
Autom Softw Eng (2018) 25:595–626
https://doi.org/10.1007/s10515-018-0234-9

MOSAICO: offline synthesis of adaptation strategy
repertoires with flexible trade-offs

Javier Cámara1 · Bradley Schmerl1 ·
Gabriel A. Moreno2 · David Garlan1

Received: 27 March 2017 / Accepted: 25 April 2018 / Published online: 7 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Self-adaptation improves the resilience of software-intensive systems,
enabling them to adapt their structure and behavior to run-time changes (e.g., in work-
load and resource availability). Many of these approaches reason about the best way
of adapting by synthesizing adaptation plans online via planning or model checking
tools. This method enables the exploration of a rich solution space, but optimal solu-
tions and other guarantees (e.g., constraint satisfaction) are computationally costly,
resulting in long planning times during which changes may invalidate plans. An alter-
native to online planning involves selecting at run time the adaptation best suited to
the current system and environment conditions from among a predefined repertoire
of adaptation strategies that capture repair and optimization tasks. This method does
not incur run-time overhead but requires additional effort from engineers, who have to
specify strategies and lack support to systematically assess their quality. In this article,
we presentMOSAICO, an approach for offline synthesis of adaptation strategy reper-
toires that makes a novel use of discrete abstractions of the state space to flexibly adapt
extra-functional behavior in a scalable manner. The approach supports making trade-
offs: (i) among multiple extra-functional concerns, and (ii) between computation time

B Javier Cámara
jcmoreno@cs.cmu.edu

Bradley Schmerl
schmerl@cs.cmu.edu

Gabriel A. Moreno
gmoreno@sei.cmu.edu

David Garlan
garlan@cs.cmu.edu

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-018-0234-9&domain=pdf

596 Autom Softw Eng (2018) 25:595–626

and adaptation quality (varying abstraction resolution). Our results show a remarkable
improvement on system qualities in contrast to manually-specified repertoires. More
interestingly, moderate increments in abstraction resolution can lead to pronounced
quality improvements, whereas high resolutions yield only negligible improvement
over medium resolutions.

Keywords Self-Adaptation · Resilience · Synthesis · Model checking

1 Introduction

The last two decades have seen a continuous growth in the complexity of software-
intensive systems, which are increasingly relied on for a wide variety of tasks in
different application domains, such as energy, communications, and security. The
critical nature of these applications has led to a central concern for their resilience in
the presence of environmental changes, faults, and attacks (Laprie 2008).

Autonomic and self-adaptive systems (Cheng et al. 2009; Huebscher and McCann
2008) are generally considered to be efficient approaches for engineering resilient
software systems in a cost-effective manner. Such systems are characterized by the
separationof the adaptation concern into a control layer that endows the systemwith the
ability to modify its structure and behavior in response to run-time changes (Kephart
and Chess 2003; Kramer and Magee 2007).

Many self-adaptation approaches have shown the effectiveness of employing archi-
tectural descriptions for reasoning about the best way of adapting the system by
synthesizing adaptation plans online via planning or model checking tools (da Silva
and de Lemos 2011; Mukhija et al. 2007; Sykes et al. 2010; Tajalli et al. 2010). These
enable the exploration a rich solution space and can yield in some cases plans that
meet formal guarantees, such as optimality with respect to quality objectives (Sykes
et al. 2010), or constraint satisfaction (Tajalli et al. 2010).

However, such guarantees come at a high cost due to the computational overhead
of the synthesis process, resulting in planning times that often go beyond the desirable
duration of the adaptation cycle (Cámara et al. 2015; Sykes et al. 2010). When such
situations occur, the resulting plan commonly becomes invalid due to changes in the
system and its environment that occur during planning time. Moreover, synthesis does
not guarantee a priori the existence of a plan that will satisfy adaptation goals, given
a set of assumptions about the environment, potentially leading to situations in which
the planning activity does not yield any solutions at run time.

To improve on this situation, some recent approaches to self-adaptation draw from
the areas of discrete event planning (Schoppers 1987) and supervisory control (Piter-
man et al. 2006) for synthesizing offline adaptation behavior that can be reused at run
time to gracefully degradewhen environment assumptions are broken (D’Ippolito et al.
2014), or recover from run-time failures (Carzaniga et al. 2013). These approaches
mitigate run-time overhead, but tend to focus exclusively on functional behavior.

Offline approaches that go beyond functional behavior are often grounded in control
theory and target tunable variables to produce control strategies for adaptive systems
with formal guarantees (Filieri et al. 2014, 2015; Klein et al. 2014). Although some

123

Autom Softw Eng (2018) 25:595–626 597

of them can handle the satisfaction of multiple objectives [e.g., Filieri et al. (2015)],
they cannot explicitly consider trade-offs among them nor between computation time
and quality of the solution obtained, to the best of our knowledge.

Aside from synthesis, a class of alternative approaches to this problem involves
selecting at run time an adaptation from a predefined repertoire of strategies that cap-
tures repair and optimization tasks (Garlan et al. 2004; Huber et al. 2014; Nou et al.
2009). Approaches that select at run time the strategy that is best suited to the cur-
rent state of the system and its environment incur in a negligible run-time overhead
compared to online synthesis, and are better equipped than existing approaches based
on offline synthesis to reason about trade-offs among multiple extra-functional prop-
erties, such as performance, cost, or security (Cheng et al. 2009; Huber et al. 2014;
Schmerl et al. 2014). Unfortunately, this type of approach demands additional effort
from software engineers, who have to write the specification of adaptation strategies
(Cámara et al. 2013; Cheng 2008). Moreover, engineers lack support to systematically
assess in a scalable manner the quality of the strategy repertoires produced. Hence, the
development of a strategy repertoire involves iterative testing and debugging, during
which developers have to manually assess aspects such as coverage of the state space
(i.e., if there is always an applicable adaptation strategy for all relevant situations that
can be given), which strategies get selected under what conditions, or what the impact
of those selections on quality objectives is.

In this article, we introduce Multi-Objective Synthesis of AdaptatIon COllections
(MOSAICO), an approach to offline synthesis of adaptation strategy repertoires. Our
approach is inspired by a class of approaches that employ discrete abstractions of
continuous system dynamics to leverage controller synthesis techniques in the area
of supervisory control of discrete-event systems (Ramadge and Wonham 1987). In a
nutshell, our technique consists in discretizing the system/environment state space and
synthesizing optimal adaptation plans for the different points of the discrete abstraction
via probabilistic model checking (Kwiatkowska et al. 2007). Our approach combines
the best of both worlds by eliminating the run-time overhead of online synthesis while
retaining the ability to provide nearly-optimal solutions, and reducing the specifica-
tion effort required from engineers, compared to predefined strategy specification and
selection.

To the best of our knowledge, this is the first synthesis approach that can
handle trade-offs between computation time and quality of the solution, multiple
extra-functional concerns, and provide feedback about the quality of the repertoires
generated across different regions of the state space.

Webuild onwork for online synthesis of self-adaptation under uncertainty described
in Cámara et al. (2015), which is intended for adaptation in a single point of the state
space and does not provide any estimations about the quality or feasibility of adapta-
tion prior to deployment. In contrast, the present approach is intended to synthesize
adaptation collections that cover an entire region of the state space, providing feed-
back about issues such as coverage, constraint violations, or quality of the adaptations.
Moreover, our approach overcomes the scalability limitation of Cámara et al. (2015)
by making novel use of discrete abstractions of the state space. This enables us to:
(i) trade-off solution quality for computation time, (ii) parallelize the synthesis process
by distributing different regions of the abstraction across different computation nodes,

123

598 Autom Softw Eng (2018) 25:595–626

and (iii) transfer the synthesis process from run time to development time, if needed.
Similarly to Cámara et al. (2015), our approach fully supports probabilistic reasoning.
However, this article focuses on the novel use of discrete abstractions and the way
in which they enable time/quality trade-offs, and hence we do not to illustrate the
probabilistic aspects of the approach, due to space and clarity concerns [cf. Cámara
et al. (2015)].

We validate our approach using the Rainbow framework for self-adaptation (Garlan
et al. 2004) and a Denial-of-Service (DoS) attack scenario in Znn.com, a custom-built
web system that mimicks a news site withmultimedia news articles (Cheng et al. 2009;
Schmerl et al. 2014). Our results show: (i) consistency between synthesized repertoires
and design specifications (e.g., adaptations are appropriate to the conditions under
which they are chosen), (ii) flexibility in trading off computation time and quality of
adaptation, and (iii) substantial improvement in quality by comparison with manually-
specified repertoires.

In the remainder of this article, Sect. 2 introduces a motivating scenario. Section 3
gives an overview of our approach. Next, Sect. 4 describes the main concepts in Rain-
bow/Stitch adaptationmodels. Section 5 gives some basic background on probabilistic
model checking. Sections 6 and 7 describe in detail our approach and its evaluation,
respectively. Section 8 discusses limitations and threats to validity, and Sect. 9 con-
trasts our approachwith relatedwork. Section 10 presents some conclusions and future
work.

2 Motivating scenario

On-line N-tiered systems is one of the many application domains required to be
self-adaptive. In fact, there are a number, such as RUBiS (http://rubis.ow2.org),
RUBBoS (http://jmob.ow2.org/rubbos.html), Znn.com (Cheng et al. 2009), or C-
MART (http://theone.ece.cmu.edu/cmart) that are often employed as benchmarks
for cloud-based solutions and self-adaptation approaches (Klein et al. 2014; Turner
et al. 2013). These applications are considered to portray representative scenarios
for self-adaptation, since they have in common: (i) a set of comparable run-time
actuation points to cope with dynamic workloads that typically involve changing the
pool of available resources (e.g., spinning up new VMs, enlisting replicated servers)
or adjusting the fidelity (or service level, e.g., by reducing the level of computation,
downgrading the quality of video streams), and (ii) a set of comparable extra-functional
concerns, such as performance, cost, or security, that must be balanced for proper sys-
tem operation.

Znn.com Cheng et al. (2009) embodies a typical infrastructure for a news website.
It has a three-tier architecture consisting of a set of servers that provide contents from
back-end databases to clients via front-end presentation logic (Fig. 1). The system
uses a load balancer to balance requests across a pool of replicated servers, the size of
which can be adjusted according to service demand. A set of clients makes stateless
requests, and the servers deliver the requested contents.

From time to time, Znn.com can experience spikes in requests that it cannot serve
adequately, even at maximum pool size. These spikes can result from legitimate client

123

http://rubis.ow2.org
http://jmob.ow2.org/rubbos.html
http://theone.ece.cmu.edu/cmart

Autom Softw Eng (2018) 25:595–626 599

Fig. 1 Znn.com system architecture

traffic caused by a popular event [e.g., slashdot effect (https://en.wikipedia.org/wiki/
Slashdot_effect)], or by DoS attacks in which malicious clients try to overwhelm
system capacity to render system services unavailable.

