify the minimum and maximum fidelity levels of a
server, as well as the step among fidelity levels.
• INIT SX ON and INIT SX F, specify whether server X is

initially active and its initial fidelity level, respectively.
• SX BSP is the boot success probability for server X.

1 formula es f rt=rt−1000>=0?(rt−1000<=MAX RT?rt−1000:
MAX RT):0;

2 const MIN SERVERS, MAX SERVERS, MAX RT, INIT RT,
MIN FIDELITY, MAX FIDELITY, STEP FIDELITY;

3 const INIT S1 ON, INIT S2 ON, ...; const INIT S1 F, INIT S2 F, ...;
const S1 BSP, S2 BSP, ...;

4 module target system
5 rt:[0..MAX RT] init INIT RT;
6 s1 on : bool init INIT S1 ON; s2 on : bool init INIT S2 ON; ...
7 s1 f : [MIN FIDELITY..MAX FIDELITY] init INIT S1 F;
8 s2 f : [MIN FIDELITY..MAX FIDELITY] init INIT S2 F; ...
9 [enlist server](!s1 on)−>S1 BSP:(s1 on’=true)&(rt’=es f rt+rt delta

)+(1−S1 BSP):(rt’=rt+rt delta); ...
10 [discharge server](s1 on)−>(s1 on’=false)&(rt’=ds f rt+rt delta); ...
11 [raise fidelity](s1 on)&(s1 f+STEP FIDELITY<=MAX FIDELITY)

−>(s1 f’=s1 f+STEP FIDELITY)&(rt’=rf f rt+rt delta); ...
12 [lower fidelity](s1 on)&(s1 f−STEP FIDELITY>=MIN FIDELITY)

−>(s1 f’=s1 f−STEP FIDELITY)&(rt’=lf f rt+rt delta); ...
13 endmodule

Listing 3: target system module.

Moreover, the module includes variables to represent the
current system state: rt is the system’s response time, sx on
indicates whether server x is currently active, and sx f indi-
cates the current fidelity level of server x.

Each tactic that can be executed upon the target system is
represented by a set of commands labelled with the tactic’s
name. Each of these commands corresponds to a different
potential execution of the same tactic (e.g., enlist server can
be executed upon any of the inactive servers in the system).
Every command is guarded by the applicability condition
of a specific tactic execution instance (e.g., a specific server
should be inactive to be enlisted), updating the different
state variables of the system according to the effect of the
tactic’s execution and the potential disturbances prescribed
by the environment (in this case, this corresponds to network
latency being factored into the system’s response time):

• enlist server activates an inactive server x with probability
SX BSP, setting the value of sx on to true, and updating
the value of response time according to the impact defined
for the tactic in Table 1 (formula es f rt, line 1). Alterna-
tively, server activation fails with probability 1-SX BSP.
• discharge server deactivates an active server, increasing re-

sponse time according to formula ds f rt (analogous to
es f rt, but with opposite effect).
• lower fidelity lowers the fidelity of an active server one

step, decreasing response time.
• raise fidelity raises the fidelity level of an active server one

step, increasing response time.

Controller. Module controller (Listing 4) models the be-
havior of the controller as a fully nondeterministic process
in which each of the actions corresponds to a tactic that can
be executed on the target system. The module uses an ex-
plicit representation of the goal of adaptation to discriminate
goal states for the adaptation plan. In this case, we assume
that the objective of adaptation is lowering response time
below some threshold, and hence the formula goal (line 1) is
satisfied when response time is below THRESHOLD RT.

1 formula goal=(rt<THRESHOLD RT?true:false); ...
2 module controller
3 end : bool init false;
4 [enlist server] (t=TS) & (!goal) & (s<MAX SERVERS)−>(t’=TE);
5 [discharge server](t=TS)&(!goal)&(s>MIN SERVERS)−>(t’=TE);
6 [raise fidelity] (t=TS) & (!goal) & (s>=MIN SERVERS) & (f<

MAX FIDELITY) −> (t’=TE);
7 [lower fidelity] (t=TS) & (!goal) & (s>=MIN SERVERS) & (f>

MIN FIDELITY) −> (t’=TE);
8 [] (t=TS) & (goal) & (!end) −> 1: (end’=true);
9 endmodule

Listing 4: controller module.

