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Abstract. Self-Adaptive systems are expected to adapt to unanticipated run-time
events using imperfect information about their environment. This entails handling
the effects of uncertainties in decision-making, which are not always considered
as a first-class concern. This paper contributes a formal analysis technique that
explicitly considers uncertainty in sensing when reasoning about the best way
to adapt, possibly executing uncertainty reduction operations to improve system
utility. We illustrate our approach on a Denial of Service (DoS) attack scenario
and present some preliminary results that show the benefits of uncertainty-aware
decision-making with respect to using an uncertainty-ignorant approach.
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1 Introduction

Complex software-intensive systems are increasingly relied on in our society to support
tasks in different contexts that are typically characterized by a high degree of uncer-
tainty. Self-adaptation [12,22] is regarded as a promising way to engineer in an effective
manner systems that are resilient to run time changes despite the different uncertainties
derived from their execution environment (e.g., resource availability, interaction with
human actors), goals, or even in the system itself (e.g., faults).

The information and models employed for decision-making in self-adaptive sys-
tems are also subject to different types of uncertainty (e.g., sensor readings may be
inaccurate, some important aspect of the domain may be abstracted away in models).
However, despite the fact that these uncertainties can have a noticeable impact on run-
time system behavior, many approaches to engineering self-adaptation do not model the
uncertainties that affect the system explicitly or as a first-class entity [20]. Moreover,
some types of adaptation tactics can reduce uncertainty at run time (e.g., introducing
a CAPTCHA in a web system can reduce the uncertainty about potentially malicious
clients controlled by bots accessing the website). These tactics often come at a cost
(e.g., CAPTCHA can increase the annoyance of legitimate clients accessing the web-
site, whose sessions are disrupted). So, it is also important to enable systems to reason
about the trade-offs of enacting such tactics, quantifying the benefits of uncertainty re-
duction and balancing them against its cost when trying to achieve system goals.

One of the most popular patterns for building self-adaptation into software-intensive
systems is IBM’s MAPE-K [23], which integrates activities to monitor, analyze, plan,



and execute adaptations in close-loop control over a managed software (sub)system.
Furthermore, a central knowledge base that typically includes models about the man-
aged system, its environment, and adaptations, informs the different MAPE activities.

According to categorizations carried out by different authors [17, 24, 25], uncer-
tainty occurs in all activities associated with the MAPE-K loop. In this paper, we focus
on the aleatoric uncertainties (i.e., due to the randomness of events) induced by inaccu-
racies in sensor readings (i.e., deviations from the ideal reading of the sensor), and how
its explicit representation and incorporation into reasoning mechanisms can improve
decision-making in self-adaptation.

Concretely, we investigate two research questions: (RQ1) The extent to which ex-
plicit representation and reasoning about sensing uncertainty improves the quality of
adaptation decisions, and (RQ2) the circumstances under which uncertainty awareness
improves the quality of decisions (subject to RQ1 being true).

To motivate our approach, we consider a simple scenario illustrated in Figure 1(a),
where the system/environment state space is divided into regions A and B. We assume
that the sensors employed to monitor some of the variables that form the system/envi-
ronment state are not very accurate, and therefore the monitoring infrastructure cannot
determine the exact system/environment state (which could be any point in the circle).
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Fig. 1. Simple model scenario.

Figure 1(b) introduces the concept of reward, which is an indicator of how well the
system is meeting its goals (e.g., minimizing malicious users or maximizing requests
served). Every time a system takes some action, it can be rewarded based on how this
action impacts the state of the system (and how well the new state aligns with system
goals). The higher the reward, the better the decision is. In other words, we assume that
the system’s target in this scenario is to accumulate as much reward as possible over
time by taking a series of actions.