System objectives System users desire service without any disruption, whereas the
organization wants to minimize the cost of operating the infrastructure (including
not incurring additional operating costs derived from DoS attacks). For users, service
disruption can be mapped to run-time conditions such as (i) high response time for
legitimate clients, and (ii) user annoyance, often related to disruptive side effects of
defensive tactics [c.f., Beheshti and Liatsis (2015)]. For the organization, we map
cost to the resources operated in the infrastructure at run time (e.g., number of active
servers). In addition to keeping costs below budget, the organizationwants tominimize
the fraction of the cost that corresponds to resources consumed by malicious clients.
Hence, we identify minimizing the presence of malicious clients as an additional
objective.

In short, we identify four quality objectives for Znn.com: legitimate client response
time (R), user annoyance (A), cost (C), and client maliciousness (M).1

Adaptation mechanismsWhen response time becomes too high due to increases in
requests, the system can employ two general approaches for dealing with the situation:
absorb the excess of traffic or suppress it. While the former approach is better suited
to situations in which legitimate user traffic has increased due to a popular event, the
latter is indicated for dealing with DoS attacks.

Znn.com can absorb the excess traffic by employing the tactics: (i) add capac-
ity, which commissions new replicated web servers to share the load; and (ii) reduce
service, which reduces the level of service by serving text-only pages instead of mul-
timedia content. These tactics are good at improving the performance of the system
while causing a negligible impact on annoyance to legitimate users (when reducing
service level). However, employing these tactics comes at a price, since they do not
deal with reducing the cost derived from resources consumed bymalicious clients, and
they can even result in an increase in the cost of operating the system (when adding
capacity).

1 Other instantiations of scenarios based on Znn consider fidelity/service level as a primary objective. How-
ever, we assume that fidelity is dominated by performance and user annoyance in overall user experience.
Hence, fidelity adjustment is considered only as a mechanism to affect performance in our scenario. A
more detailed rationale for the extra-functional requirements of this scenario can be found in Schmerl et al.
(2014).

123

https://en.wikipedia.org/wiki/Slashdot_effect
https://en.wikipedia.org/wiki/Slashdot_effect

600 Autom Softw Eng (2018) 25:595–626

Alternatively, Znn.com can eliminate the excess traffic by enacting the tactics:
(i) blackhole, which adds the IP addresses of clients that are deemed to be attacking
the system to a blacklist that blocks their requests; (ii) throttle, which limits the rate
of requests accepted from potentially malicious clients; (iii) enable captcha, which
forwards requests to a captcha processor which acts as a Turing test and verifies that
the requester is human; and (iv) reauthenticate subscribing clients, which works in a
similar way to captcha, but is more severe since anonymous clients who do not have
any login credentials are no longer able to use the system.

Scenarios similar to the one presented here demand solutions that are able to system-
atically reason about the effect of adaptations on the different dimensions of concern
and their trade-offs. For instance, eliminating excess traffic from potentially malicious
clients has to be applied with caution, since service disruption to legitimate clients
derived from the application of defensive tactics can increase user annoyance. How-
ever, rich collections of tactics and dimensions of concern can result in large solution
spaces that are difficult to exhaustively reason about without proper tool support at
development time, and costly in terms of computational overhead at run time for
synthesis-based solutions.

In the next section, we present an overview of our proposal to improve on this
situation.

3 Approach overview

Developing adaptation strategy repertoires is not an easy task for engineers, since
in general it is not clear which tactic combinations are best suited to every relevant
situation that can be given in a self-adaptive system. Moreover, exhaustive testing and
debugging of a strategy repertoire to assess system qualities and constraint satisfaction
in systems that typically exhibit large state spaces is unfeasible.

To provide software engineers with tools to help them develop strategy repetoires,
we need techniques that: (i) enable the analysis of the impact of adaptations on system
qualities; and (ii) facilitate the specification process by exhaustively examining which
tactic combinations are better suited to different parts of the system/environment state
space.

Our approach combines an architecture model of the system, tactics for manipulat-
ing the system at run time and estimates of their run-time impact on different quality
attribute dimensions, as well as utility models that allow us to systematically reason
about the quality of adaptations. The core of our approach consists of discretizing the
system and environment state space, and synthesizing offline optimal adaptation plans
for the different points of the discrete abstraction using probabilistic model check-
ing (Kwiatkowska et al. 2007) (Fig. 2, top). The key idea is employing a parametric
model of the system that captures properties of interest (e.g., structural, qualities) that
can be used to reason about the best way to adapt. This parametric model is specified2

based on a set of inputs (Fig. 2, top), and can be instantiated for different system/en-

2 This specification is semi-automated. Specifically, the most repetitive and error-prone parts of the speci-
fication of the formal model, like the encoding of the utility profile and tactic impact models are automated.

123

Autom Softw Eng (2018) 25:595–626 601

Fig. 2 Approach overview

vironment state values. Moreover, the decision of which adaptation tactic to execute
is underspecified in the model as nondeterministic behavior, in such a way that we
can employ a model checker to synthesize a policy (by resolving the nondeterminism)
from which we can extract the sequence of tactics to execute for an optimal adaptation
(with respect to the utility profile given) in different points of the state space.

In line with other architecture-based self-adaptation approaches (Sykes et al. 2010;
Tajalli et al. 2010), our work adopts an architecture-centric knowledge model. Specifi-
cally, we use Stitch (Cheng and Garlan 2012), the language employed by the Rainbow
framework (Garlan et al. 2004) for self-adaptation in which architecture models cap-
ture relevant properties of a system and its environment.

Our approach also fits within the general class of sense-plan-act architectures as
embodied in the MAPE-K model (Kephart and Chess 2003), in which the different
MAPE activities are instanced at run time as follows (Fig. 2, bottom): (i) duringmoni-
toring, observations of the system are collected, aggregated as required, and employed
to update the information in the architecture model; next (ii) if the analysis activity

123

602 Autom Softw Eng (2018) 25:595–626

detects constraint violations in the architecture model (e.g., clients are experiencing
high response time), it triggers (iii) the planning activity, which determines which
adaptation from the repertoire (if any) should be carried out (details about the selec-
tion process are given in Sect. 4.1); finally (iii) the adaptation strategy selected in the
previous phase is executed step-by-step, as sequences of tactics that map to system-
level effectors.

In the following, we detail the knowledge model that we use in Sect. 4. Next, we
introduce some basic background on probabilistic model checking in Sect. 5, and
explain the technical details of our approach in Sect. 6.

4 Adaptation model

In this section, we overview Stitch adaptation models (Cheng and Garlan 2012) and
illustrate some of their constructs using Znn.com.

Stitch assumes amodel of adaptation that represents adaptation knowledge employ-
ing the following high-level concepts: (i) tactics, or primitive actions that correspond
to a single step of adaptation; (ii) strategies, which encapsulate an adaptation process,
where each step is the conditional execution of a tactic; and (iii) utility profile, which
drives the selection of strategies at runtime based on a set of utility functions and
preferences.3

Tactic A tactic is a primitive action that corresponds to a single step of adaptation.
Tactics require three parts to be specified: (1) the condition, which specifies when a
tactic is applicable; (2) the action, which defines the script for making changes to the
system; and (3) the effect, which specifies the intended effect of the tactic.

Listing 1 shows an example tactic for activating a set of servers in Znn.com. Line
3 specifies the applicability condition, which says that the tactic may be executed if
(i) there is a client experiencing a response above the maximum acceptable threshold
(predicate cHiRespTime defined in line 1), and (ii) there are enough servers available to
activate. Lines 4–7 specify the action, which is to select a set of servers among those
currently inactive (line 6), and enable them (line 7). Line 9 states that the intended
effect of the tactic is achieved only if all clients experience a response time below the
maximum acceptable threshold.

Tactics have an associated cost/benefit impact on the different dimensions of con-
cern in the system. Table 1 shows the impact on different properties of the tactics
employed in Znn.com, as well as an indication of how the tactic affects the utility for
every particular dimension of concern (the number of upward or downward arrows is
directly proportional to the magnitude of utility increments and decrements, respec-
tively).4 While all tactics reduce the response time experienced by legitimate clients,

3 The sources and process required to obtain the information needed to generate the artifacts required by
a Stitch adaptation model are discussed in Cheng (2008).
4 We consider fixed impacts for illustration purposes, although Stitch also supports the specification
probabilistic/context-sensitive impact models (Cámara et al. 2014). Note that, to obtain the impact on
the different quality dimensions of tactics in practice, the approach relies on expert knowledge, although
nothing prevents the use of machine learning techniques to obtain that information [c.f. Didona and Romano
(2015)].

123

Autom Softw Eng (2018) 25:595–626 603

Ta
bl
e
1

Ta
ct
ic
co
st
/b
en
efi
to

n
qu
al
iti
es

an
d
im

pa
ct
on

ut
ili
ty

di
m
en
si
on
s

Ta
ct
ic

R
es
po
ns
e
tim

e
(R

)
M
al
ic
io
us

cl
ie
nt
s
(M

)
C
os
t(
C
)

U
se
r
an
no
ya
nc
e
(A

)
Δ

A
vg

.r
es

p.
tim

e
(m

s)
Δ
U
R

Δ
M
al
ic
io
us

cl
ie
nt
s
(%

)
Δ
U
M

Δ
O
pe

ra
tin

g
co

st
(u
sd

/h
)

Δ
U
C

Δ
U
se

r
an

no
ya

nc
e
(%

)
Δ
U
A

en
lis
tS
er
ve

rs
−
10

00
↑↑

↑
0

=
+
1.
0

↓↓
↓

0
=

lo
w
er
F
id
el
ity

−
50

0
↑↑

0
=

−0
.1

↑
0

=
ad

dC
ap

tc
ha

−
25

0
↑

−9
0

↑↑
↑

+
0.
5

↓↓
+
50

↓↓
fo
rc
eR

ea
ut
he

nt
ic
at
io
n

−
25

0
↑

−7
0

↑↑
0

=
+
50

↓↓
bl
ac

kh
ol
eA

tta
ck
er

−
10

00
↑↑

↑
−1

00
↑↑

↑
0

=
+
50

↓↓
th
ro
ttl
eS

us
pi
ci
ou

s
−
50

0
↑↑

0
=

0
=

+
25

↓

123

604 Autom Softw Eng (2018) 25:595–626

1
2 define boolean cHiRespTime = exists c:T.ClientT in M.components |

c.experRespTime>M.MAX_RESPTIME;
3 tactic enlistServers (int n) {
4 condition { cHiRespTime && set.Size(s : T.ServerT in M.components | !s.isArchEnabled)>=n;}
5 action {
6 set servers = Set.randomSubset(Model.findServices(T.ServerT), n);
7 for (T.ServerT freeSvr : servers) { M.enableServer (freeSvr, true); }
8 }
9 effect { !cHiRespTime && ;set.Size(newServers())==n; }

10 }

Listing 1 Tactic for activating a server in Znn.com.

some of them (e.g., enlistServers and blackholeAttacker) cause a more drastic reduction,
resulting in higher utility gains in that particular dimension. Regarding the presence
of malicious clients, tactic blackholeAttacker is the most effective, whereas other tactics
(e.g., enlistServers) do not have any impact. With respect to cost, tactic enlistServers

increases the operating cost and reduces utility in this dimension, since it employs
additional resources to absorb incoming traffic. Finally, all security-related tactics
impact negatively on user annoyance, since there is a risk that incorrect detection of
malicious clients will lead to annoying a fraction of legitimate clients (e.g., when they
are blackholed or throttled).