The controller module contains a set of synchronous com-
mands, each one corresponding to one of the tactics that can
be executed on the target system. Each one of them can syn-
chronize with any of the commands labeled with the same
action name in the target system module (e.g., the command
in Listing 4, line 5, could synchronize with the command in
Listing 3, line 10 to discharge server 1, or with other com-
mands to discharge any of the other active servers). The sys-
tem player is in control of all these synchronous transitions
(as defined in Listing 1, line 2). A synchronous command
for the execution of a tactic can only be fired if: (i) It is the
turn of the system to take action, (ii) the adaptation goal
has not been satisfied, and (iii) there are no additional ar-
chitectural constraints preventing the execution of the tactic
(e.g., no servers can be discharged if the system is running
with MIN SERVERS active servers).

In addition, the module also contains an asynchronous
command (line 8) that sets the value of the end variable to
true whenever the adaptation goal is satisfied, resulting in
the creation of absorbing states in the model.

Utility profile Utility functions and preferences are en-
coded using formulas and reward structures that enable the
quantification of instantaneous utility in goal states of the
model. Specifically, formulas compute utility on the dif-
ferent dimensions of concern, and reward structures weigh
them against each other by using the utility preferences.

1 const W UR, W UF, W UC;
2 formula uR = (rt>=0 & rt<=100? 1:0)
3 +(rt>100&rt<=200?1+(−0.01)∗((rt−100)/(100)):0) ...
4 +(rt>2000&rt<=4000?0.25+(−0.25)∗((rt−2000)/(2000)):0)
5 +(rt>4000 ? 0:0); ...
6 rewards ”rIU” goal : W UR∗uR + W UF∗uF + W UC∗uC; endrewards

Listing 5: Utility functions and preferences encoding.

Listing 5 illustrates in lines 2-5 the encoding of utility
functions using a formula for linear interpolation based on
the points defined for utility function UR in the first column
of Table 2. The formula in the example computes the utility
for performance, based on the value of the variable for sys-
tem response time rt. Moreover, line 6 shows how a reward
structure can be defined to compute a utility value for any
state by using utility preferences (defined in line 1 as weights
W UR, W UF, and W UC for performance, fidelity, and cost
respectively). Labelling goal states in the model with utility
rewards in such a way effectively enables the synthesis of
optimal player strategies leading to target system configura-
tions that maximize utility. We discuss how such strategies
are synthesized in the next section.

4.2 Strategy Synthesis
To produce optimal adaptation plans, we use rPATL spec-

ifications as input to PRISM-games, which can synthesize

optimal strategies for such properties, given a SMG model.
Adaptation plan synthesis involves two steps:

1. Instantiating the formal model of the SMG for a specific
exemplar of the system, its initial configuration, utility
preferences, and adaptation goal. In the model presented
in Section 4.1, this is achieved by providing values for the
constants that parameterize it (e.g., available servers).

2. Generating a strategy for the instance of the model based
on a rPATL property specified according to the pattern
〈〈sys〉〉RrIU

max=?[Fc end], which enables the synthesis of a strat-
egy to maximize the accrued utility reward rIU.

Figure 2 shows an example of strategy synthesis to opti-
mize different utility rewards in a configuration of Znn in-
cluding 3 servers (S1, S2, and S3), each of which can serve
contents either with low (1) or high (2) fidelity. While S1
and S2 are 100% reliable, S3 has a boot success probabil-
ity S3 SBP=0.3. Every state node in the figure6 is labelled
with a tuple (rt, s1 on, s2 on, s3 on, s1 f, s2 f, s3 f, end) for
system response time, server activity and fidelity levels, and
end state information, respectively.

In its initial configuration, only S1 is active, and response
time is 2000ms (state 0). The goal for adaptation in this
example is lowering response time below THRESHOLD RT
(Listing 4, line 1), which in this case is set to 1500ms. All
states in which the goal is satisfied are labelled with different
utility values that favor the maximization of performance,
fidelity, and cost respectively. These values correspond to
reward structures analogous to the one in Listing 5, line 6,
using the utility functions in Table 2 and weights defined in
Table 3. Absorbing states are shaded in gray.

