
Using Medical Devices to Teach Formal Modeling

Orieta Celiku
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
orietac@cs.cmu.edu

David Garlan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
garlan@cs.cmu.edu

Abstract

Formal modeling can be used as an effective technique
to improve the quality and reliability of software-intensive
systems in general, and medical devices in particular. How-
ever, for formal modeling to be accessible to practicing en-
gineers and domain specialists, suitable educational mate-
rials need to be developed. We report on the development
of educational materials designed to give students the nec-
essary experience to infuse formal modeling into practice.
A core component of this effort is a set of modeling tasks
drawn from the medical device domain.

1. Introduction

Over the past decade there has been considerable
progress in the development of formal methods to improve
our confidence in complex systems [1]. Today the use of
such methods in certain fields, such as hardware design, or
nuclear power control systems, is de rigueur, with commen-
surate improvements in quality and reliability.

Regrettably, however, the use of formalism in the medi-
cal device domain is relatively sparse. This is due in large
part to the perceived difficulty of using formal methods by
ordinary engineers and domain specialists, and by the lack
of training in how best to apply existing tools to solve the
problems faced in that domain.

Over the past few years we have been developing edu-
cational materials to help bridge this gap. Specifically we
have developed a course in formal modeling for practicing
engineers. A core component of this effort is a set of mod-
eling tasks drawn from the medical device domain, which
are used to

a) show how formal modeling can be used as an effec-
tive technique to improve quality and reliability of
software-intensive systems

b) provide guidelines on selecting appropriate modeling
approaches for the problem at hand

c) give students hands-on experience in modeling and
tool-assisted analysis

In this paper we outline our use of medical device chal-
lenge problems in achieving these goals. We argue that such
exercises (and the underlying concepts) can go a long way
towards bridging the gap between theory and practice, and
could be used more generally to improve the state of the
practice in developing high-confidence systems, in general,
and medical devices, in particular.

2. Formal Models for Software Systems

Formal Models for Software Systems is a core course in
the professional Masters in Software Engineering curricu-
lum at Carnegie Mellon University [2].1 Students generally
have about 5 years experience in the software industry, and
plan on returning there at the end of the 1.5 year program.

The course is designed to give students the necessary ex-
perience to infuse formal modeling into practice. As such,
it emphasizes the engineering value of formalisms (as op-
posed to simply the theoretical elegance), as well as the
need to judiciously pick both the formalism and the level
of detail to match overall goals of a software project. To
achieve this students are exposed to a number of specific
notations and tools, and are constantly challenged to jus-
tify decisions about choice of system features to model and
the level of detail that they have chosen, and to compare
strengths and weaknesses of different approaches.

3. The Modeling Tasks

A core component of the course is a set of formal mod-
eling tasks. Key features of these include:

1Details on this course can be found at http://www.mse.cs.
cmu.edu/Courses-17-651.html.



• Teams: Students work in groups of 4-5 to complete the
task over a period of about 2 weeks. Teams reinforce
the idea that formalization can be used as a commu-
nication vehicle, there are tradeoffs in level of detail
and feature, and that work on formal modeling can be
partitioned across multiple roles.

• Extension: Each modeling task requires students to ex-
tend a given system. By providing a base system, stu-
dents start from an exemplary model, and can develop
much more complex models than if they were starting
from scratch. Moreover, the use of the same base sys-
tem permits direct comparison between the approaches
used by different teams.

• Presentation: Solutions to each task are presented to
the class by a subset of the teams. Presentation empha-
sizes the need to use formalism as an effective com-
munication vehicle and the need to explain complex
models in simple ways.

• Reflection: In addition to producing a formal model,
students must reflect on why they chose that particular
model, and what tradeoffs they considered.

All tasks center on modeling various versions of an
infusion pump. Infusion pumps convey fluids, medica-
tion, or nutrients into a patient’s circulatory system, fed
intravenously through one or more infusion lines. Infusion
pumps are used to administer fluids in ways that would be
impractical or unreliable if performed manually by nursing
staff.

Infusion pumps are an ideal basis for formal modeling
because they represent complex systems for which formal-
ism can provide tangible benefits in improving reliability.
In particular, because of a history of serious failures there is
considerable documentation on infusion pump problems2,
as well as numerous concrete commercial examples of these
devices. Students are given access to these source docu-
ments, and are expected to become familiar enough with the
domain that they can make intelligent choices about what
problems are most critical, and which of these problems
might be amenable to formal modeling and analysis.

3.1. Modeling Notations and Tasks

Each of the modeling tasks requires students to model
an infusion pump in a specific formal notation, highlighting
different aspects of system complexity. The three notations
used in this course are based on state machines, abstract
specification languages, and concurrent processes.

2See, for example, JCAHO Environment of Care News Jan 2003
(http://www.jcrinc.com/3686/).

• State machines capture the idea that a system pro-
gresses through a set of states by performing or re-
sponding to a set of events. They provide simple ab-
stractions of complex systems, and are the foundation
of all other formalisms. State machines have intuitive
graphical representations, which makes them suitable
for modeling abstract operational requirements. They
also have tools for visualization, simulation, and anal-
ysis of safety conditions.