Strategy A strategy encapsulates an adaptation process, where each step is the
conditional execution of a tactic. Strategies are characterized in Stitch as trees of
condition-action-delay decision nodes, where delays correspond to a time window
for observing tactic effects. System feedback (via the dynamically-updated system
architecture model) is used to determine the next tactic at every execution step.

1 strategy Outgun [cHiRespTime] {
2 t0: (cHiRespTime) −> enlistServers(1) @[30000 /∗ms∗/]{
3 t1: (!cHiRespTime) −> done;
4 t2: (cHiRespTime) −> lowerFidelity() @[5000 /∗ms∗/]{
5 t2a: (!cHiRespTime) −> done;
6 t2b: (cHiRespTime) −> fail;} } }

Listing 2 Strategy for absorbing excess traffic

Listing 2 shows the Stitch code for a simple adaptation strategy in Znn.com that
deals with degraded performance by activating additional servers and reducing the
fidelity of the contents served: line 1 specifies the applicability condition that needs
to be satisfied for the strategy to be eligible for execution (in this case, predicate
cHiRespTime indicates that there are clients experiencing a response time above the
acceptable threshold). In the body of the strategy, node t0 (line 2) executes tactic
enlistServers if the guard cHiRespTime evaluates to true. To account for the delay in
observing the outcome of tactic execution in the system (settling time), t0 specifies a
time window of 30 s, after which, if the tactic succeeded in driving down response
time, strategy execution finishes successfully through node t1 (keyword done, line 3).
Otherwise, if an acceptable reduction in response time is not observed after the delay

123

Autom Softw Eng (2018) 25:595–626 605

window expires (cHiRespTime, line 4), the strategy tries to reduce response time by
executing lowerFidelity and waiting 5 s to observe its effect, exiting through node t2a if
the tactic succeeds. If success of tactic lowerFidelity is not observed, the strategy exits
with an error status via node t2b (keyword fail, line 6).

In the example above, we can observe that Stitch strategies assume a time window
that accounts for the delay in observing the outcome of tactic execution in the system
(settling time). Hence the reachability of a stable state and the fact that the environment
might evolve while the tactic is executing is implicit in this time window. Stability
is dealt with at a lower level in Rainbow [e.g., in gauges that collect and process
information from probes, c.f. Garlan et al. (2004)]. With respect to evolution of the
environment, the simplifying assumption is that the latency of the tactics (i.e., the
time that it takes to observe its effects) is small, and therefore environment changes
in the short term can be abstracted away. Although the practical implications of this
assumption depend to a large extent on the dynamics of the target system at hand,
Stitch models have been evaluated on multiple systems without showing any practical
limitations derived from this assumption (Cámara et al. 2016; Cheng et al. 2009).
Moreover, recent works have explored adaptation mechanisms to deal with scenarios
in which such assumptions do not hold (Moreno et al. 2015, 2016).

Utility profile In Stitch, run-time strategy selection is driven by utility functions
and preferences sensitive to the context of use and able to capture trade-offs among
multiple potentially conflicting objectives. Qualities of concern are characterized as
utility functions that map architectural properties encoding system qualities to utility
values.

It is worth noting that alternative formalization styles for specifying objectives
of self-adaptive systems, [and in particular, instantiated for Znn.com, e.g., using
RELAXWhittle et al. (2010)], are available in the literature. However, in this case we
choose our particular specification style and set of requirements because: (i) encoding
requirements as sets of utility functions and weights is a natural fit that aligns well
with how other approaches do run-time decision-making in self-adaptive systems
(e.g., Rainbow, Descartes Adaptation Framework), and (ii) other existing instances
formalizing the requirements for Znn.com do not contemplate the additional security
requirements that we consider in our adaptation scenario.

We consider utility functions defined by a set of value pairs (with intermediate points
linearly interpolated). Table 2 summarizes the utility functions for Znn.com. Function
UR maps low response times (up to 100 ms) with maximum utility, whereas values
above 2000 ms are highly penalized (utility below 0.25), and response times above
4000 ms provide no utility. Function UM maps lower percentages of malicious clients
to higher utilities, whereas values above 70% yield no utility. FunctionUC maps lower
operation costs to higher utilities, whereasUA maps higher levels of user annoyance to
lower utility values. It is worth noticing that in this case, utility and mapped property
values across all quality dimensions are inversely proportional, although this is not
necessarily true in general.

Utility preferences capture business preferences over the quality dimensions,
assigning a specific weight to each one of them. We consider three scenarios in
Znn.com, whose preferences are summarized in Table 3.

123

606 Autom Softw Eng (2018) 25:595–626

Table 2 Utility functions for
Znn.com

UR UM UC UA

0 : 1.00 0 : 1.00 0 : 1.00 0 : 1.00

100 : 1.00 5 : 1.00 1 : 0.90 100 : 0.00

200 : 0.99 20 : 0.80 2 : 0.30

500 : 0.90 50 : 0.40 3 : 0.10

1000 : 0.75 70 : 0.00

1500 : 0.50

2000 : 0.25

4000 : 0.00

Table 3 Utility preferences for
Znn.com scenarios

Scenario/priority wUR
wUM

wUC
wUA

1. Minimizing malicious clients 0.15 0.6 0.1 0.15

2. Optimizing good client experience 0.3 0.3 0.1 0.3

3. Keeping cost within budget 0.2 0.2 0.4 0.2

4.1 Adaptation strategy selection

A situation demanding adaptation can generally be addressed in different ways by
executing alternative strategies that may be applicable under the same run-time con-
ditions (e.g., excess traffic can be absorbed or eliminated). Different strategies impact
run-time quality attributes in various ways, thus there is a need to choose the best
strategy with respect to the system’s objectives. Hence, strategy selection is driven by
utility functions and preferences, against which we evaluate all applicable strategies,
obtaining an aggregate expected utility value for each strategy. The strategy selected
is the one that maximizes its expected utility value.

The expected utility value of a strategy is obtained by: (i) computing the aggregate
impact of the strategy on the system’s state based on its constituent tactics [cf. Schmerl
et al. (2014)], (ii) merging aggregated strategy impact with current system state to
obtain the expected state after strategy execution, (iii) mapping expected state to util-
ities using the utility functions defined for the different concerns, and (iv) combining
all utilities using utility preferences.

As an example of how the utility of a strategy is calculated, let us assume that the
adaptation cycle is triggered in system state [1500, 90, 2, 0], indicating response time,
percentage of malicious clients, operating cost, and user annoyance level, respectively.
We focus on the evaluation of strategy Outgun.

To obtain the aggregate impact on system state of a strategy, we need to estimate
the likelihood of selecting different tactics at run time due to the uncertainty in their
selection and outcome within the strategy tree. To this end, we use a stochastic model
of a strategy, assigning a probability of selection to every branch in the tree.5

5 By default, probabilities are divided equally among the branches, although they can be progressively
adjusted according to information collected from system executions. Alternatively, probabilities can also
be bootstrapped based on knowledge obtained from experts or existing similar systems, when available.

123

Autom Softw Eng (2018) 25:595–626 607

Fig. 3 Aggregate impact of
strategy Outgun

done
[0,0,0,0]

enlistServers()
[-1000,0,+1.0,0]

0.5 0.5

done
[0,0,0,0]

fail
[0,0,0,0]

lowerFidelity()
[-500,0,-0.1,0]

0.5 0.5

[-1250,0,+0.95.0,0]

1

[-250,0,-0.05,0]

[-1250,0,+0.95,0]

[0,0,0,0]

[0,0,0,0][0,0,0,0]

t0

t1t2

t2a t2b

Figure 3 shows how the aggregate impact on the state is computed bottom-up in the
strategy tree: the aggregate impact of each node is computed by adding the aggregate
impact of its children, reduced by the probability of their respective branches, with
the cost-benefit attribute vector of the tactic in the node (if any).

In the example, the impact contributed by nodes t0 and t2 correspond to the cost-
benefit vectors of the associated tactics, whereas leaf nodes make no changes to the
system and therefore have no impact. Note that in the figure, grayed out tuples adja-
cent to tree branches indicate aggregate impact corresponding to the child sub-tree
(including adjustments due to branch probabilities). The aggregate impact in the root
node of the strategy tree results from the aggregate impacts of its children.

Once the aggregate impact of the strategy is computed, it is merged with the current
system state to obtain the expected system state after strategy execution:

[1500,90,2,0] + [−1250,0,+0.95,0] = [250,90,2.95,0]

Next, we map the expected conditions to the utility space:

[UR(1250),UM(0),UC(0.95),UA(0)] = [0.975,1.0,0.11,1.0]

And finally, all utilities are combined into a single utility value by making use of
the utility preferences. Hence, if we assume that we are in scenario 2, the aggregate
utility for strategy Outgun would be:

0.975∗0.3 + 1.0∗0.3 + 0.11∗0.1 + 1.0∗0.3 = 0.9035

Utility scores are computed similarly for all strategies. The strategywith themaximum
score is selected for execution. In this case, strategies Eliminate and Outgun score
0.81 and 0.90 respectively, thus Outgun would be selected.

123

608 Autom Softw Eng (2018) 25:595–626

5 Probabilistic model checking

Probabilistic model checking (Kwiatkowska et al. 2007) is a set of techniques
that enable quantitative analysis, and policy synthesis in systems that exhibit
probabilistic behavior6 guaranteed to achieve optimal expected probabilities and
rewards (Kwiatkowska and Parker 2013), which are easily mapped to maximizing
utility.

