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Abstract—Robotic systems have subsystems with a combina-
torially large configuration space and hundreds or thousands of
possible software and hardware configuration options interacting
non-trivially. The configurable parameters are set to target
specific objectives, but they can cause functional faults when
incorrectly configured. Finding the root cause of such faults is
challenging due to the exponentially large configuration space
and the dependencies between the robot’s configuration settings
and performance. This paper proposes CARE—a method for
diagnosing the root cause of functional faults through the
lens of causality. CARE abstracts the causal relationships be-
tween various configuration options and the robot’s performance
objectives by learning a causal structure and estimating the
causal effects of options on robot performance indicators. We
demonstrate CARE’s efficacy by finding the root cause of the
observed functional faults and validating the diagnosed root
cause by conducting experiments in both physical robots (Husky
and Turtlebot 3) and in simulation (Gazebo). Furthermore, we
demonstrate that the causal models learned from robots in
simulation (e.g., Husky in Gazebo) are transferable to physical
robots across different platforms (e.g., Husky and Turtlebot 3).

Index Terms—robotics and autonomous systems, causal infer-
ence, robotics testing

I. INTRODUCTION

OBOTIC systems are highly configurable, typically com-

posed of multiple subsystems (e.g., localization, navi-
gation), each of which has numerous configurable compo-
nents (e.g., selecting path planning algorithms in the planner).
Once an algorithm has been selected for a component, its
associated parameters must be set to the appropriate val-
ues (e.g., use grid path = True). The configuration space
in such robotic systems is combinatorially large, with hun-
dreds if not thousands of software and hardware configuration
choices that interact non-trivially with one another. Indeed,
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Fig. 1: An example showing the effectiveness of causality. (a) Incor-
rect reasoning (b) correct correlation after incorporating obstacle
cost as a confounder; (c) the causal model correctly captures
obstacle cost as a common cause to explain the robot’s behavior.

incorrectly specified configuration options are one of the most
common causes of system failure [1]. The configuration space
in robotic systems directly impacts mission objectives (e.g.,
navigating from one place to another), enabling trade-offs in
the objective space (e.g., the time that it takes to reach the
target location(s) vs. the energy consumption for the task). The
magnitude of the trade-off (even for the same configuration
option) is dictated by the characteristics of the operating en-
vironment (e.g., the roughness of the surface). Unfortunately,
configuring robotic systems to meet specified requirements is
challenging and error-prone [2]. Incorrect configuration (called
misconfiguration) can cause buggy behavior, resulting in func-
tional and/or non-functional faults." Misconfigured parameters
specified during design time can cause unexpected behavior
at run time [3]. In addition, the operating environment may
change during a mission [4], [5] and may require changing
the configuration values on the fly [6]. The aforementioned
challenges make debugging robots a difficult task.

To handle the challenges in performance debugging and
analysis, performance influence models [7]-[9] have received
significant attention. Such models predict the performance
behavior of systems by capturing the important options and
interactions that influence the performance behavior. However,
performance influence models built using predictive methods
suffer from several shortcomings, including (i) failing to cap-
ture changes in the performance distribution when deployed
in unexpected environments [10], (ii) producing incorrect
explanations as illustrated in Fig. 1b, (iii) lack of transferability
among common hardware platforms that use the same software
stack [11], and (iv) collecting the training data for predictive
models from physical hardware is expensive and requires
constant human supervision [12]. Traditional statistical debug-

"We define functional faults as failures to accomplish the mission objec-
tive (e.g., the robot could not reach the target location(s) specified in the
mission specification). The non-functional faults (interchangeably used as
performance faults) refer to severe performance degradation (e.g., the robot
reached the target location(s); however, it consumed more energy, or it took
more time than the specified performance goal in the mission specification).
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ging techniques [13] based on correlational predicates, such
as Cooperative Bug Isolation (CBI), can be used to debug
system faults. However, statistical debugging is hindered by
the need for large-scale data and the inherent difficulty of
pattern recognition in high-dimensional spaces [14], which can
be challenging for robotic systems with non-linear interactions
between variables.