In this simple scenario, we assume that reward is only associated with metric x, as
shown in Figure 1(b). When x is below 10, there is no reward; when x is equal to 10,
the reward is at its maximum, and decreases as x moves away from 10. Thus, the entire
state space of this model is effectively divided into two regions:

Region A: x < 10 Region B: x ≥ 10

Suppose that this system can perform a single action to reduce the value of x by an
integral amount. Hence, when the system determines that the current state lies within



region B (according to the observed value of x), it should try to decrease the value of x
to maximize reward, making it as close as possible to 10 (but without going below 10).
However, the sensor that monitors the value of x is not very accurate and the system has
to make the best possible decision under the uncertainty that arises due to the inaccuracy
of the sensing process. In particular, if the sensor indicates that the value of x is higher
than it really is in states close to x = 10, there is a risk that the system will reduce the
value of x below 10, incurring in a high penalty (due to the fact that no further reward
will be accrued).

There is a need to enable formal reasoning mechanisms for self-adaptation to reduce
such risks. In this paper, we contribute a formal analysis technique that enables us to
quantify the potential benefits of explicitly considering sensing uncertainty in models
and decision-making mechanisms for self-adaptation, and produce adaptation decisions
with worst-case guarantees. The formal underpinnings of our proposal are based on
model checking of stochastic multiplayer games (SMGs) [10]. The main idea behind
the approach is analyzing the interplay of a self-adaptive system and its environment in
a game. System and environment are modeled as players with independent behaviors
(reflecting the fact that processes in the environment – in this case, sensing – cannot be
controlled by the system). System and environment players compete against each other,
providing a theoretical setup for worst-case scenario analysis.

The remainder of this paper first presents some background on SMG in Section 2,
used by a description of our approach in Section 3 illustrated on the simple scenario that
we have introduced. Next, Section 4 introduces a more complex self-protecting systems
scenario and discusses some results on comparing uncertainty-aware vs. uncertainty-
ignorant decision making. Section 5 discusses some related work. Section 6 presents
some conclusions and points at directions for future work.

2 Background: Model Checking of Stochastic Multiplayer Games

Automatic verification techniques for probabilistic systems have been successfully ap-
plied in a variety of application domains including security [14,26] and communication
protocols [21]. In particular, techniques such as probabilistic model checking provide a
means to model and analyze systems with stochastic behavior, and enable quantitative
reasoning about probability and reward-based properties (e.g., resource usage, time).

Competitive behavior may also appear in systems when some component cannot
be controlled, and could behave according to different or even conflicting goals with
respect to other components in the system. Self-adaptive systems are a good example
of systems in which the behavior of some components that are typically considered as
part of the environment (non-controllable software, network, human actors) cannot be
controlled by the system. In such situations, a natural fit is modeling a system as a game
between different players, adopting a game-theoretic perspective.

Our approach to analyzing self-adaptation builds upon a recent technique for mod-
eling and analyzing stochastic multi-player games (SMGs) extended with rewards [10].
In this approach, systems are modeled as turn-based SMGs, meaning that in each state
of the model, only one player can choose between several actions, the outcome of which
can be probabilistic. Players in the game can follow strategies for choosing actions in



the game, cooperating in coalition to achieve a common goal, or competing to achieve
their own goals. These strategies are guaranteed to achieve optimal expected rewards
for the kind of cumulative reward structures that we use in our models.1

Reasoning about strategies is a fundamental aspect of model checking SMGs, which
enables checking for the existence of a strategy that is able to optimize an objective
expressed as a property in a logic called rPATL. Concretely, rPATL can be used for ex-
pressing quantitative properties of SMGs, and reasoning about the ability of a coalition
of players to collectively achieve a particular goal (e.g., ensuring that the probability of
an event’s occurrence or an expected reward measure meets some threshold).

rPATL is a CTL-style branching-time temporal logic that incorporates the coalition
operator 〈〈C〉〉, combining it with the probabilistic operator P./q and path formulae
from PCTL [2]. Moreover, rPATL includes a generalization of the reward operator Rr

./x

from [19] to reason about goals related to rewards. An extended version of the rPATL
reward operator 〈〈C〉〉Rr

max=?[F φ] enables the quantification of the maximum accrued
reward r along paths that lead to states satisfying state formula φ that can be guaranteed
by players in coalition C, independently of the strategies followed by the rest of the
players. An example of the typical usage of combining the coalition and reward max-
imization operators is 〈〈sys〉〉Rutility

max=?[F
c end], meaning “value of the maximum utility

reward accumulated along paths leading to an end state that a player sys can guarantee,
regardless of the strategies of other players.”