Our approach bases on MDPs, which describe how the state of a system can evolve
in discrete time steps. In each state s ∈ S, the set of enabled actions is denoted by
A(s) (we assume that A(s) �= ∅ for all states). Moreover, the choice of which action to
take in every state s is assumed to be nondeterministic to let the model checker make
the optimal choice. Once an action a ∈ A(s) is selected, the successor state is chosen
according to probability distribution Δ(s, a).

Definition 1 (Markov decision process) A Markov decision process is a tuple M =
〈S, sI , A,Δ, r〉, where S �= ∅ is a finite set of states; sI ∈ S is an initial state; A �= ∅
is a finite set of actions; Δ : S × A → D(S) is a (partial) probabilistic transition
function; and reward structure r : S → Q≥0 maps states to rewards. D(X) denotes
the set of discrete probability distributions over finite set X .

We can reason about the behavior of MDPs using policies. A policy resolves the
nondeterministic choices of an MDP, selecting which action to take in every state.

Definition 2 (Policy) A policy of an MDP is a function σ : (SA)∗S → D(A) s.t., for
each path π · s, it selects a probability distribution σ(π · s) over A(s).

In this article, we use policies that are memoryless (i.e., based solely on information
about the current state) anddeterministic (σ(s) is aKronecker function s.t.σ(s)(a) = 1
if action a is selected, and 0 otherwise).

We can check for the existence of a policy able to guarantee that an expected
reward measure meets some threshold, or optimize it, based on quantitative properties
expressed in a subset of probabilistic reward computation-tree logic (PRCTL) (Andova
et al. 2003). Concretely, the reward maximization operator Rr

max=?[C] enables the
quantification of the maximum accrued reward r along paths in a model.

The following section illustrates how these properties are used in adaptation syn-
thesis for a given utility profile.

6 Strategy repertoire synthesis

We now present the technique that we employ to synthesize adaptation strategy
repertoires. This technique is inspired by a class of approaches that employ discrete
abstractions of continuous systemdynamics to leverage controller synthesis techniques
in the area of supervisory control of discrete-event systems (Ramadge and Wonham
1987). The approach employs probabilistic model checking of MDPs to synthesize

6 Policies are also commonly referred to as strategies or adversaries. In this article, we employ the term
policy consistently to avoid confusion with the term adaptation strategy.

123

Autom Softw Eng (2018) 25:595–626 609

optimal policies that maximize the utility for every state of a discrete abstraction of the
system/environment state space. The key idea is employing a parametric model of the
probabilistic behavior of the system that can be instantiated for different system/en-
vironment state values. This model contains the specification that encodes: (i) the
properties of the system and the environment that are necessary to compute the value
of the utility functions and check the satisfaction of the constraints imposed by the
designer; and (ii) the set of tactics available in the adaptation model. Moreover, the
decision of which adaptation tactic to execute is underspecified in the model as nonde-
terministic choices, in such a way that we can employ a model checker to synthesize
a policy (by resolving the nondeterminism) from which we can extract the sequence
of tactics to execute for an optimal adaptation (with respect to the utility profile and
constraints given) in different points of the state space.

In the remainder of this section, we first describe the class of discrete abstraction
of the state space that we employ in our approach. Then, we illustrate the encoding
of the parametric model and give an overview of policy synthesis. Finally, we provide
a high-level description of the synthesis and evaluation algorithms for adaptation
strategy repertoires.

6.1 State space abstraction

The system/environment state space is given by a set of relevant properties character-
ized by a collection of n random variables X = {x1, . . . , xn} that can be monitored
at run time (e.g., response time, cost). Variables taking value in non-finite domains
(i.e., assume real-valued) are discretized via quantization by (i) selecting a range for
the possible values of every variable, i.e., ∀xi∈{1,...,n}: (i) [αi , βi]; and (ii) selecting a
discretization parameter ηi ∈ R+ that controls the“resolution” of the variable, i.e., the
granularity with which we can approximate values of the variable in the continuous
spectrum.

Then, every variable xi takes values in a discrete set of values [R]xi =
{r : R |r = kηi , k ∈ Z, αi ≤ r ≤ βi }, where αi , βi ∈ R are multiples of ηi .

The variables in X define a discrete state space [Sn]X = [S]x1 ×· · ·×[S]xn , where
[S]xi = [R]xi for a real-valued variable xi , and [S]xi = Di if xi takes values in a finite
domain Di .

At run time, given an observed value vi of a real-valued variable xi , the correspond-
ing value in the discrete set [R]xi is obtained as:

d(vi) = arg min
r∈[R]xi

(|vi − r |).

We extend function d : R → [R]xi to determine the discrete system/environment
state of a collection of state variable values s = (v1, . . . , vn) as the tuple D(s) =
(vd1, . . . , vdn), where vdi = d(vi) if xi is real-valued, and vdi = vi otherwise. Note
that when the observed value of a state falls outside of the range of variables that define
the discrete state space [Sn]X , function D defaults to the discrete state that minimizes
the distance to the observed state value.

123

610 Autom Softw Eng (2018) 25:595–626

Example 1 Let us consider that the set of variables in Znn.com X = {rt,mc, c,ua},
where the variables encode the system qualities for response time, malicious clients,
cost, and user annoyance, respectively.

Consider, for instance, the property rt for response time, defined over real numbers
R. We can define the operational range of response times for the system as [αrt, βrt] =
[0, 4000] ms, coinciding with the ends of the spectrum for the utility function we are
considering for performance (UR, Table 2). Moreover, to discretize the possible values
that rt can take, we define a quantization parameter ηrt = 100 ms that controls the
“resolution” of the variable. Then, we take just the multiples of ηrt in the given range
to compute the set of discrete values of rt, i.e., [R]rt, which in this case is the finite
set {100 · k | k ∈ 0 . . . 40}. Notice that for other properties also taking values in R,
different value ranges and quantization parameters are required. Finally, the resulting
discrete state space for our example would be given by [R]rt ×[R]mc ×[R]c ×[R]ua.

Next, we describe the parametric model whose initial conditions are instanced for
different abstraction states.

6.2 Parametric model

To enable synthesis of optimal policies, aspects of the system and Stitch adaptation
models are encoded in PRISM (Kwiatkowska et al. 2011) models parameterized by
the system and environment state. Synthesizing a policy is a matter of instantiating
the model with values for the system and environment state and model checking. To
generate the best decision for the entire state space, we generate an instance of the
model for each discrete state and model check it.

6.2.1 Formal parametric model

Our parametric model for an arbitrary system is formally specified as an extended
MDP M = 〈S, sI , A,Δ, AP, χ, r〉, where:
– S ⊆ [Sn]X is the set of states.
– sI ∈ S is an initial state.
– A is the set of actions available to the system.
– AP is a subset of all the predicates that can be built over the state variables (e.g.,
underAttack). AP always includes two extra predicates:
– goal, which is satisfied in states where the goal of adaptation is achieved (c.f.
Listing 3, line 7).

– end, which labels explicitly all absorbing states of the model (for a state s ∈ S,
we say that s |� end iff ∀s′ ∈ S, a ∈ A • Δ(s, a)(s′) �= 0 ⇔ s = s′). In
practice, we can encode this predicate in the model as end ≡ ∧

a∈A Ca ∨
goal, where Ca is the conjunction of architectural constraints that limit the
applicability of tactic a . Hence, this predicate states that either the goal has
been achieved, or no action can be executed.

– χ : S → 2AP is a labeling function.
– r is a reward structure labeling goal states with their associated utility, computed
based on the preferences defined in the utility profile. Specifically, the reward of

123

Autom Softw Eng (2018) 25:595–626 611

an arbitrary state s is defined as r(s) = ∑q
i=1 wi · ui (vsi) if s |� goal (r(s) = 0

if s � goal), where ui and wi ∈ [0, 1] are the utility function and weight
for quality dimension i ∈ {1, . . . , q}, respectively. vsi is the value that the state
variable associated with the architectural property representing quality attribute i
(e.g., response time, percentage of malicious clients) takes in state s.

We illustrate the pattern used to encode our parametricmodel for an arbitrary system
using a high-level specification7 of the behavior followed by the adaptation layer of
the self-adaptive system. We model the system as a set of commands that encode the
set of actions available in A, which corresponds to the set of available tactics in the
adaptation model. More specifically, each action a ∈ A is encoded in a command:

[a]Ca ∧ ¬goal− > p1a : post1a + · · · + pna : postna
Where the guard includes: (i) the conjunction of architectural constraints that limit

the applicability of tactic a (abstracted by Ca , e.g., a new server cannot be activated in
Znn.com’s pool if all of them are already active, Listing 3, line 1), and (ii) a predicate
¬goal to avoid expanding the state space beyond the satisfaction of the adaptation
goal.

The execution of a command can result in a number of alternative updates on state
variables (along with their assigned probabilities pia) that correspond to the different
probabilistic outcomes of a given tactic execution instance, denoted by postia (e.g.,
the activation of a specific server can result in a success with probability p, and fail
with 1 − p).

Finally, an additional command in the controller introduces absorbing states that
succeed every state satisfying end (in the encoding below, true is short-hand for no
modification on any state variable):

[] end− > true

In the remainder of this section, we show how these models are encoded in practice
using the PRISM probabilistic model checker, using our running example to illustrate
the process.

6.2.2 Parametric model specification

Listings 3 and 4 give examples of the encodings for the Znn.com example. The para-
metric model consists of the following parts:

7 We illustrate our approach to modeling the parametric model using the syntax of the PRISM lan-
guage (Kwiatkowska et al. 2011) forMarkovDecision Processes (MDPs), which are encoded as commands:

[action]guard− > p1 : u1 + · · · + pn : un
Where guard is a predicate over the model variables. Each update ui describes a transition that the process
can make (by executing action) if the guard is true. An update is specified by giving the new values of the
variables, and has an assigned probability pi ∈ [0, 1]. Multiple commands with overlapping guards (and
probably, including a single update of unspecified probability) introduce local nondeterminism.

123

612 Autom Softw Eng (2018) 25:595–626

System The system is encoded as a collection of variables, representing the quality
properties of interest and simplified aspects of system structure. In Listing 3, lines
10–14 show the variables of interest for our running example. The qualities related
to system objectives are represented in variables rt, mc, and ua, for response time,
malicious clients, and user annoyance. Structural properties like number of active
servers and level of fidelity are captured in as and fi, respectively. Note that all these
variables are bounded formodel checking purposes (constantsMAX_*,MIN_*, and INIT_*

represent the upper bound, lower bound, and initialization value of variable *).