To address this problem, we present an approach called
CARE (Causal Robotics DEbugging) to diagnose the root
causes of functional faults caused by misconfigurations in
highly-configurable robotic systems through the lens of causal-
ity. Causal models enable interventional and counterfactual
analyses [15] and can accommodate for unobserved con-
founders [16]. These factors are important because certain
variables that cannot be modified or have not been directly
observed may exist, avoiding spurious correlations [17]. De-
bugging using causal models can also help with designing
robust policies [18] that can adapt to different environments
by identifying causal relationships between variables and
testing policy effectiveness. These advantages make using a
causal model more effective than traditional statistical debug-
ging (e.g., CBI).

CARE works in three phases: In Phase I, we first learn
a causal model from observational data—dynamic traces
measuring the performance objectives (e.g., energy, mission
success, etc.) while the robot performs a mission under
different configuration settings. The causal model captures
the causal relationships between configuration options and
the robot’s performance objectives. In Phase II, we use the
causal graph to identify the causal paths—paths that lead
from configuration options to a performance objective. Next,
in Phase III, we determine the configuration options with the
highest causal effect on a performance objective by measuring
each path’s average causal effect to diagnose the functional
faults’ root causes. Our numerical studies confirm that CARE
obtains 87% accuracy, 83% precision, and 81% recall on the
target platform (Turtlebot 3) when reusing the causal model
constructed from a source platform (Husky in simulation).
Moreover, CARE achieved 27% more accuracy and 24% more
F1-score compared to CBI. Our contributions are as follows:

o We propose CARE (§III), a novel framework for finding
the root causes of the configuration bugs in robotic
systems.

o We evaluate CARE, conducting a comprehensive empir-
ical study (§IV) in a controlled environment across mul-
tiple robotic platforms, including Husky and Turtlebot 3
both in simulation and physical robots.

o We demonstrate the transferability of the causal models
by learning the causal model in the Husky simulator and
reusing it in the Turtlebot 3 physical platform (§IV-C).

II. PROBLEM DESCRIPTION
A. Motivating scenarios

To motivate the approach, we use the DARPA Subterranean
Challenge [19] to illustrate the following scenarios. This
setting requires autonomous ground robots to work in adverse
environments such as fog, debris, dripping water, or mud and
to navigate sloped, declining, and confined passageways. In
this case, the mission objective is to stop the robot perpen-
dicular to the position of a particular artifact and transmit its
location to the control station.
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a) Functional fault due to configuration bug: Fig. 2a
shows a scenario where the robot stops 0.5 m away from
the target location and transmits incorrect artifact locations
to the control station. A cause for this fault might be a delay
in data transformation. For instance, the sensor transmits data
at 1 Hz, and the robot travels at 0.5 m/s. As a result, when
the costmap (which stores and updates information about
obstacles in the environment using sensor data) receives data
from the sensor, it is a second old, and the robot has already
traveled 0.5 m away from that position.

b) Functional fault due to change in environment: EX-
tending the previous scenario, suppose the obstacle locations
are unknown to the robot. Fig. 2b shows a scenario where
at t3 the robot encounters unique obstacles that are too close
together, violating the inflation radius (which specifies
the object’s maximum sensing distance), defined before de-
ployment, resulting in an indecisive robot that is stuck in place.

¢) Incorrect reasoning about the robot’s behavior: We
perform a simple experiment for robot navigation, recording
the number of failures in path planning (planner failed)
and probability of mission success. Fig. la shows the
distribution of the P(mission success) with respect to
planner failed. We observe that an increase in planner
failed leads to a higher P(mission success), which
is counter-intuitive. Such a trend is typically captured by
statistical reasoning in ML models. Incorporating obstacle
cost along the trajectory as a confounder (Fig. 1b) correctly
shows an increase in planner failed corresponding to a
decrease in the P(mission success) (negative correlation).
The causal model (Fig. lc) correctly captures obstacle
cost as a common cause to explain the correct relation
between the planner failed and P(mission success).
The arrows denote the assumed direction of causation, whereas
the absence of an arrow shows the absence of direct causal
influence between variables.

d) Challenges: A typical debugging approach to finding
the root causes of such functional faults might be trial-and-
error. However, this process requires non-trivial human effort
due to the large configuration space. Even after finding the
optimal fix (e.g., a new value for a configuration option), the
new fix is not guaranteed to function in different environ-
ments (as in Fig. 2b). Another typical performance debugging
strategy is building performance influence models, such as
regression models. However, performance influence models
are unable to capture changes in the performance distribution
when deployed in an unseen environment (non-transferable)
and produce incorrect explanations, as illustrated in Fig. 1.