Table 3: Sample utility preferences for Znn.
Reward structure W UR W UF W UC

rIUR 1.0 0 0
rIUF 0 1.0 0
rIUC 0 0 1.0

The highlighted paths in the figure correspond to the dif-
ferent plans generated. The solid/red path corresponds to
the maximization of both the performance (rIUR) and cost
rewards (rIUC), leading to goal state 4 after lowering fidelity
on S1 and enlisting S2. Although the value of rewards for
rIUR and rIUC in goal states 4 and 5 is the same, the prob-
ability of achieving that utility in state 5 is lower, since the
state is reached only with probability 0.3 through the acti-
vation of the less reliable server S3 from state 1, instead of
S2 (which can fail to boot with probability 0.7).

A similar phenomenon occurs in the dashed/blue path
that optimizes fidelity (rIUF), leading to state 8. Again,
state 9 shows a similar value for rIUF, but strategy synthesis
favors activating the most reliable server S2, instead of S3.

5. EXPERIMENTAL RESULTS
To assess the scalability of the approach, we used different

instances of Znn.com with an increasing number of compo-
nents, measuring execution time for plan generation, includ-
ing both SMG model construction and strategy synthesis.

We obtained results for three variants of the problem:

1. Non-probabilistic. The outcome of executing an adapta-
tion tactic upon the target system can only have one pos-
sible outcome (e.g., enlisting a specific server will always

6The example does not include environmental disturbance.
Only system player nodes are shown for clarity.

N0
(2000,true,false,false,2,2,2,false)

N1
(1500,true,false,false,1,2,2,false)

N2
(1000,true,true,false,2,2,2,false)

rIUR=0.75, rIUC=0.9, rIUF=1

N3
(1000,true,false,true,2,2,2,false)

rIUR=0.75, rIUC=0.9, rIUF=1

enlist_server (s3)
0.3

0.7

enlist_server (s2)11
lower_fidelity

N9
(1000,true,false,true,2,2,2,true)
rIUR=0.75, rIUC=0.9, rIUF=1

1

N8
(1000,true,true,false,2,2,2,true)
rIUR=0.75, rIUC=0.9, rIUF=1

1

N4
(500,true,true,false,1,2,2,false)

rIUR=0.9, rIUC=0.99, rIUF=0.75

enlist_server (s2)1

N7
(500,true,true,false,1,2,2,true)

rIUR=0.9, rIUC=0.99, rIUF=0.75

1

N5
(500,true,false,true,1,2,2,false)

rIUR=0.9, rIUC=0.99, rIUF=0.75

N6
(500,true,false,true,1,2,2,true)

rIUR=0.9, rIUC=0.99, rIUF=0.75

1

enlist_server (s3)
0.3

0.7

Optimal strategy for maximizing fidelity (rIUF)

Optimal strategy for maximizing performance/cost (rIUR/rIUC)

Figure 2: Adaptation plans: performance/cost (red-solid) vs. fidelity (blue-dashed) optimization.

result in the successful activation of the server). In the
context of our model, this corresponds to setting to one all
successful server activation probabilities (SX BSP). More-
over, in this variant there are no environmental distur-
bances (i.e., MAX LATENCY=0).

2. Probabilistic, in which there are different potential out-
comes for the execution of some adaptation tactics, each
one assigned with a probability. In our experiments, we
introduce probabilistic outcomes by assigning random boot
success probabilities to all servers in the system.

3. Probabilistic, including disturbance. This variant is sim-
ilar to the probabilistic one, but also accounts for distur-
bances in response time caused by network latency. In
particular, the variation in response time after the execu-
tion of every tactic corresponds to the combination of the
tactic’s impact on response time and the network latency
introduced by the environment (up to 200ms).

Experiments were carried out by using PRISM-games beta
r5753 64-bit on a machine running OS X 10.9.1, with an Intel
Core 2 Duo processor and 4GB of RAM.

2560 32 64 96 128 160 192 224

45.000

0

5000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

Number of components

T
im

e
(m

s)

Non-Probabilistic
Probabilistic

Probabilistic+Disturbance

Figure 3: Execution time for plan generation.
Figure 3 shows execution times (in milliseconds) for the

three variants of optimal adaptation plan generation in in-
stances of Znn that range between 4 and 256 components.