3 Approach

In this section, we describe our approach to analyzing uncertainty-aware self-adaptation,
illustrating it on the simple scenario described in the introduction. First, we introduce
the definition of the formal model for the game, including a description of how reward is
collected. The section finishes by describing the analytical process followed to quantify
the difference between uncertainty-aware and uncertainty-ignorant decision-making.

3.1 Formal Model Definition

The purpose of this model is to compare uncertainty-aware adaptation, i.e., decision-
making that considers explicitly uncertainty information (in this case induced by inac-
curacies in sensing), against uncertainty-ignorant adaptation that assumes that there is
no uncertainty in the information it employs for decision-making. The model is imple-
mented using PRISM-Games [9], a tool capable of model checking rPATL properties
on stochastic multiplayer games.

The model encodes a game played by an environment and a system player, and it can
be instantiated in two variants: one in which the system player is uncertainty-aware, and
another in which the system is uncertainty-ignorant. The details of how these different
variants are used are explained in Section 3.2.
Defining the Players. There are two players in this model: Environment (env) and
System (sys). These two players take turns to take actions. As shown in Listing 1.1,

1 See Appendix A.2 in [10] for details.



the turn is controlled by the global variable turn. There are two other global variables:
real x represents the real value of x at any given time, whereas obs x represents the
value of x observed by the system (i.e., the value obtained by the inaccurate sensor).

1 player sys target system,[act],sensor,[sense] endplayer
2 player env environment,[generate] endplayer
3 const ENV TURN, SYS TURN;
4 global turn:[ENV TURN..SYS TURN] init ENV TURN; // Used to alternate between players
5 global obs x, real x:[0..20];

Listing 1.1. Player definition.

The game is played in alternating turns by the system and the environment players.
A typical cycle of the game works in the following way:

1. The environment generates the real value of x (real x - see Listing 1.2, line 4).

1 const INIT X, error, MAX TURNS;
2 module environment
3 t : [−1..MAX TURNS] init 0;
4 [] (t>=0 & t<MAX TURNS) & (turn=ENV TURN) −> // 1.Generate value of real x
5 (t’=t+1) & (turn’=SYS TURN) & (real x’=INIT X);
6 endmodule

Listing 1.2. Simple environment model definition.

2. The system senses the value obs x (Listing 1.3, line 2). The uncertainty in the
sensing process is modeled by a simple probability distribution, in which there is
0.5 probability that the sensor reads the value accurately (i.e., obs x = real x),
and 0.5 probability the reading exceeds the real value of x by a constant error (i.e.,
obs x = real x+ error).

1 module sensor
2 [sense] true −> 0.5:(obs x’ = real x) + 0.5:(obs x’ = real x+error);
3 endmodule

Listing 1.3. Sensor definition.

3. After obtaining the observed value obs x, the system (Listing 1.4, line 7) can
choose to: (a) do nothing (line 11), or (b) reduce the value of real x, subtract-
ing the value of s step from real x (lines 8-10). s step is just the saturated value
of a constant step supplied as parameter to the model, which represents the maxi-
mum magnitude of the modification that the system’s effector can carry out on the
value of x. For example, if step = 3, s step can take values in {1, 2, 3}.
1 const step;
2 formula s step = obs x−step >= 10 | obs x < 10 ? step : obs x − 10;
3

4 module target system
5 expected x:[0..20] init 0;
6 new info:[0..1] init 0;
7 [sense] (new info=0) & (turn=SYS TURN) −> (new info’=1); // 2. Sense
8 [act] (new info=1) & (turn=SYS TURN) −> // 3.a. Act
9 (real x’=real x−s step>=0?real x−s step:0) & (new info’=0)

10 & (expected x’=obs x−s step>=0?obs x−s step:0) & (turn’=ENV TURN);
11 [] (new info=1)&(turn=SYS TURN) −> // 3.b. Do nothing
12 (expected x’=obs x) & (turn’=ENV TURN) & (new info’=0);
13 endmodule

Listing 1.4. Simple system model definition.