B. Causal reasoning for robotics

We formulate the problem of finding root causes for func-
tional faults in robotic systems using an abstraction of a
causal model utilizing Directed Acyclic Graphs (DAGs) [17].
The causal model encodes performance variables, functional
nodes (which define functional dependencies between perfor-
mance variables, such as how variations in one or multiple
variables determine variations in other variables), causal links
that interconnect performance nodes with each other via
functional nodes, and constraints to define assumptions we re-
quire in performance modeling (e.g., the configuration options
cannot be the child node of performance objectives). Given a
robotic system that intermittently encounters functional faults,
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in environment results in an indecisive robot stuck in place. Circles
surrounding the robot represent the inflation radius.

we aim to find the root causes of such faults by querying
a causal model learned from observational data. We start
by formalizing the problem of finding the causal directions
from configuration options to performance objectives that
indicate a functional fault. This problem can be subdivided into
two parts: (a) learning—discovery of the causal relationship
between nodes, and (b) inference—identification of the root
causes for a functional fault using the learned causal model.
Consider a configurable robotic system A which has a set
of manipulable (or configurable) variables X that can be
intervened upon, a set of non-manipulable variables S (non-
functional properties of the system such as metrics that
evaluate the performance) that can not be intervened, and a
set of performance objectives ). We define the causal graph
discovery problem formally:

Problem 2.1 (Learning). Given the observational data D,
recover the causal graph Cg that encodes the dependency
structure between X', S, and ) of V such that the following
structural constraints are satisfied:

v +v; Yo, e X eV, Yu; €Y c {VNX\S}

The second part of the problem is to find the root cause of
functional fault using the learned causal model. We formulate
the inference problem to estimate the average causal effect of
the configuration option on the performance objectives as:

Problem 2.2 (Inference). Given the causal graph Cg, de-
termine the configuration option in &', which is the root
cause for the observed functional fault characterized by
performance objectives ) as follows:

{v;} = argmax ACE(v;,v7),

Vi

where {v}} c X is the set of root causes (configuration
options), {v;} c Y are the performance objectives charac-
terizing the functional fault, and ACE represents the aver-
age causal effect—the average difference between potential
outcomes under different treatments [15].

ITI. CARE: CAUSAL RoBOTICS DEBUGGING

We propose a novel approach, called CARE, to find and
reason about the intricate relations between configuration
options and their effect on the performance objectives in
highly configurable robotic systems. CARE works in three
phases: (i) The observational data is generated by measuring
the performance metrics and performance objectives under
different configuration settings (see @ in Fig. 3) to construct
the graphical causal model (see @ in Fig. 3) enforcing the
structural constraints (see @ in Fig. 3). (ii) The causal model
is used to determine the paths that lead from configuration op-
tions to the performance objectives (see (4) in Fig. 3). (iii) The

Root causes 2—)

. &—6—@
(——i——

C—E—6)

Examples:

Find hlgheSt C1: goal_distance_bias

perf affectlng E: position_accuracy
config. options

B}

@ Path's Rank

P4 energy_consumption

Fig. 3: Overview of CARE.

configuration options that have the highest causal effect on
the performance objective were determined, measuring the
average causal effect of each path to diagnose the functional
faults (see @ in Fig. 3).

A. Learning the causal model

We design a three-layer structure causal model defin-
ing three variable types: (i) software-level configuration
options associated with different algorithms (e.g., goal
distance bias [20]), and hardware-level options (e.g.,
sensor frequency), (ii) intermediate performance vari-
ables (non-manipulable variables) that map the influence of
the configuration options to the performance objectives (e.g.,
position accuracy), and (iii) end-to-end performance ob-
jectives (e.g., energy). We classify the performance variables
as non-manipulable and manipulable variables to reduce the
number of variables that require intervention. Note that the
level of debugging can vary [11], and the abstraction level of
the variables in the causal model depends on the debugger
and can go all the way down, even to the hardware level [21].
To build the three-layer structure, we define two specific
constraints over causal models: (i) variables that can be
manipulated (e.g., using prior experience, the user may want
to restrict the variables that do not have a significant impact
on performance objectives); (ii) structural constraints (e.g.,
configuration options do not cause other options). Such con-
straints enable incorporating domain knowledge that facilitates
learning with low sample sizes. Several methods are proposed
to extract the causal graphical model from data in the literature.
These belong to two categories: constraint-based techniques
and score-based techniques. We specifically use Fast Causal
Inference (hereafter, FCI) [16], a constraint-based technique
for identifying the causal model guiding robot performance.
We select FCI because it identifies the unobserved confounders
(common latent causes that have not been, or cannot be, mea-
sured); it can handle various data types (e.g., nominal, ordinal,
and categorical) given a valid conditional independence test.
When the FCI algorithm is applied to observational data, a
Partial Ancestral Graph (PAG) [17], representing a causal
structure in the presence of latent variables, is produced. Each
edge in the PAG denotes the ancestral connections between
the vertices. For a comprehensive theoretical foundation, we
refer the reader to [22], [23]. To discover the true causal
relationship between two variables, the causal graph must be
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Algorithm 1: CM(data, V, G)