• Abstract specification languages, based on set theory
and predicate logic, enable the description of the de-
sired effect of operations on the state space. The build-
ing blocks of specifications represent states, and oper-
ations on states. Operations on states are represented
as relations between predicates over initial and final
states. Emphasis is placed on composing larger speci-
fications from smaller ones and incrementally refining
abstract specifications into more concrete ones.

• Concurrent processes are suitable for modeling inter-
action in concurrent systems. They demonstrate the
use of concurrency to manage complexity, separate
concerns, and model reality. Concurrent processes en-
able analysis of important liveness properties (such as
absence of deadlocks) in addition to safety properties.

Students are initially given a state machine model of in-
fusion pumps that captures only the most rudimentary be-
havior of a single-line pump, including the overall flow
of processing (device set- up, operation, termination) and
alarms under certain conditions (such as when the device
runs out of fluid; see Figure 1). Students must then extend
the specification to account for other kinds of behavior such
as occlusions in the delivery lines and power failure. They
have considerable freedom, however, in deciding what addi-
tional functionality to model, based on their understanding
of the device and its safety-critical nature.

When modeling with abstract specification languages
students are asked to extend their model of the single-line
infusion pump to model pumps with multiple lines, but
which execute in an interleaving fashion. The emphasis
is on the abstract specification of operations, capturing the
pre-conditions for safe operation, specifying remedies in the
presence of failures, and building larger specifications from
smaller ones.

Finally, students are asked to model a 2-line infusion
pump using concurrent processes. Emphasis is placed on
using concurrency to factor the model into parts that repre-
sent different concerns, such as power system, an individ-
ual line, alarms, and an interface to set-up and control the
pump.



Figure 1. Simplified Description of Base Sys-
tem State Machine.

3.2. Model Analysis and Reflection

State machines and the concurrent process notation used
in this course are also supported by tools for visualization,
simulation, and analysis of certain properties. Using these
tools, or predicate logic inference, students are asked to an-
alyze their specifications for conformance with respect to
certain properties. Moreover, they are asked to reflect on
the modeling experience. Some of the questions they an-
swer are

• Which aspects of the pump did you choose to model;
which did you choose to leave out?

• What ambiguities in the English description of the in-
fusion pump does your specification resolve?

• State some general properties that your pump guaran-
tees (for example, the alarm will always sound if a line
becomes clogged, the system never deadlocks), and
say why they are guaranteed.

• Which recorded failures of real infusion pumps does
your model address? Does your pump preclude some
of them from happening?

• What are the strengths and weaknesses of the notation
and tools used? Under what situations would you rec-
ommend their use? Under what situations would you
not recommend their use?

• With respect to each notation, what is the single most-
important future development that would be needed to
make it more generally useful to practitioners?

• Reflect on the experience of developing a model in a
group; concentrate on how the formal model helped or
hindered you in understanding the infusion pump.

4. Conclusion

As we have outlined above, the use of medical devices
(such as infusion pumps) provides an ideal basis for teach-
ing practicing engineers the benefits and techniques of for-
mal modeling. By grounding the course in practical exer-
cises inspired by this domain students learn to apply for-
mal modeling and analysis in a realistic setting, helping to
bridge the gap between theory and practice. Although we
have not carried out formal evaluation of the impact of the
course, anecdotal evidence gathered over the past five years
indicates that students find that they are able to later ap-
ply the formal techniques in their own industrial context,
matching the use of formalism to the needs of system de-
velopment.

While this course indicates the promise of applying for-
malism in medical device domains, and suggests that this
domain can effectively motivate the use of formal methods,
there remain many avenues for improvement. In particular,
there is a notable lack of examples from which to draw real-
istic problems. Second, we have yet to find a good textbook
that covers a broad enough base of formal approaches that
students can learn to make good engineering decisions in
their choice of formalism, and their use of it on a particu-
lar problem. Finally, we see this course as an important first
step towards a much broader goal of deepening the outreach
of computational thinking [3] into practical domains.

Acknowledgements

This work was supported by grants from the Army Re-
search Office through grant number DAAD19-02-1-0389
(“Perpetually Available and Secure Information Systems”),
the National Science Foundation under grant number CCR-
0205266. We would like to thank Insup Lee and his re-
search group for suggesting medical devices as a focus for
formal modeling, and for providing us with documentation
about such systems. We would also like to acknowledge
contributions to the design and content of Models of Soft-
ware Systems from Daniel Jackson, Daniel Kroening, Dawn
McLaughlin, Anthony Hall, Jeannette Wing, and the numer-
ous teaching assistants and students who participated in the
course over the years.

References

[1] E. M. Clarke and J. M. Wing. Formal methods: State of the art
and future directions. ACM Computing Surveys, 28(4):626–
643, 1996.

[2] D. Garlan, D. Gluch, and J. Tomayko. Agents of change:
Educating software engineering leaders. IEEE Computer,
30(11):pages 59–65, 1997.

[3] J. Wing. Computational thinking. Communications of the
ACM, 49(3):33–35, Mar. 2006.