Tactics Available tactics are encoded as commands that model the effect of executing
the different adaptation tactics as updates on the different system/environment vari-
ables. Every command includes: (i) a guard that encodes the tactic’s applicability
condition, e.g., there must be inactive servers in the system to apply enlistServers
(lines 1, 20); and (ii) a set of updates in which variable values change based on
cost/benefit attribute vectors (described in Sect. 4), which are encoded as formulas
in the model (e.g., the update in response time resulting from executing tactic enlist-
Servers is encoded in line 8, and employed on the right-hand side of the command in
line 20). Note that variables representing properties not affected by the execution of
a tactic do not appear in the list of updates encoded in the command (e.g., enlisting a
server does not affect annoyance or the percentage of malicious clients in the system).

Together, the system and tactic encodings form a module in the PRISM model that
describes the effects of executing the different tactics on the properties of interest in the
system. An additional command in this module guarded by the predicate end defined in
line 23 is employed to explicitly capture the utility rewardof states after the executionof
the adaptation, in which no further adaptation tactics are available for execution, or the
objective of adaptation has been achieved. In this case, the objective is defined in line
12, where perfViolation = rt > 1000 and underAttack = mc > 50 are predicates
that characterize high response time and high level of malicious clients, respectively.8

In fact, these predicates are defined as perfViolation ≡ rt > MAX_RESPTIME,

underAttack ≡ mc > MAX_MC, where rt and mc are the variables encoding the
system qualities for response time and malicious clients, andMAX_RESPTIME and
MAX_MC are their respective acceptable thresholds.

Utility profileUtility functions and preferences are encoded using formulas and reward
structures that map different model states to a utility value. Formulas compute utility
on the different dimensions of concern, and reward structures weigh them against each
other by using the utility preferences of a given scenario.

Listing 4 illustrates in lines 1–5 the encoding of utility functions using a formula
for linear interpolation based on the points defined for utility function UM in the
second column of Table 2. Lines 6–10 show how a reward structure can be defined to
compute a single utility value for any state by using the utility preferences defined for
a particular scenario (Scenario 1, Table 3). The reward structure considers only the
rewards in model states that correspond to states in which no applicable tactics remain
available (characterized by predicate end, defined in Listing 3, line 5).

8 Thresholds are defined based on expert knowledge, and are analogous to the ones found in existing Stitch
models for Znn Cheng and Garlan (2012).

123

Autom Softw Eng (2018) 25:595–626 613

1 formula ac_es = MAX_AS − as > 0; // Tactic applicability conditions (as = active servers)
2 formula ac_bh = mc > MIN_MC;
3 ...
4 // Cost/Benefit Attribute vectors for tactic enlistServers
5 formula cb_es_rt = rt−1000 >=MIN_RT ? (rt−1000<=MAX_RT? rt−1000 : MAX_RT) : MIN_RT;
6 formula cb_es_as = as+1<= MAX_AS ? as+1 : as;
7 // Cost/Benefit Attribute vectors for tactic blackholeAttacker
8 formula bh_f_rt = rt−1000 >=0 ? (rt−1000<=MAX_RT? rt−1000 : MAX_RT) : 0;
9 formula bh_f_mc = mc−100 >=0 ? (mc−100<=MAX_MC? mc−100 : MAX_MC) : 0;

10 formula bh_f_ua = ua+50 >=0 ? (ua+50<=100? ua+50 : 100) : 0;
11 ...
12 formula goal = !(perfViolation|underAttack);
13 formula end = goal | (!goal &!ac_es & ... & !ac_bh);
14 module arch
15 rt : [MIN_RT..MAX_RT] init INIT_RT; // Response time
16 as : [MIN_AS..MAX_AS] init INIT_AS; // Active servers
17 fi : [MIN_FI..MAX_FI] init INIT_FI; // Fidelity
18 mc : [MIN_MC..MAX_MC] init INIT_MC; // Malicious clients
19 ua : [MIN_UA..MAX_UA] init INIT_UA; // Annoyance
20 [enlistServers] ac_es −> (rt’=cb_es_rt) & (as’=cb_es_as);
21 [blackholeAttacker] ac_bh −> (rt’=cb_bh_rt) & (mc’=cb_bh_f_mc) & (ua’=bh_f_ua);
22 ...
23 [] end −> true;
24 endmodule

Listing 3 Target system module specification

1 formula uM = (mc>=0 & mc <=5? 1:0)
2 +(mc>5 & mc <=20? 1+(0.80−1)∗((mc−5)/(20−5)):0)
3 +(mc>20 & mc <=50? 0.80+(0.40−0.80)∗((mc−20)/(50−20)):0)
4 +(mc>50 & mc <=70? 0.40+(0.00−0.40)∗((mc−50)/(70−50)):0)
5 +(mc>70 ? 0:0); ...
6 rewards "U" // Utility reward structure
7 end & scenario=1 : 0.15∗uR +0.6∗uM +0.1∗uC +0.15∗uA; ...
8 endrewards

Listing 4 Utility reward structure

6.3 Policy synthesis

For an MDP model like the one described above, we can employ a model checker
like PRISM to automatically synthesize a policy (see Definition 2) that satisfies one
or multiple objectives captured in a temporal logic formula (Forejt et al. 2012). This
capability enables our approach to optionally impose multiple designer constraints on
the policies synthesized, and thereby in the strategy repertoire resulting from them.

Example 2 Wewant to synthesize an adaptation strategy repertoire that: (i) guarantees
the system to stay in the region of the state space in which it is operating with an
acceptable performance and level of malicious clients, and (ii) optimizes the solution
for the utility profile encoded into the utility reward structure U described in Listing 4.

We can write a property to synthesize a policy for anMDP tailored to the objectives
described above:

multi(RU
max=?[C],P≥1[F!(perfViolation|underAttack)])

The query above: (i) checks if there exists a policy that can achieve the combination
of objectives expressed inside of the P operator, i.e., whether the policy can guarantee

123

614 Autom Softw Eng (2018) 25:595–626

the eventual satisfaction of an acceptable performance and level of malicious clients;
and (ii) among all the possible policies that satisfy (i), if any, checks which is the one
that maximizes the value of the utility reward U.

1 strategy lo13bl17[perfViolation | underAttack] {
2 t0: (perfViolation | underAttack) −> lowerFidelity () @[5000 /∗ms∗/] {
3 t1: (true) −> blackholeAttacker () @[10000 /∗ms∗/] {
4 t1s: (!(perfViolation | underAttack)) −> done;
5 t1f: (perfViolation | underAttack) −> TNULL;} } }

Listing 5 Synthesized Stitch strategy

If we run the synthesis process for the point [INIT_RT =2000, INIT_MC =70,
INIT_AS =2, INIT_UA =0, INIT_FI =1] in Scenario 1, and extract the sequence
of tactics from it, we obtain lowerFidelity-blackHoleAttacker. The automatic translation
of this sequence into Stitch results in the strategy shown in Listing 5. A predicate
encoding the constraints imposed in the PRCTL property is used in the strategy’s
applicability condition and in nodes t1s/t1f to indicate the success/failure status of the
execution. Moreover, the sequence of tactics extracted from the policy are encoded as
nested commands, where the next tactic is executed after a fixed time window used for
observing the effect of the previous tactic. Time window values are manually specified
by developers per tactic, based on experimental observations.

Obtaining the policy for each state in the discrete abstraction described in Sect. 6.1
requires an independent run of the model checker in which model parameters are
instantiated with variable values corresponding to that state.

In the next section, we describe the algorithm that extends the synthesis of local
policies to a process that encompasses the synthesis of strategy repertoires.

6.4 Strategy repertoire synthesis algorithm

We describe in this section our algorithm for synthesizing adaptation strategy reper-
toires. The algorithm sweeps a discrete abstraction of the state space, synthesizing
policies for different points of the abstraction that: (i) are optimal with respect to a
utility profile, and (ii) satisfy a (potentially empty) set of additional constraints. If
the set of constraints is not satisfied for a subset of the points in the discrete abstrac-
tion, the algorithm attempts to synthesize a less constrained version of the policy by
progressively relaxing the constraints imposed by the designers.

Algorithm 1 describes the synthesis process, which receives as input a discrete
abstraction of the area of the state space to explore [Sn]X , the set of adaptation tactics
T (including a specification of their impact in system state), a utility profileU , and an
architecture model A that includes the properties of the system and the environment
required to determine system qualities and constraint satisfaction.

Generation of the parametric model used for synthesis (cf. Sect. 6.2) is captured by
generate_model (line 2), which abstracts the process followed to obtain the model
and can range from manual specification, to full synthesis from architecture models

123

Autom Softw Eng (2018) 25:595–626 615

Algorithm 1 Adaptation Strategy Repertoire Synthesis
Input: state space abstraction [Sn]X , architecture model A, adaptation tactics T , utility profile U , set of constraints C .
Output: adaptation strategy repertoire R.
1: R ← ∅
2: model ← generate_model(A, T,U,C)

3: for all s ∈ [Sn]X do
4: models ← instantiate_model(model, s)
5: Cs ← C; strategys ← []
6: while strategys = [] ∧ Cs �= ∅ do
7: σs ← generate_policy(models ,Cs)
8: strategys ← extract_strategy(σs)
9: if strategys = [] then
10: Cs ← relax(Cs)
11: end if
12: end while
13: if strategys /∈ R then
14: R ← R ∪ {strategys }
15: end if
16: end for
17: return R

and tactics. Our experience has shown that full automation of this step is possible,
although human assistance is desirable for optimizing the resulting model.

The algorithm iterates over the state space abstraction [Sn]X , instantiating the
model for every point s in the discrete set (line 4), and generating a policy for it
(lines 6–12).9 Initially, the algorithm attempts to generate a policy for the full set of
constraints C , but it progressively relaxes them if no policy that satisfies the full set is
found (line 10). Relaxation of constraints at run time (e.g. for graceful service degra-
dation) is a technique commonly employed by different approaches in self-adaptation
(D’Ippolito et al. 2014; Whittle et al. 2010). Our algorithm is agnostic with respect to
the details of the specific constraint relaxation process. Hence, in the algorithm func-
tion relax is left unspecified on purpose, since it might be implemented in different
ways, ranging from modifications on acceptable thresholds in system qualities (e.g.,
increasing the threshold of acceptable response time by a given amount), to prioritized
constraint removal (e.g., removing the constraint about malicious clients to synthesize
a controller that only guarantees the response time to legitimate clients).

6.5 Strategy repertoire evaluation algorithm

At run time, the current state s of the system that requires adaptation may or may not
belong to the set of states in the discrete abstraction that has been used to synthesize
the repertoire of strategies. In the latter case, the strategy selected for execution in s
will be the one synthesized for the closest state to s in the abstraction (i.e., D(s), c.f.
Sect. 6.1). Since the final result of executing the selected strategy with s and D(s) as
initial states might differ, we need to quantify that difference across the state space
that we are studying to obtain an indication of the actual quality of the repertoire of
strategies synthesized.