Algorithm 2: CPWE(V, D, B)

Input: data, dense graph G, Vertex set V
Output: Set of D and B to build the ADMG
1D, B«y
2 while Ve G do

3 S < Apply structural constraints on G

4 Gs = FCI(data, Fisher z-test, S.)

5 for each 0 € G5 do

6 Compute entropies H (v;), H(v;),H(Z)

7 0, =0.8min{H (v;), H(v;)}

8 if H(Z) <0, then

9 | Replace v; o— v; with v; «— v; in B

10 else

u vj = f(vi, E) where [E 1 v;]

12 v; = g(v;, E) where [E 1 v;]

13 Compute the entropies H(F) and H(E)
14 if H(E) < H(E) then

15 | Replace v; o—o v; with v; — v; in D
16 else

17 | Replace v; o—o v; with v; — v; in D
18 return D, B

fully resolved [21] such that there are no v; o— v; (v; causes
v;, or there are unmeasured confounders that cause both v; and
v;), and v; o—o v; (v; causes v;, or v; causes v;, or there are
unmeasured confounders that cause both v; and v;) edges. We
define the partial edge resolving problem formally as follows:
Problem 3.1 (Resolve Partially Directed Edges). Given a
causal partial ancestral graph [17] Gy = (V,0), the par-
tial edge resolving problem involves replacing each partial
edge 0 with a directed edge D or a bi-directed edge 3 based
on some threshold 6.

We use Algorithm 1 for learning the causal model (CM).
First, we build a dense graph G by connecting all pairs of
configuration options, performance metrics, and performance
objectives with an undirected edge. Unlike configuration op-
tions, the intermediate layer’s variables can not be modified.
However, they can be observed and measured to understand
how the causal effect of changing configurations propagates
to a performance objective. The skeleton of the causal model
is recovered by enforcing the structural constraints (e.g., no
connections between configuration options, as in line 3 of Al-
gorithm 1). Next, we evaluate the independence of all pairs of
variables conditioned on all remaining variables using Fisher’s
exact test [24]. A PAG is generated, orienting the undirected
edges by employing the edge orientation rules [17] (line 4 of
Algorithm 1). The obtained PAG must be fully resolved (no
O between two vertices) to discover the true causal rela-
tionships. We resolve the FCI-generated PAG by evaluating
if an unmeasured confounder (Z) is present between two
partially oriented nodes (v;,v;). Employing the information-
theoretic approach based on entropy [25] produces a joint
distribution ¢(v;,v;, Z). We compute the entropy H(Z) of
Z. Comparing the H(Z) with 6, (entropy threshold, 6, =
0.8min{H (v;), H(v;)}), we determine VP if 3Z € 0, as
shown in lines 6-17 of Algorithm 1, where E and E are
the extrinsic variables responsible for system noise (v; L E,
v L E). The final causal model is an Acyclic Directed Mixed
Graph (ADMG) [26].

Input: data, V, D, B

Output: Rank of the causal paths
1P« g K « @
2 ADMG < {V,D, B}
3 while V[)Y] € ADMG do

4 | P <« All causal paths from an V[)] node
5 for i < P to P, do

6 Compute P4c g using Equation 2

7 K <« SORTDESCENDING(P4cg)

8 return K

B. Causal effect estimation

To determine the root cause of a functional fault from the
causal graph, we need to extract the paths (referred to as causal
paths) from Cg. A causal path is a directed path originating
from X (e.g., configuration options) to a subsequent non-
functional property S (e.g., performance metrics) and termi-
nating at ) (e.g., performance objectives). Our goal is to
find an ordered subset of P that defines the causal path from
the root cause of the functional fault (a manipulable variable
that causes the functional fault) to the performance objective
indicating the functional fault (say z; causes a functional
fault F' through a subsequent node s; in the path, assuming
(Fz; € X) A (Fs;€8); e.g., x; —> $;—> V). We define the
causal path discovery problem as follows:

Problem 3.2 (Causal Path Discovery). Given a causal graph
Cg = (V,D,B) that encodes the dependency structure
between X', S and ), and a performance objective Vg € V
indicating a specific functional fault, the causal path discov-
ery problem seeks a path P = (vg,v1,...,v,) such that the
following conditions hold:

* v, is the root cause of the functional fault and v, = Vr.

e VO0<i<n, v;eVandV0<i<n, (vi,vi+1) € (DVB).
* V 0<i<j<n, v;is a counterfactual cause of v;.

¢ |P| is maximized.

We extract the causal paths and measure the average
causal effect of the extracted causal paths on the performance
objectives (), and rank the paths from highest to lowest
using Algorithm 2: Causal Paths With Effect (CPWE). CPWE
simplifies the complicated causal graph using path extraction
and ranking to a few useful causal paths to determine the
configurations that most influence the performance objectives.
Causal paths are discovered by backtracking from the nodes
corresponding to each performance objective until we reach a
node with no parents. The discovered paths are then ranked
by measuring the causal effect of a node’s value change (say
V1) on its subsequent node V5 in the path. We express this
using the do-calculus [15] notation: E[V5 | do (V4 = x)] that
represents the expected value of V5 if we set the value of
node V; to x. The average causal effect (ACE) of Vi —» V5
is calculated across all acceptable V) values as follows:

ACE (V2,V1) = 5 Zvayev, E[V2 [ do(Vi=y)] ~ E[Va | do(Vi=2)], (1)

where NN is the total number of acceptable values of Vj.
ACE (V5, V1) will be larger if V; yields a larger change in
V5. We calculate the ACE for the entire causal path extending
Equation 1 as follows:

1
Pack = 7 > ACE(vj,v;) 2
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The configuration options found on paths with larger P4cog
are likely to have a higher causal effect on the corresponding
performance objective. The top K paths with the largest Pac g
values were selected for each performance objective.

IV. EXPERIMENTS AND RESULTS

Using the Husky and Turtlebot 3 platforms as case study

systems, we answer the following research questions (RQ):

e« RQI (Accuracy): To what extent are the root causes
determined by CARE the true root causes of the observed
functional faults?

o RQ2 (Transferability): To what extent can CARE ac-
curately detect misconfigurations when deployed in a
different platform?

A. Experimental setup

We simulate Husky in Gazebo to collect the observational
data by measuring the performance metrics (e.g., traveled
distance) and performance objectives (e.g., energy consump-
tion) under different configuration settings to train the causal
model. Note that we use simulator data to evaluate the
transferability of the causal model to the physical robots,
but CARE also works with data from physical robots. We
deployed the robot in a controlled indoor environment and
directed the robot to autonomously navigate to the five target
locations (Fig. 4). The robot was expected to encounter
obstacles and narrow passageways, where the locations of
the obstacles were unknown before deployment. The mission
was considered successful if the Husky robot reached each of
the five target locations. We used Euclidean distance between
the commanded and measured positions as a threshold to
determine if a target was reached. We generated the values
for the configurable parameters using random sampling. We
recorded the performance metrics for different values of the
configurable parameters. We used the navigation task as a test
case and defined the following performance metrics for the
ROS navigation stack [20]:

1) Traveled distance (TD): Traveled distance from start to

destination.

2) Robustness in narrow space (RNS): We define
narrow space = RObOtfootp“nt + Footprlntpdddmg,
and RNS = N ZZ 1PassedN , where N, is the total
number of narrow spaces in the known environment, and
Passedy, is the narrow spaces that the robot successfully
passed.

3) Mission time: Total time (minute) to complete a mission.

4) Recovery executed (RE): Number of rotate recovery
and clear costmap recovery executed per mission.

5) Replanning path (RP): Number of replanning paths per-
formed by the planner during a mission.

6) Error rotating to the goal (ERG): Number of errors when
rotating to a goal per mission execution. If the robot
reaches the goal and stops, we check if there is a potential
collision while rotating.