Note that in the listing above, expected x encodes the expected value of x from
the perspective of the system after its turn is completed (the expected value of x is
built on the value of obs x).

The cycle repeats until the maximum number of turns played by the system and the
environment is reached. However, we assume in the rest of the discussion a single-turn
game for the sake of clarity (i.e., the game ends after the environment, and then the
system, play one turn each).

Collecting Reward. There are three types of rewards in this model. We use each one
of them to emulate different types of adaptation (Listing 1.5):

1. rU: reward collected if the system has the accurate information to make a decision,
i.e., when system knows real x.

2. rEU: reward collected if the system can only sense obs x and the system is unaware
of the uncertainty, i.e., the system assumes that obs x is an accurate reading.

3. rEU uncertain: reward collected if the system can only see obs x, but is aware of
the uncertainty. In this case, the system knows that there is a 0.5 probability that
obs x is not accurate and it calculates the reward factoring in this probability.

1 formula rU = (real x<10? 0:200−10∗real x);
2 formula rEU = (expected x<10? 0:200−10∗expected x);
3 formula rEU uncertain = 0.5∗rEU+0.5∗rU;
4

5 rewards ”rEU uncertain” // Expected instantaneous utility reward (uncertainty−aware adaptation)
6 (turn=ENV TURN) & (t>=1) :rEU uncertain;
7 endrewards
8

9 rewards ”rEU” // Expected instantaneous utility reward (uncertainty−ignorant adaptation)
10 (turn=ENV TURN) & (t>=1) : rEU;
11 endrewards
12

13 rewards ”rU” // Real Instantaneous utility reward
14 (turn=ENV TURN) & (t>=1) : rU;
15 endrewards

Listing 1.5. Simple model reward structure definition.

3.2 Analytical Approach

To compare the uncertainty-aware vs. uncertainty-ignorant adaptation, we use rPATL
specifications that enable us to analyze:

1. Rreal: The maximum utility that the system can obtain when it has the accurate
information (in our scenario, when the system tries to maximize the reward based
on real x). We can get this value by generating a strategy for the property:

〈〈sys〉〉RrU
max=?[F

c t = MAX TURNS] (1)

2. Ru−ignorant:The maximum utility that adaptation is able to obtain without factor-
ing uncertainty. To obtain this value, we proceed in two steps:



(a) First, we generate a strategy using the following property that quantifies the
maximum expected accrued reward that the system “believes” it can guarantee
based on its beliefs (there is no uncertainty in the expected value of x because
the value of obs x is accurate):

〈〈sys〉〉RrEU
max=?[F

c t = MAX TURNS] (2)

(b) We verify Property 1 under the generated strategy for Property 2. This quanti-
fies the real utility achieved (based on the value of real x), under the strategy
generated based on the beliefs of the system (i.e., the value of x is obs x, and
it coincides with the real one).

3. Ru−aware:The maximum utility that the adaptation is able to obtain when consid-
ering uncertainty. To quantify this value, we proceed in two steps:
(a) First, we generate a strategy using the following property that quantifies the

maximum expected accrued reward that the system “believes” it can guaran-
tee based on its beliefs. However, in this case the system is aware that the
probability of real x = obs x is only 0.5, so the strategy generated already ac-
counts for the possibility of inaccurate readings. This is encoded in the reward
rEU uncertain in Listing 1.5 (line 5).