All the variants take increasing amounts of time to pro-
duce the optimal solution as the number of components
grows. In all instances of the model with up to 128 com-
ponents, the two variants without disturbances (both prob-
abilistic -dashed line- and non-probabilistic -solid line) are
able to produce an optimal solution in less than 2s, whereas
in all cases (up to 256 components), the optimal solution can
be found in less than 10s. In general, adding probabilistic
outcomes to tactics causes a marginal increment in execution

time wrt the non-probabilistic variant. In contrast, the prob-
abilistic variant that accounts for environmental disturbance
(dotted line) results in remarkably higher execution times.
In particular, for model instances of up to 128 components
the optimal solution is obtained in less than 9s, whereas for
the model with 256 components the time increases to 42s.

Note that while accounting for environmental disturbance
increases the computational cost of planning, it also reduces
the need to replan when the outcome of actions deviates
from what is expected during execution. If the behavior of
the environment does not disturb the system beyond the
limits for which the solution has been built, the cost of re-
planning is approximately 11% of the overall time required
to generate the initial plan, which is the average cost of
optimal strategy synthesis (the SMG does not have to be
rebuilt). In contrast, any deviation from the outcome of
actions in any of the other two variants requires full replan-
ning, including SMG construction. In general, the most ap-
propriate choice for plan generation depends on the level
of available information about the environment’s behavior,
which will enable to analyze in each case if the upfront cost
in model generation will pay off during plan execution.

6. RELATED WORK
Different approaches in the literature tackle the challenge

of planning for architecture-based self-adaptation via model
checking: Tajalli et al. [19] introduce PLASMA, an approach
that uses plan-based and architecture-based mechanisms for
model-driven adaptation. PLASMA embodies planning via
model checking as described in [13]. The approach is able to
derive plans (as sets of state-action pairs) for a given goal
and initial state provided by the user. However, this process
does not attempt to optimize the provided solution.

Sykes et al. present in [18] two variants of an approach
for the assembly of component configurations that uses non-
functional information to guide the process. The first variant
(aggregate selection) guarantees obtaining an optimal solu-
tion in terms of utility, but it is costly, since in the worst
case it needs to generate the full list of candidate solutions
to rank them. A second variant (incremental selection) is a
greedy algorithm that lowers the computational cost of the
process, but is unable to guarantee an optimal solution.

Although the former approaches enable the synthesis of
sophisticated adaptation plans, they do not account for un-
certainty and assume that replanning is necessary whenever
the outcome of an action deviates from its expected effect.

In contrast, some other approaches that explicitly deal
with uncertainty are more limited in the mechanisms used

to adapt the system (e.g., parameter optimization, or in-
stantiation of predefined workflows): Calinescu and Kwiat-
kowska [4] introduce an autonomic architecture that uses
Markov-chain analysis to dynamically adjust the parame-
ters of an IT system according to its environment and goals.
Their work assumes a set of Markov-chains describing the
components of a system and uses PRISM to derive optimal
parameter values to improve system operation.

Epifani et al. [10] present the KAMI methodology and
framework to keep models alive by feeding them with run-
time data that updates their internal parameters. The frame-
work focuses on reliability and performance, and uses Discrete-
Time Markov Chains (DTMCs) and Queuing Networks as
models to reason about non-functional properties.

Calinescu et al. [3] extend different elements from [4] and [10]
for defining a tool-supported framework for the development
of adaptive service-based systems. QoS requirements are
translated into PCTL formulas used for enforcing optimal
system configurations. The approach requires designers to
supply Markov chains that describe the available services,
and a predefined abstract workflow upon which different
candidate services will be selected to fulfill the abstract roles
and obtain new system configurations.