Additionally, we integrate the Gazebo battery plugin [27]
to the Husky simulator to measure energy consumption.
We developed Reval>—a tool to evaluate ROS-based robotic
systems, and collected observational data while the Husky

Zhttps://github.com/softsys4ai/Reval.git

(b) Real environment

(a) Simulated environment

Fig. 4: Experimental environments, (a) simulated in Gazebo, (b) a
real environment located at the University of South Carolina.
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Causal
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(a) A partial causal model for ROS navigation stack discovered in our
experiments using the Husky simulator.
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Fig. 5: Ranking configuration options applying Algorithm 2.

performed a mission. Additional details about our experiments
can be found in the supplementary materials*.

B. RQI: Accuracy

We answer RQI1, validating the root causes determined by
CARE for both Husky in simulation and the physical robot
by comparing the variance (o) of the performance objectives
and performance metrics for different configuration options.
Recall that our overall goal is to determine the parameters that
influence the performance objective most. By comparing the
o2, we analyze whether changing the value of a configuration
option noticeably affects the performance distribution (options
that have a stronger influence are likely to have high vari-
ability). We train the causal model using Algorithm 1 on
observational data obtained by running a mission 400 times
under different configuration settings. A partial causal model
resembles the one in Fig. 5a. Next, we compute the P4 for
each causal path from the causal model using Algorithm 2. The
rank of the causal paths is depicted in Fig. Sb-c. Parameters
that achieve a higher rank are likely to have spurious values,
hence the root cause of the functional fault. We selected two
configuration options from Rank 1, Rank 3, and Rank 4 and
defined three sets (see Fig. 5d). In our experiment, Rank 2
was discarded because the values of P g (for Rank 2)
are too close to Rank 1 and Rank 3. We conducted 50
trials for each rank and recorded the energy, mission success,
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TABLE I: Comparison of the variance (c2) of different ranks
for energy and mission success using the Husky platform.

‘ Uﬁankl Uﬁankg Ufank4 ‘

- . Energy 24.32 13.78 7.27
g Objective | figsion success 11.77 1122 801
= . Traveled distance 493 3.14 2.90

g 2 Replanning path 12339 10097  97.73
z s Recovery executed 3.63 2.88 2.70

=4 Mission time 46.96 29.21 20.93
< g9 RNS 0.26 0.25 0.20
2 8 Recovery executed 3.21 2.94 2.79

~§ 3 Error rotating to goal | 44.01 40.59 16.13

” Mission time 153.93 57.75 38.85

o Energy 64.43 26.57 12.43
5] Objective | yricsion success 2.46 2.17 1.60
'z . Traveled distance 9.84 522 423

<, %’3 Replanning path 126.38 109.07 108.87

> LS Recovery executed 3.50 2.98 2.67

é Mission time 34.39 25.90 16.93
T = w RNS 0.29 0.23 0.21
28 Recovery executed 3.17 2.83 1.26

Z 8 Error rotating to goal | 56.11 33.59 22.14

=z Mission time 62.85 42.43 35.39

and performance metrics by altering only those parameter
values contained in the sets (Fig. 5d) while leaving all other
parameters to their default values (supplementary materials™).
For instance, from Rank 1, we only changed the values of
occdist scale and goal distance bias. Fig. 6 shows
violin plots to demonstrate the distribution of the trails for
each rank, where the width of each curve corresponds with the
frequency of y—axis values. During optimization or debugging,
we aimed to prioritize the configuration options which had
the strongest influence on the performance objective (e.g., to
debug energy fault, ACE of occdist scale > transform
tolerance > update frequency). As depicted in Fig. 6a
and 6b, for both energy and mission success 07, > Orank, >
ofank4. The performance metrics are the confounding vari-
ables that influence the performance objectives (e.g., traveled
distance — energy, RNS — mission success) and can be
treated as the performance variance indicators. For instance,

Rank 1 : 0%, > Rank 3 : 07, > Rank 4 : 02, (Fig. 6c,
6d, 6e) causes t Rank 1 : ag,LeTgy (Fig.6a). Similarly, for

mission success, Rank 1:0%yg > Rank 3:0%y¢ > Rank 4 :
0% g causes | Rank 4:02,, . - . Table I summarizes
the variance for different ranks achieved using the Husky
platform. We observe that Jfankl > Ufankg > Ufan,m for
all performance metrics and performance objectives, both in
the Husky simulator and physical robot, demonstrating that
configuration options which rank higher (Fig. 5d) have the
strongest influence on the performance objectives. Moreover,
CARE achieved 95% accuracy when comparing the predicted

root causes with the ground truth data (see Fig. 7b).