9 Function extract_strategy abstracts the extraction of a sequence of actions from a policy, which is
trivial (see Definition 2).

123

616 Autom Softw Eng (2018) 25:595–626

To achieve such quantification, we provide an algorithm that engineers can use to
systematically assess repertoires and predict whether their effects comply with their
design intentions. Repertoires are analyzed on amaximal abstraction of the state space
[Sn]∗X that we consider as ground truth, and whose resolution can be determined, e.g.,
based on the maximum resolution of available probes (thus guaranteeing that any state
that the system can measure at run time belongs to the maximal abstraction). Algo-
rithm 2 returns three maps built over that abstraction that indicate: (i) how strategies
are selected from repertoire R across the state space according to utility profile U ,
using the mechanism shown in Sect. 4.1 (abstracted by select_strategy), (ii) what
is the impact of those selections in utility, and (iii) which constraints are violated in
what parts of the space.

Algorithm 2 Adaptation Strategy Repertoire Analysis
Input: maximal state space abstraction [Sn]∗X , utility profile U , set of constraints C , adaptation strategy repertoire R.
Output: strategy selection map SM , utility impact map I M , constraint violation map CM .
1: SM ← ∅; I M ← ∅; CM ← ∅
2: for all s ∈ [Sn]∗X do
3: strategys ← select_strategy(s,U, R)

4: SM ← SM ∪ {(s, strategys)}
5: I M ← I M ∪ {(s, u′(s) − u(s))}
6: for all c ∈ {c : C |¬satis f ies(s, strategys , c)} do
7: CM ← CM ∪ {(s, c)}
8: end for
9: end for
10: return SM, I M,CM

In the algorithm, functions u and u′ abstract evaluation of utility for the pre- and
post- states of strategy execution according to a utility reward structure like the one
described in Listing 4, on a model in which the selected strategy has been fixed.
Similarly, satis f ies abstracts the evaluation of constraint satisfaction on a model in
which a strategy is executed on a given state. All these functions are based on PRCTL
property checks in our implementation (e.g., in our example, u′ is computed based on
the PRCTL check of the formula RU

max=?[C] described in Example 2, whereas u can
be checked as the instantaneous reward in the initial state RU

max=?[I=0]).

7 Evaluation

In this section we evaluate our approach according to the following criteria:

– Quality of adaptation choiceWe assess whether adaptation choices are consistent
with engineer intentions and quantify their impact with respect to achieving system
goals and adequately trading-off extra-functional concerns.

– Synthesis time/quality trade-offs We study the influence of the size/resolution of
the abstractions on synthesis time, and its trade-offswith the quality of the solution.

The novelty of our contribution resides in the offline strategy synthesis process,
therefore we restrict the scope of our evaluation to it. In any case, run-time perfor-
mance of the Rainbow framework has been evaluated in different settings (Cámara

123

Autom Softw Eng (2018) 25:595–626 617

et al. 2013; Cheng et al. 2009; Schmerl et al. 2014), including an industrial-scale
middleware (Cámara et al. 2013) and the security scenario described in this arti-
cle (Schmerl et al. 2014), in which adaptation driven by a strategy repertoire written
by engineers was shown to be consistent with static analysis results based on tactic
impact models. In our study, we assume proper calibration of tactic impact models,
which is an orthogonal issue to the topics discussed.

We employ as setup a prototype implementation of MOSAICO running PRISM-

4.3.beta-osx64 as a back-end on an Intel Core i7 2.8 GHz with 16 GB RAM.

7.1 Quality of adaptation choice

To assess the quality of adaptation choice, we statically analyze a representative region
of the system/environment state space. We focus on: (i) consistency between the engi-
neer’s design intentions (as encoded in utility profiles) and the strategy repertoires
synthesized, and (ii) impact of the adaptation repertoires on the achievement of sys-
tem goals.

We compare strategy repertoires synthesized by our approach with a strategy reper-
toire manually specified by engineers presented in Schmerl et al. (2014), which
includes the strategies: (i) Outgun, which employs the tactics enlistServers and low-

erFidelity to absorb excess traffic, (ii) Eliminate, aimed at eliminating excess traffic
employing the tactics blackholeAttacker and throttleSuspicious, and (iii) Challenge, which
aims also at eliminating the excess traffic by employing the less aggressive tactics
reauthenticateAll and addCaptcha.

The set of strategy specifications employed in this comparison were developed
by a group of researchers (some of them experts in the area of security), and were
discussed and refined over the course of several weeks of joint work meetings. These
involved defining and developing mainly: (i) stitch tactic code (approx. 30% of overall
effort), (ii) stitch tactic cost/benefit impact vectors (approx. 20% of overall effort), and
(iii) stitch strategy code (approx. 50% of overall effort).

Note that for our setup, the development of the target system (Znn), architecture
model (components, properties, etc), andmost systemeffectors and probeswere reused
from previous implementations. Moreover, the set of manual steps required to develop
the adaptation logic with our offline synthesis approach also required artifacts (i) and
(ii) described above, but not (iii), which amounts to approximately half of the effort.
Instead, our approach requires semi-automated specification of the parametric PRISM
model, whose effort is counted in hours (less than one day for our case study), rather
than the days that were required to implement the Stitch strategy code described as
item (iii) above.

Adaptation choice Figure 4 shows strategy choice results for the different scenarios in
a region of the state space projected over the dimensions corresponding to malicious
clients and response time (restricted to interval [0, 4000] ms). Cost, user annoyance,
and fidelity have an initially fixed value of 2 USD/h, 0% and 1(high), respectively. The
discretization parameters used for response time and malicious clients are ηrt = 100
ms and ηmc=5.

123

618 Autom Softw Eng (2018) 25:595–626

Fig. 4 Adaptation choice: offline synthesis (bottom) and manual specification (top)

For strategy synthesis (Fig. 4, bottom)we employed the property shown in Example
1 in which: (i) the utility reward is maximized according to the utility profile defined
for the scenario, and (ii) predicates perfViolation and underAttack impose additional con-
straints on the solution.

The range of adaptations obtained through strategy synthesis is richer than the one
specifiedmanually (Fig. 4 top). This is because engineers packaged tactics in strategies
according to their intended target (e.g., tactics that aim at absorbing excess traffic like
enlistServers are never used in combination with tactics targeting malicious clients). In
contrast, synthesis systematically considers situations in which combining tactics that
have different targets can provide an optimal solution in a given region of the state
space (e.g., employing lowerFidelitywith blackholeAttacker is an optimal combination for
32–40% of the states across all scenarios). Moreover adaptation choices are consistent

123

Autom Softw Eng (2018) 25:595–626 619

Table 4 Impact on utility for different scenarios

Scenario/priority Avg. ΔU

Synthesis Manual Δ(%)

1. Minimizing malicious clients 0.4853 0.1972 59.37

2. Optimizing good client experience 0.4539 0.2173 52.13

3. Keeping cost within budget 0.4125 0.1448 64.89

100

50

0

4000
3000

2000
1000 0

0

0.5

1

%
Malic

iou
s Clien

ts

Response Time (ms.)

Δ
U

Avg.Δ U = 0 .4853

100

50

0

4000
3000

2000
1000 0

0

0.5

1

%
Malic

iou
s Clien

ts

Response Time (ms.)

Δ
U

Avg.Δ U = 0.1972

Fig. 5 Impact on utility of synthesized (left) and manually specified repertoires (right) for Scenario 1

with the utility profiles specified and the characteristics of the tactics. In Scenario
1, priority is given to eliminating malicious clients, and the combinations of tactics
that are employed within the same strategy (e.g., throttleSuspicious, reauthenticateAll, and
blackholeAttacker) are more aggressive than those found in Scenario 2, in which priority
is given to optimizing good client experience, where at most one security-related tactic
is employed in every strategy. In Scenario 3, where cost is the main concern, expensive
tactics such as enlistServers are restricted to 20% of the state space, compared to 33%
and 50% in scenarios 1 and 2, respectively.

Adaptation impact Analyzing the impact of the adaptation choices on utility entails
calculating the difference between instantaneous utility (ΔU) before and after the
execution of the selected adaptation strategies across a region of the state space (see
I M , Algorithm 2).

Table 4 shows that synthesis consistently achieves a remarkable improvement (52–
64%) over the manually-specified repertoire across all scenarios, independently of the
differences in utility preferences and the adaptation choices made.

Figure 5 illustrates the contribution to utility in different areas of the state space: the
impact of adaptations in areas that correspond to a high percentage of malicious clients
significantly improve over manually-specified adaptations. In contrast, synthesis does
not improvemuch over themanual approach in areas with low percentage of malicious
clients, even in case of high response time. This is consistent with the priority of the
scenario encoded in the utility profile, which weighs as more relevant eliminating
malicious clients.

123

620 Autom Softw Eng (2018) 25:595–626

Synthesis Abstraction [Sn]X Scenario 1 - analyzed on [Sn]∗X , ηrt = 10, ηmc = 1
Resolution ηrt ηmc # States Time (s) # Strategies Avg. ΔU Constr. Sat. (%)
Low 1000 50 15 38 5 0.4051 100
Med-low 500 20 54 134 7 0.4728 100
Med-high 200 10 231 584 7 0.4781 100
High 100 5 861 2130 8 0.4853 100
Synthesis Abstraction [Sn]X Scenario 2 - analyzed on [Sn]∗X , ηrt = 10, ηmc = 1
Resolution ηrt ηmc # States Time (s) # Strategies Avg. ΔU Constr. Sat. (%)
Low 1000 50 15 36 4 0.3849 100
Med-low 500 20 54 132 5 0.4375 100
Med-high 200 10 231 565 7 0.4468 100
High 100 5 861 2104 8 0.4539 100
Synthesis Abstraction [Sn]X Scenario 3 - analyzed on [Sn]∗X , ηrt = 10, ηmc = 1
Resolution ηrt ηmc # States Time (s) # Strategies Avg. ΔU Constr. Sat. (%)
Low 1000 50 15 37 6 0.3341 100
Med-low 500 20 54 131 7 0.3987 100
Med-high 200 10 231 566 8 0.4042 100
High 100 5 861 2107 8 0.4125 100

0 200 400 600 800
0

500

1,000

1,500

2,000

States

Sy
nt

he
si

s
T

im
e

(s
)

Scenario 1
Scenario 2
Scenario 3

0 200 400 600 800
0.3

0.35

0.4

0.45

0.5

States

A
ve

ra
ge

Δ
U

Scenario 1
Scenario 2
Scenario 3

Fig. 6 Time/utility impact of synthesized strategy repertoires

7.2 Synthesis time/quality trade-offs

To assess time/quality trade-offs, we: (i) measure synthesis time for repertoires
obtained from abstractions with different resolutions, and (ii) statically analyze the
state space for every repertoire to measure their impact on utility.