〈〈sys〉〉RrEU uncertain
max=? [Fc t = MAX TURNS] (3)

(b) We verify Property 1 under the generated strategy for Property 3. This quanti-
fies the real reward under the strategy for uncertainty-aware decision-making.

Experiment and observations for the simple scenario. For our experiment, we col-
lected the value of reward for uncertainty-aware and uncertainty-ignorant adaptation
with both sensor error and actuator impact step taking values in {1, 3}. The range of
values for x explored is {0, . . . , 20}.
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Fig. 2. Simple model scenario results.

Figure 2 compares the reward obtained by uncertainty-aware and uncertainty-ignorant
adaptation (i.e., Ru−aware and Ru−ignorant, respectively). Looking at the results, we
can make the following observations:

1. When in a “safe” region, uncertainty does not matter. When the value of x is in
region A (x ≥ 10), and not close to the threshold x = 10, the reward obtained is
not affected by uncertainty in any way, since there is no risk that the system will
modify the value below the threshold, leading to a loss of reward. In practice, both



uncertainty-aware and ignorant adaptations will choose to reduce the value of x to
obtain more reward. This can be observed in Figure 2, where the reward obtained
by both adaptation variants converge as x moves to higher values, away from the
threshold x = 10. Similarly, when the system is in region B ( x < 10) uncertainty
does not make any difference, since there is nothing that the system can do to collect
more reward. So, both adaptation variants will behave in the same way.

2. When close to the boundary between regions, uncertainty-aware adaptation per-
forms better. When the system is in region A, but in values that are close to the
boundary between regions A and B, there is a chance that the system will make a
sub-optimal decision due to the uncertainty in sensing. Concretely, in the uncertainty-
ignorant variant of adaptation, the system can determine that it is safe to reduce the
value of x by a given amount based on the value of obs x (when in reality, the value
of x will go below 10 and reward will not be collected). This penalizes uncertainty-
ignorant adaptation with respect to the uncertainty-aware variant, which is already
accounting for the likelihood of an undesirable outcome, and is more conservative
when choosing to reduce the value of x. Figure 2 shows how the different choices of
adaptation variants lead to increased rewards in uncertainty-aware adaptation when
the value of x is close to the boundary between regions.

3. The difference between adaptation approaches is greater when sensor error is
paired with actuator impact. As sensor error increases, we would expect to see
uncertainty-ignorant adaptation’s reward progressively decrease. However, this is
only true if sensor error is paired with higher actuator impact values, since other-
wise the limited scope of the actuator mitigates the potentially detrimental effects
that making the wrong choice would have on reward. For instance, if error = 3,
but step=1, the plot in Figure 2 (left) shows that there is little performance differ-
ence between the two variants of adaptation. This is because, even if the system
makes the wrong choice under uncertainty-ignorant adaptation, e.g., when x = 12,
the actuator can at most reduce x to a value 11, incurring only a light penalty, com-
pared to uncertainty-aware adaptation. However, if we consider the same value of
x = 12 when step = 3 (center, right), the difference in reward between approaches
is much more pronounced because in situations in which reducing x is the wrong
choice, it is more likely that x will go under the threshold x = 10, incurring a
higher penalty.

4 Case Study: Denial of Service Attack (DoS)

In this section, we describe our approach on a more complex scenario where an enter-
prise web infrastructure similar to the Znn.com system experiences a DoS attack [26].
When web infrastructure experiences unusually high traffic, the cause of the high traffic
might be malicious (e.g., the system is experiencing a DoS attack) or legitimate (some
content has suddenly become popular - e.g., the slashdot effect). Treating legitimate
users as DoS attackers by mistake, applying strategies like blocking their requests for
accessing the website could be harmful to the business. Thus, uncertainty about such
situations should be considered when applying defensive adaptation strategies to the
system, evaluating carefully the benefit and cost of different adaptation choices, possi-
bly including actions that can reduce uncertainty.