C. RQ?2: Transferability

The configuration options that specify the hardware char-
acteristics of the physical platform differ across robotic sys-
tems (e.g., sensor frequency), and these hardware character-
istics can significantly impact the performance of the tasks
carried out by the robotic systems. We answer RQ2 by reusing
the causal model in a different robotic platform. We reuse the
causal model constructed from a source platform, e.g., the
Husky simulator, to diagnose the root causes of a functional
fault in a target platform, e.g., Turtlebot 3. We follow the
identical experimental setup outlined in §IV-A to record the
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Fig. 6: Comparing the distribution of different ranks for energy (a)
and mission success (b), where (c), (d), (e) represent the performance
metrics of energy, and (f), (g), (h) represent the performance metrics
of mission success.

performance metrics for the Turtlebot.

a) Ground truth: We measured 400 samples, varying
the configuration options for both Husky in simulation and
Turtlebot 3. We used a threshold of 0.02 over the RMSE
to determine the number of samples required for accurately
learning the causal model. We curated a ground truth of
functional faults using the ground truth data. In particular, we
curated the ground truth for the two performance objectives:
(1) configurations that result in a mission failure (functional
fault), and (ii) configurations that achieved energy consump-
tion worse than the 99¢" percentile are labeled as ‘faulty’ (non-
functional fault). The ground truth contains 20 functional
faults (10 mission success, 10 energy), and each has two to
four root causes.

b) Baseline: We compared CARE against the state-of-
the-art Cooperative Bug Isolation (CBI) [28]—a statistical
debugging method that uses a feature selection algorithm.
We selected CBI for its use of statistical methods similar to
ours and its ability to identify multiple root causes. However,
unlike our approach, CBI relies on correlations instead of
causation to identify the root causes of the fault. We com-
puted the Importance score [28] by computing Failure(P),
Context(P), and Increase(P) for different configuration
options and objectives. Based on the importance score, we
ranked the configuration options similarly to Fig. 5. In our
experiments, we set the confidence intervals to 95% to elim-
inate configuration options with low confidence due to few
observations but a high Increase(P).

c) Results: Given a set of test data, ground truth, and
CARE’s predictions on the test data, we evaluated the pre-
dictions by dividing them into true and false positives and
negatives (TP, FP, TN, and FN). Subsequent metrics include:

o Accuracy: The measure of the predicted root causes that
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Fig. 7: Comparing CARE against CBI (a), and demonstrating
CARE’s transferability (b), (c) by reusing the causal model con-
structed from Husky in simulation, to diagnose the root causes of
the functional faults in the Turtlebot 3 physical robot.

match the ground truth root causes, (TP +TN)/(TP +
FP+TN+FN).

e Precision: The ratio of true root causes among the pre-
dicted ones, TP/(TP + FP).

e Recall: The ratio of true root causes that are correctly
predicted, TP/(TP + FN).

e Fl-score: The harmonic mean of precision and recall,
2 x (precision x recall)/(precision + recall).

o RMSE: Weighted difference between the predicted and
true root causes. For example, if 7 is the pre-
dicted root cause of a functional fault and y is
root cause in the ground truth, we measure RMSE =

\/N YN (ACE(y) - ACE(%))?, where ACE is com-
puted usmg Equation 1.

Fig. 7 shows the results in diagnosing the root causes of
the mission success and energy faults. The total accuracy is
computed using ﬁ Zg‘i’)j acc., where Ng; is the number
of performance objeétives; similarly for precision and recall.
CARE achives 27% more accuracy, and 24% more Fl-
score compared to CBI (Fig. 7a). We computed the accuracy
in Fig. 7a using (Husky,,;u; qee. + Turtlebot3iotar_ace.)/2;
similarly for Fl-score. We observe that reusing CARE in
Turtlebot 3 obtains 8% less accuracy, 4% less precision,
and 6% less recall compared to the source platform (Husky
simulator). We also observe higher RMSE in the Turtlebot 3
platform (the total RMSE is computed using »°, Novi RM SE).
However, if we increase the sample size, CARE mcrementally
updates the internal causal model with new samples from the
target platform to learn the new relationships, and we observe
a decrease in RMSE (see Fig. 7c). Therefore, the model does
transfer reasonably well.