Prior work [5] presents an analysis technique based on
model checking of SMGs to quantify the potential benefits of
employing different types of algorithms for self-adaptation.
The approach is limited to worst case scenario analysis of
the maximum utility that an optimal decision maker can
guarantee when proactively adapting the system, assuming
that perfect predictions of the environment’s future behavior
are available. In contrast, in this paper the formal model
is tailored to enable the synthesis of the state space of all
potential solutions for a adaptation problem, enabling the
synthesis of optimal reactive adaptation plans.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an approach for the auto-

matic synthesis of optimal adaptation plans in architecture-
based self-adaptive systems. The approach is based upon
the Rainbow approach, and a technique for model checking
SMGs implemented in PRISM-games. We have illustrated
how to model the interaction of the system and the envi-
ronment by encoding adaptation tactics that include prob-
abilistic outcomes, utility functions and preferences, and an
explicit model of the environment’s behavior. Furthermore,
we have assessed the scalability of optimal plan synthesis on
different instances of Znn.com. Our results show that the
approach scales reasonably well and is suitable for runtime
plan synthesis when considering probabilistic outcomes of
actions. However, in cases that also incorporate an explicit
representation of the environment’s behavior, the scalability
of the approach is more limited in larger problem instances.

Regarding future work, we aim at exploring the combined
use of predefined adaptation strategies with runtime gener-
ated plans. Hence, the adaptation manager could use a suit-
able predefined adaptation strategy for a given scenario, and
if such strategy does not exist, generate a plan for it. More-
over, we intend to carry out a comprehensive assessment to
determine if the scalability of the approach is adequate in
the context of different types of systems, considering as ma-
jor factors size (i.e., number of components and adaptation
tactics), as well as time constraints.

8. ACKNOWLEDGEMENTS
This work is supported in part by awards N000141310401

and N000141310171 from the Office of Naval Research, CNS-
0834701 from the National Science Foundation, and by the
National Security Agency. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the Office of Naval Research or the
U.S. government.

9. REFERENCES
[1] R. Alur et al. Alternating-time temporal logic. J.

ACM, 49(5), 2002.

[2] A. Bianco and L. de Alfaro. Model checking of
probabalistic and nondeterministic systems. In
FSTTCS, volume 1026 of LNCS. Springer, 1995.

[3] R. Calinescu et al. Dynamic QoS Management and
Optimization in Service-Based Systems. IEEE Trans.
Software Eng., 37(3), 2011.

[4] R. Calinescu and M. Z. Kwiatkowska. Using
Quantitative Analysis to Implement Autonomic IT
Systems. In ICSE, 2009.

[5] J. Cámara et al. Stochastic Game Analysis and
Latency Awareness for Proactive Self-Adaptation. In
SEAMS. ACM, 2014.

[6] T. Chen et al. Automatic verification of competitive
stochastic systems. Form Method Syst Des, 43(1),
2013.

[7] T. Chen et al. PRISM-games: A model checker for
stochastic multi-player games. In TACAS, volume
7795 of LNCS. Springer, 2013.

[8] S. Cheng et al. Evaluating the Effectiveness of the
Rainbow Self-Adaptive System. In SEAMS, 2009.

[9] S.-W. Cheng and D. Garlan. Stitch: A language for
architecture-based self-adaptation. Journal of Systems
and Software, 85(12), 2012.

[10] I. Epifani et al. Model Evolution by Run-Time
Parameter Adaptation. In ICSE. IEEE CS, 2009.

[11] V. Forejt et al. Automated verification techniques for
probabilistic systems. In SFM, volume 6659 of LNCS.
Springer, 2011.

[12] D. Garlan et al. Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure. IEEE
Computer, 37(10), 2004.

[13] F. Giunchiglia et al. Planning as model checking. In
ECP, volume 1809 of LNAI. Springer, 1999.

[14] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36, 2003.

[15] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In FOSE. IEEE, 2007.

[16] M. Kwiatkowska et al. PRISM 4.0: Verification of
probabilistic real-time systems. In Proc. of CAV’11,
volume 6806 of LNCS. Springer, 2011.

[17] P. Oreizy et al. An architecture-based approach to
self-adaptive software. IEEE Intell. Syst., 14, 1999.

[18] D. Sykes et al. Exploiting non-functional preferences
in architectural adaptation for self-managed systems.
In SAC. ACM, 2010.

[19] H. Tajalli et al. PLASMA: a plan-based layered
architecture for software model-driven adaptation. In
ASE. ACM, 2010.