To facilitate the understanding of the DoS scenario, we structure our model in a
similar way to the simple model described earlier and make the following assumptions:2

1. The entire space is divided into two regions: (i) DoS, in which we assume that the
system is experiencing an attack, and (ii) Normal, in which the system does not
experience any anomalous activity that indicates a DoS attack.

2. Regions are associated with specific metrics. The system’s state is determined by a
single metric that captures the estimated percentage of malicious clients accessing
the system (mc). This metric is an abstract concept used as proof of concept. We
assume that if mc is above a given threshold, the system is in the DoS region of
the state space; otherwise the system is considered to be in the Normal region.

3. The system does not know the real value of metrics. The observable value of the
metric mc may not reflect its real value.

4. Uncertainty in sensing is represented by a probability distribution. We employ a
normal distribution to model the observed percentage of malicious clients mc.

5. The uncertainty-aware version of the system has knowledge about the probability
distribution function that captures uncertainty in sensing. To simplify the problem,
we assume that the system has knowledge of the probability distribution function
that represents how observed values are generated during the sensing process. In
the real world, this knowledge may be obtained from historical data, for instance.

The two main extensions with respect to the simple scenario presented earlier are:
(i) a richer set of actions or tactics that the system can carry out to influence state
variables including those that reduce uncertainty, and (ii) a more sophisticated notion
of reward that factors in metrics along more than one dimension of concern.

– Tactics. In the simple previous example, the system can either do nothing or act on
the value of x by decreasing it. In the real world, a system may have a richer variety
of adaptation actions, or tactics, to respond to run-time events. In this model, we
divide tactics into two kinds:
• Uncertainty Reduction Tactics. This kind of tactic can reduce uncertainty (in

our scenario the uncertainty associated with the sensing of system metrics).
This type of tactic often comes at a cost. For example, introducing CAPTCHA3

can reduce uncertainty about the maliciousness of clients accessing the sys-
tem (by determining which ones are controlled by bots), but it will increase
the annoyance of legitimate users, who find their activities disrupted by the
CAPTCHA.
• Non Uncertainty Reduction Tactics. Tactics that do not reduce uncertainty like

blackholing clients (i.e., dropping their incoming requests) do not provide any
new information (e.g., about who is controlling the clients). Decisions of whether
to exercise these tactics are therefore highly dependent on the quality of the in-
formation available to the system (i.e., the observed values of metrics).

2 A full listing of the PRISM-Games model can be found in [5].
3 CAPTCHA is a type of challenge-response test used in computing to determine whether or not

the user is human (https://en.wikipedia.org/wiki/CAPTCHA).



– Reward Model. In the simple scenario, the reward was related only to one dimen-
sion. However, in this scenario there are two dimensions of concern: security and
user experience, and we assume them to be of equal importance. Security is directly
related to the metric percentage of malicious clients mc (lower is better). User ex-
perience is also affected by system’s choice of applying different tactics. For exam-
ple, introducing CAPTCHA will increase the difficulty of legitimate users access-
ing system services and therefore increase their annoyance. We consider therefore
user annoyance (ua) as an additional metric for the user experience dimension of
concern.

4.1 Formal Model Definition

This section provides a high-level description of the game model for the DoS scenario.
The scenario is modeled as a stochastic game involving two players that represent the
system (sys) and the environment (env):

– The system player consists of two processes or modules that represent the target
system and the gauge that collects observed values of the mc metric. These two
modules are synchronized by a shared action gaugeMc.

– The environment player consists of the generator and environment modules, which
are synchronized via the generateMc shared action.
When the game starts, the environment player first generates the real value of the

mc (generateMc), and it yields the turn to the system player. Next, the system player
gauges mc (gaugeMc), producing its observed value. The system player then infers
the region of the state space (DoS or Normal) based on the observed system metric,
chooses one of the available tactics to execute (blackHole, captcha, or chooses not to
do anything), and returns the turn to the environment.