Figure 6 shows the results for increasingly finer resolutions across adaptation sce-
narios. As expected, finer resolutions result in larger state spaces, longer computation
time, and higher utility increments.However, even low resolution doubles the improve-
ment in utility of the manual approach across all scenarios, with computation time
under 40 s.

Interestingly, moderate increments in resolution yield substantial improvements
in utility in the range 10–15% with computation times of approximately 2 min. In
contrast, going from medium–low to higher resolutions increases time substantially
and results in marginal utility improvements. This linear increment of computation
time vs. logarithmic increment on utility impact on the size of the abstraction (Fig. 6,
right), is explained because strategies that are optimal in large regions of the state space
(and therefore have a greater impact on overall utility, e.g., lowerFidelity-blackholeAttacker
in all scenarios of Fig. 4) are more likely to be discovered with coarser abstraction

123

Autom Softw Eng (2018) 25:595–626 621

resolutions than strategies which are optimal only in small regions and have a very
limited impact in utility. This is shown in the table on the left of Fig. 6, in which
medium-low abstraction resolutions are enough to uncover most of the strategies for
the repertoires synthesized with higher resolutions (e.g., 7 out of 8 for scenarios 1
and 3). Consistent with this finding, our data shows that strategies that are optimal
in very restricted areas of the state space (e.g., addCaptcha-enlistServers) can only be
uncovered with high resolution. Although more experiments are needed to generalize,
these observations appear to respond to the 80–20 pareto principle or vital few, trivial
many that holds in other areas of software (Pressman 2001).

Concerning the satisfaction of the constraint in Example 1, in our study,MOSAICO
always finds solutions that meet it, although we do not provide strict formal guarantees
about constraint satisfaction (this issue is discussed in Sect. 8).

Finally, in our study we run policy synthesis sequentially for every point of the
abstraction provided as input. However, different regions of the abstraction can be
distributed across different computation nodes to parallelize the synthesis process,
facilitating the scalability of the approach.

8 Threats to validity

Regarding internal validity, the main concern is related to the actual satisfaction of
constraints and strategyoptimality criterion, since guarantees for them in an abstraction
state D(s) ∈ [Sn]X (see Sect. 6.1) do not necessarily hold in s. However, static analysis
of adaptation strategies generated using different resolution abstractions shows that
in practice, utility values reasonably approximate the optimal solution obtained with
very high resolutions (and hence, we employ in this article the term nearly-optimal to
qualify the repertoires generated). In that sense, note that the values shown on Table 4
are obtained via static analysis (Algorithm 2) iterating over states in the actual state
space (i.e., themaximal abstraction [Sn]∗X), rather than over the states in the abstraction[Sn]X employed for synthesis. In the same line, although we do not provide formal
guarantees concerning constraint satisfaction in the actual state space a priori, the fact
that our proposal is chiefly intended for design time mitigates this issue. In fact, the
intent of our approach is supporting engineers in achieving the best possible results
with less effort during the specification process, providing them with useful feedback
about the satisfaction of constraints, and giving them the opportunity to revisit the
strategy repertoire to fix any potential issues if needed (e.g., by reworking tactics)
before deployment. Concerning the cost of static analysis captured in Algorithm 2, it
is negligible by comparison with the cost of synthesis, since PRCTL is amenable to
verification via statistical model checking once a strategy has been fixed in the model.

A second issue concerns the need to recompute the strategy repertoire when tactics,
utility functions, or preferences change. However, the timescale at which changes to
these elements occur in practice is likely to be much larger than the time needed to
automatically recompute a new repertoire.

Finally, while in this article we do not show the probabilistic aspects of the approach
for space and clarity concerns, uncertainty is inherent to self-adaptive systems and jus-
tifies the use of probabilistic model checking, along with the capability of quantitative

123

622 Autom Softw Eng (2018) 25:595–626

analysis. While everything indicates that the approach can scale for fairly large sys-
tem/environment state spaces, problem instances with very large tactic collections
or probabilistic outcomes might threat scalability, since they increase the local MDP
state space built to solve the synthesis problem in each state of the abstraction. In
that sense, the fact that abstractions can be distributed across different computation
nodes mitigates this issue. Moreover, results in Cámara et al. (2015) show that local
MDP synthesis including probabilistic aspects scales well for architectures of 200+
components, with computation times that are not far off from those measured in the
deterministic case.

Concerning external validity, our evaluation scope is limited to a specific framework
(Rainbow), specification language (Stitch), and class of system. However, we believe
the results generalize to other systems in the MAPE-K family that include similar
concerns and planning activities to the ones described in thiswork. Concretely, nothing
prevents using MOSAICO in other application domains in which Rainbow has been
assesed (e.g., industrial middleware Cámara et al. 2013), or adaptation platforms like
the run-time piece of the Descartes Modeling Language, which does run-time strategy
selection in a similar fashion and has been applied to e.g., grid computing or service-
oriented environments (Huber et al. 2014; Nou et al. 2009).

9 Related work

Our work draws from several areas of research, such as supervisory control (Piterman
et al. 2006), planning (Giunchiglia et al. 1999; Schoppers 1987), and probabilistic
model checking (Kwiatkowska et al. 2007). Although we cannot give an exhaustive
list, we outline here some of the related work.

Some approaches closely related to ours employ model checking or planning tools
to devise adaptation behavior via online synthesis. Tajalli et al. (2010) introduce
PLASMA, an approach that uses plan-based and architecture-based mechanisms for
model-driven adaptation via model checking. The approach is able to derive plans for
a given goal and initial state provided by the user, although the quality of the solution
is not considered. In contrast, Sykes et al. present in Sykes et al. (2010) two variants
of an approach for the assembly of component configurations that uses non-functional
information to guide the synthesis. One variant guarantees optimal solutions, but it is
costly, since in the worst case it needs to generate the full list of candidate solutions
to rank them. A second variant is a greedy algorithm that lowers computation cost by
eliminating guarantees about the solution.

Other approaches employ probabilistic model checking to deal with uncertainty are
more limited in the mechanisms used to adapt the system (e.g., parameter optimiza-
tion, or instantiation of predefined workflows) (Calinescu et al. 2011; Calinescu and
Kwiatkowska 2009; Epifani et al. 2009).

Complex adaptation behavior can also be synthesizedoffline to be reused at run time.
D’Ippolito et al. (2014) present a formal adaptation framework that allows the system
to fall back onto a graceful degradation of the service when environment assumptions
are broken. Carzaniga et al. (2013) present an approach that synthesizes behavior
to recover from run-time failures. Li et al. (2014) present an approach to synthesize

123

Autom Softw Eng (2018) 25:595–626 623

behavior that automatically hands over control to a human supervisor when the control
layer cannot handle a problem. All of these approaches eliminate run-time overhead
and focus on functional behavior.

Concerning offline approaches that go beyond functional behavior, Marco et al.
(2013) focus on interoperability and use behavioral synthesis to generate connec-
tors that meet both functional and performance concerns. Finally, works by Filieri
et al. (2014, 2015) and Klein et al. (2014) propose methodologies that target tun-
able variables and are grounded in control theory to produce control strategies for
adaptive systems with formal guarantees. In contrast with our approach, the proposals
described in Filieri et al. (2014) and Klein et al. (2014) focus on a single adaptation
mechanism, whereas the approach in Filieri et al. (2015) can handle the satisfaction of
multiple objectives, but does not explicitly consider trade-offs among them. However,
the works described in Filieri et al. (2014, 2015) are shown to enable the design of
controllers that can trade off responsiveness and robustness.

10 Conclusions and future work

In this article we have presented MOSAICO, an approach to offline synthesis of
adaptation strategy repertoires in MAPE-K systems. The approach supports formal
reasoning about trade-offs among extra-functional system properties, and our results
have demonstrated that the class of abstractions that we employ enables analyzability,
as well as flexibility inmaking trade-offs between quality and computation cost.More-
over, results show that computation time increases linearlywith resolution,while utility
does so logarithmically, enabling us to obtain repertoires that reasonably approximate
the optimum with a relatively low computation cost. The overall goal of the approach
is improving quality while reducing developer costs associated with strategy speci-
fication by automatically generating strategy repertoires. Hence, although synthesis
is done offline, the ability to trade quality by computation time is relevant because
of its direct impact on monetary cost (e.g., when using public cloud infrastructure
to distribute the synthesis of repertoires across different computation nodes). While
our results are only first steps, we believe that they have relevant implications for
automating future self-adaptive systems development.

Concerning future work, we aim at using multi-scale abstractions that can be pro-
gressively refined in regions in which higher resolutions are needed, enabling smarter,
more efficient schemes for exploring the state space.Moreover, we intend to extend our
abstractions to model time explicitly (e.g., adaptation tactic latency), and investigate
applicability in other domains and self-adaptation frameworks. Finally, we will also
explore combining machine learning techniques [e.g., Didona and Romano (2015)]
with our approach to extend the degree of automation of the approach and obtain tactic
impacts automatically, instead of having them manually specified by developers.

Acknowledgements Thismaterial is based uponwork funded and supported by theDepartment of Defense
under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. [Distribution Statement A] This
material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution (DM-0004612).