V. DISCUSSION

a) Usability of CARE: While our proposed design is
general and can be extended to include new variables and other
robotics systems, it would require some additional engineering
efforts. In particular, to add a new variable to the causal
model, the following steps would be required: (i) identifying
the manipulable and non-manipulable variables, (ii) profiling
the observational data related to the new variable, including
its corresponding performance objectives, (iii) learning and
adding the causal relationships of the new variable to the
existing model. Furthermore, to support a new robotic system,
in addition to step 1, profiling the observational data for the
entire configuration space would be required to train the causal
model. We provide a tool for this in our codebase”, but it is
currently limited to ROS-based systems.

b) Why did CARE outperform CBI?: CARE discovers
the root causes of the configuration bugs by learning a causal

model that focuses on the configurations that have the highest
causal effect on the performance objectives, eliminating the
irrelevant configuration options. For instance, while finding
the root causes of the functional and non-functional faults
on the performance objectives, CBI reported 116 FP, whereas
CARE reported only 13 FP (Huksy and Turtlebot 3 combined),
hence, achieving a higher F1-score compared to CBI (Fig. 7a).
CBI reported a higher number of FP because it determines
the root causes based on the correlation between variables.
For instance, it identified planner failure rates increase the
P(mission success), which is counter-intuitive. Therefore,
an engineer would spend less time debugging and optimizing
the parameters when using CARE.

c) Limitations: The efficacy of CARE depends on sev-
eral factors, including the representativeness of the obser-
vational data and the presence of unmeasured confounders,
which deteriorate the accuracy. In some cases, the causal
model may be missing some important connections, resulting
in identifying spurious root causes.

d) Future directions: For future work, we envision two
possible avenues: empirical and technical. For the empiri-
cal aspect, CARE could be applied to improve autonomy
in robotic spacecraft missions. The technical aspect could
involve performing static analyses to extract the configurable
parameters in an automated manner.

VI. RELATED WORK

a) Debugging Approaches: Prior work on highly con-
figurable systems has revealed that the majority of func-
tional faults are related to configuration space [29]. Previ-
ous approaches for debugging software systems have used
performance influence models [7]-[9] to model configuration
options as features and learn a corresponding prediction func-
tion. To debug and enhance robotic systems’ performance,
researchers use random testing such as fuzzing [30] and
delta debugging [31] approaches. Moreover, several studies
have proposed different methods to deal with the config-
uration bugs, such as discovering and fixing configuration
bugs in co-robotic systems [32], statically identifying run-time
architectural misconfigurations [2], and automatic parameter
tuning [33]. Data-driven machine learning techniques [34]-
[36] have also been widely applied to improve performance
by fine-tuning configuration parameters or diagnosing miscon-
figurations, as opposed to heavily relying on human expertise.
However, these techniques may not be effective at applying
knowledge in different environments and may have difficulty
retaining past information [10].

b) Causal learning for systems: Machine learning tech-
niques have been proven effective at identifying correlations
in data, though they are ineffective at identifying causes [15].
To address this challenge, several studies, including detecting
and understanding the defect’s root causes [37], improving
fault localization [38], and reasoning about system’s per-
formance [21], utilize causal learning. Using the encoded
information, we can benefit from analyses that are only possi-
ble when we explicitly employ causal models, in particular,
interventional and counterfactual analyses [15], [16]. More
recently, Swarmbug [39], a method for debugging config-
uration bugs in swarm robotics, utilized a causality-based
approach to find and fix the misconfigurations in swarm
algorithms. However, the Swarmbug method is specifically
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designed for use in swarm robotics and is therefore only useful
for diagnosing configuration bugs in swarm algorithms.

VII. CONCLUSION

We proposed CARE, a novel approach to determining the
root causes of functional faults in robotic systems. CARE
learns and exploits the robotic system’s causal structure con-
sisting of manipulable variables (configuration options), non-
manipulable variables (performance metrics), and performance
objectives. Then, given the causal model, CARE extracts the
paths that lead from configuration options to the performance
objectives and determines the configuration options that have
the highest causal effect on the performance objective by
computing the average causal effect of each path. Our evalua-
tion shows that CARE effectively diagnoses the root cause of
functional faults, and the learned causal model is transferable
across different robotic systems.
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