123

624 Autom Softw Eng (2018) 25:595–626

References

Andova, S., Hermanns, H., Katoen, J.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P.
(eds.) Formal Modeling and Analysis of Timed Systems: First International Workshop, FORMATS
2003, Marseille, France, 6–7 September 2003. Revised Papers, Volume 2791 of Lecture Notes in
Computer Science, pp. 88–104. Springer, Berlin (2003)

Beheshti, S.M.R.S., Liatsis, P.: Captcha usability and performance, how to measure the usability level of
human interactive applications quantitatively and qualitatively? In: 2015 International Conference on
Developments of E-Systems Engineering (DeSE), pp. 131–136 (2015)

Bulletin Board Benchmark. http://jmob.ow2.org/rubbos.html
Calinescu, R., Kwiatkowska, M.Z.: Using quantitative analysis to implement autonomic IT systems. In:

Atlee, J.M., Inverardi, P. (eds.) Proceedings of the 31st International Conference on Software Engi-
neering, ICSE 2009, 16–24 May 2009, Vancouver, Canada, pp. 100–110. IEEE (2009)

Calinescu, R., et al.: Dynamic QoS management and optimization in service-based systems. IEEE Trans.
Softw. Eng. 37(3), 387–409 (2011)

Cámara, J., Correia, P., de Lemos, R., Garlan, D., Gomes, P., Schmerl, B. R., Ventura, R.: Evolving an adap-
tive industrial software system to use architecture-based self-adaptation. In: Litoiu and Mylopoulos
(2013), pp. 13–22 (2013)

Cámara, J., Lopes, A., Garlan, D., Schmerl, B.R.: Impact models for architecture-based self-adaptive sys-
tems. In: Lanese, I., Madelaine, E. (eds.) Formal Aspects of Component Software—11th International
Symposium, FACS 2014, Bertinoro, Italy, 10–12 September 2014, Revised Selected Papers, Volume
8997 of Lecture Notes in Computer Science, pp. 89–107. Springer, Berlin (2014)

Cámara, J., Garlan, D., Schmerl, B.R., Pandey, A.: Optimal planning for architecture-based self-adaptation
via model checking of stochastic games. In: Wainwright, R.L., Corchado, J.M., Bechini, A., Hong, J.
(eds.) Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 428–435. ACM
(2015)

Cámara, J., Correia, P., de Lemos, R., Garlan, D., Gomes, P., Schmerl, B.R., Ventura, R.: Incorporating
architecture-based self-adaptation into an adaptive industrial software system. J. Syst. Softw. 122,
507–523 (2016)

Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezzè, M.: Automatic recovery from runtime failures.
In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, 18–26 May 2013, pp. 782–791. IEEE/ACM (2013)

Cheng, S.-W.: Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation. PhD thesis, CMU
(2008)

Cheng, S.-W., Garlan, D.: Stitch: a language for architecture-based self-adaptation. J. Syst. Softw. 85(12),
2860–2875 (2012)

Cheng, B.H.C. et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng,
B.H.C., de Lemos, R., Giese, H., Inverardi, P.,Magee, J. (eds.) Software Engineering for Self-Adaptive
Systems, Volume 5525 of Lecture Notes in Computer Science, pp. 1–26. Springer, Berlin (2009)

Cheng, S., Garlan, D., Schmerl, B.R.: Evaluating the effectiveness of the rainbow self-adaptive system. In:
2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2009, Vancouver, BC, Canada, 18–19 May 2009, pp. 132–141. IEEE Computer Society (2009)

C-MART. http://theone.ece.cmu.edu/cmart
da Silva, C.E., de Lemos, R.: Dynamic plans for integration testing of self-adaptive software systems. In:

Giese, H., Cheng, B.H.C. (eds.) 2011 ICSE Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2011,Waikiki, Honolulu , HI, USA, 23–24May 2011, pp. 148–157.
ACM (2011)

Didona, D., Romano, P.: Using analytical models to bootstrap machine learning performance predictors. In:
2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), pp. 405–413
(2015)

D’Ippolito, N., Braberman, V. A., Kramer, J., Magee, J., Sykes, D., Uchitel, S.: Hope for the best, prepare
for the worst: multi-tier control for adaptive systems. In: Jalote et al. (2014), pp. 688–699 (2014)

Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time parameter adaptation.
In: Atlee, J.M., Inverardi, P. (eds.) Proceedings of the 31st International Conference on Software
Engineering, ICSE 2009, 16–24 May 2009, Vancouver, Canada, pp. 111–121. IEEE (2009)

Filieri, A., Hoffmann, H., Maggio, M.: Automated design of self-adaptive software with control-theoretical
formal guarantees. In: Jalote et al. (2014), pp. 299–310

123

http://jmob.ow2.org/rubbos.html
http://theone.ece.cmu.edu/cmart

Autom Softw Eng (2018) 25:595–626 625

Filieri, A., Hoffmann, H.,Maggio,M.: Automatedmulti-objective control for self-adaptive software design.
In: Nitto et al. (2015), pp. 13–24

Forejt, V., Kwiatkowska, M.Z., Parker, D.: Pareto curves for probabilistic model checking. In: Chakraborty,
S., Mukund, M. (eds.) Automated Technology for Verification and Analysis—Proceedings of the 10th
International Symposium, ATVA 2012, Thiruvananthapuram, India, 3–6 October 2012, Volume 7561
of Lecture Notes in Computer Science, pp. 317–332. Springer, Berlin (2012)

Garlan, D., Cheng, S.-W., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: architecture-based self-
adaptation with reusable infrastructure. IEEE Comput. 37(10), 46–54 (2004)

Giunchiglia, F. et al.: Planning as model checking. In: ECP, Volume 1809 of LNAI. Springer, Berlin (1999)
Huber, N., van Hoorn, A., Koziolek, A., Brosig, F., Kounev, S.: Modeling run-time adaptation at the system

architecture level in dynamic service-oriented environments. Serv. Oriented Comput. Appl. 8(1), 73–
89 (2014)

Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, models, and applications.
ACM Comput. Surv. 40(3), 7 (2008)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003)
Klein, C., Maggio, M., Årzén, K., Hernández-Rodriguez, F.: Brownout: building more robust cloud appli-

cations. In: Jalote et al. (2014), pp. 700–711 (2014)
Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Briand, L.C., Wolf, A.L. (eds.)

International Conference on Software Engineering, ISCE 2007, Workshop on the Future of Software
Engineering, FOSE 2007, 23–25 May 2007, Minneapolis, MN, USA, pp. 259–268 (2007)

Kwiatkowska, M.Z., Parker, D.: Automated verification and strategy synthesis for probabilistic systems. In:
Hung, D.V., Ogawa, M. (eds.) Automated Technology for Verification and Analysis—Proceedings of
the 11th International Symposium, ATVA 2013, Hanoi, Vietnam, 15–18 October 2013, Volume 8172
of Lecture Notes in Computer Science, pp. 5–22. Springer, Berlin (2013)

Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J.
(eds.) Formal Methods for Performance Evaluation, 7th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SFM 2007, Bertinoro, Italy,
May 28–June 2 2007, Advanced Lectures, Volume 4486 of Lecture Notes in Computer Science, pp.
220–270. Springer, Berlin (2007)

Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification—Proceedings of the 23rd
International Conference, CAV 2011, Snowbird, UT, USA, 14–20 July 2011, Volume 6806 of Lecture
Notes in Computer Science, pp. 585–591. Springer, Berlin (2011)

Laprie, J.-C.: From Dependability to Resilience. In: DSN Fast Abstracts. IEEE CS (2008)
Li, W., Sadigh, D., Sastry, S., Seshia, S.: Synthesis for human-in-the-loop control systems. In: Abraham,

E., Havelund, K. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, Volume
8413 of Lecture Notes in Computer Science, pp. 470–484. Springer, Berlin (2014)

Marco, A.D., Inverardi, P., Spalazzese, R.: Synthesizing self-adaptive connectors meeting functional and
performance concerns. In: Litoiu and Mylopoulos (2013), pp. 133–142 (2013)

Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.R.: Proactive self-adaptation under uncertainty: a prob-
abilistic model checking approach. In: Nitto et al. (2015), pp. 1–12 (2015)

Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.R.: Efficient decision-making under uncertainty for
proactive self-adaptation. In: Kounev, S., Giese, H., Liu, J. (eds.) 2016 IEEE International Conference
on Autonomic Computing, ICAC 2016, Wuerzburg, Germany, 17–22 July 2016, pp. 147–156. IEEE
Computer Society (2016)

Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: Qos-aware service composition in dino. In: Fifth
IEEE European Conference on Web Services (ECOWS 2007), 26–28 November 2007, Halle (Saale),
Germany, pp. 3–12. IEEE Computer Society (2007)

Nou, R., Kounev, S., Julià, F., Torres, J.: Autonomic Qos control in enterprise grid environments using
online simulation. J. Syst. Softw. 82(3), 486–502 (2009)

Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S.
(eds.) Verification, Model Checking, and Abstract Interpretation, Proceedings of the 7th International
Conference, VMCAI 2006, Charleston, SC, USA, 8–10 January 2006, Volume 3855 of Lecture Notes
in Computer Science, pp. 364–380. Springer, Berlin (2006)

Pressman, R.S.: Software Engineering:APractitioner’sApproach, 5th edn.McGraw-Hill Higher Education,
New York City (2001)

123

626 Autom Softw Eng (2018) 25:595–626

Ramadge, P.J.G., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM J.
Control Optim. 25(1), 206–230 (1987)

Rice University Bidding System. http://rubis.ow2.org
Schmerl, B.R., Cámara, J., Gennari, J., Garlan, D., Casanova, P., Moreno, G.A., Glazier, T.J., Barnes, J.M.:

Architecture-based self-protection: composing and reasoning about denial-of-service mitigations. In:
Williams, L.A., Nicol, D.M., Singh, M.P. (eds.) Proceedings of the 2014 Symposium and Bootcamp
on the Science of Security, HotSoS 2014, Raleigh, NC, USA, 08–09 April 2014, p. 2. ACM (2014)

Schoppers, M.: Universal plans for reactive robots in unpredictable environments. In: McDermott, J.P. (ed.)
Proceedings of the 10th International Joint Conference on Artificial Intelligence. Milan, Italy, August
1987, pp. 1039–1046. Morgan Kaufmann (1987)

Sykes, D., Heaven,W.,Magee, J., Kramer, J.: Exploiting non-functional preferences in architectural adapta-
tion for self-managed systems. In: Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.
(eds.) Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland,
22–26 March 2010, pp. 431–438. ACM (2010)

Tajalli, H., Garcia, J., Edwards, G., Medvidovic, N.: PLASMA: a plan-based layered architecture for
software model-driven adaptation. In: Pecheur, C., Andrews, J., Nitto, E.D. (eds.) ASE 2010, 25th
IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, 20–24
September 2010, pp. 467–476. ACM (2010)

Turner, A., Fox, A., Payne, J.I., Kim, H.S.: C-MART: benchmarking the cloud. IEEE Trans. Parallel Distrib.
Syst. 24(6), 1256–1266 (2013)

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.: RELAX: a language to address uncertainty
in self-adaptive systems requirement. Requir. Eng. 15(2), 177–196 (2010)

Wikipedia. Slashdot Effect. https://en.wikipedia.org/wiki/Slashdot_effect

123

http://rubis.ow2.org
https://en.wikipedia.org/wiki/Slashdot_effect

	MOSAICO: offline synthesis of adaptation strategy repertoires with flexible trade-offs
	Abstract
	1 Introduction
	2 Motivating scenario
	3 Approach overview
	4 Adaptation model
	4.1 Adaptation strategy selection

	5 Probabilistic model checking
	6 Strategy repertoire synthesis
	6.1 State space abstraction
	6.2 Parametric model
	6.2.1 Formal parametric model
	6.2.2 Parametric model specification

	6.3 Policy synthesis
	6.4 Strategy repertoire synthesis algorithm
	6.5 Strategy repertoire evaluation algorithm

	7 Evaluation
	7.1 Quality of adaptation choice
	7.2 Synthesis time/quality trade-offs

	8 Threats to validity
	9 Related work
	10 Conclusions and future work
	Acknowledgements
	References