The game contains three global variables: (i) real mc is the real percentage of ma-
licious clients, ranging from [0,100], represents the real system metric, (ii) obs mc is
observed percentage of malicious clients, and (iii) std mc is the standard deviation
associated with the perceived percentage of malicious clients. Note that obs mc and
std mc together describe the uncertainty function for the observed system metric.
Generating the Real Value of Metric. Generator is a module that is responsible for
generating the real value of metric (real mc) during every turn of the environment.
Gauging Information. The gauge module is responsible for gauging information. This
process is crucial to our scenario model because it encodes how observed values of mc
are generated from the real values of the variable (i.e., it captures the source of aleatoric
uncertainty in the sensing process). Concretely, the observed value of metric can be
captured as the function:

P (x) = 1
std mc

√
2π
e−(x−obs mc)

2/2std mc2 or f(x) = P [X = x]

This probability density function is actually a conditional probability distribution
of the observed value of the metric, given a real value (P (obs mc|real mc)). In this
scenario, we encode this function using six points to simulate this normal distribution.
Selecting and Applying Tactics. After the system obtains the information about system
metrics, it can choose a tactic for execution (or do nothing). The model has two variants
that capture two alternative selection strategies:



1. Uncertainty-ignorant. The system does not have knowledge about the real value of
the metric mc. It is also oblivious to the fact that there is uncertainty in the gauging
process and therefore treats the observed value as the real information, selecting
tactics based on this information.

2. Uncertainty-aware. The system has no knowledge of the real value of mc. How-
ever, the system has knowledge about the uncertainty in the gauging process and
evaluates the expected result considering the probability distribution over different
system states and selects tactics based on that.

The adaptation decision is evaluated for the selection strategies based on the value
of the following set of variables:

1. real mc: Real value of metric mc.
2. emc: Expected percentage of malicious client after executing a tactic, assuming

that obs mc = real mc.
3. ua: Real value for the metric user annoyance.
4. eua: Expected user annoyance after executing a tactic assuming obs mc = real mc

5. eua dos: Expected user annoyance after executing a tactic if the system is currently
at the DoS region.

6. eua normal: Expected user annoyance after executing a tactic if the system is
currently at the Normal region. This variable and eua dos are used to calculate the
expected reward when the system is aware of the uncertainty.

These six variables are used to calculate three types of reward (real, expected by
uncertainty-aware, and expected by uncertainty-ignorant decision-making). By maxi-
mizing different types of reward, we can employ our formal model to generate adap-
tation decisions for: (a) adaptation based on real information, (b) uncertainty-ignorant
adaptation, and (c) uncertainty-aware adaptation.

Table 1 summarizes the effect of exercising different tactics at different system
states. For example, blackholing in both regions (DoS and Normal) reduces the real mc
by 30% but it increases user annoyance by 50% if the system is not in DoS, and by 10%
if it is (reflecting the assumption that most clients will correspond to malicious users4).

real mc Normal DoS
IntroduceCAPTCHA -10 -10
Blackhole -30 -30
ua Normal DoS
IntroduceCAPTCHA +10 +10
Blackhole +50 +10

Table 1. Simple impact specification
of tactics in a DoS adaptation scenario.

Collecting Reward. Rewards are calculated
based on both user annoyance and the percent-
age of malicious clients. In this case, the reward
we employ for our game encodes a simple util-
ity function in which both metrics contribute to
the overall utility calculation with a weight of
0.5. We employ three types of rewards to ana-
lyze uncertainty-aware and uncertainty-ignorant
decision-making.

1. rIU (real utility): This reward is calculated based on the real value of the percentage
of malicious clients (real mc).

4 In this model, we assume that the effect of tactics is deterministic.



2. rEIU (expected utility for uncertainty-ignorant decision making): Is calculated based
on the observable information about the percentage of malicious clients (obs mc),
and it is unaware of the uncertainty in sensing.

3. rEIU uncertain (expected utility for uncertainty-aware decision making): Is also
calculated based on the observed value of the metric mc (obs mc). However, this
alternative considers the uncertainty in sensing, since it draws the values for reward
calculation based on all the possibilities captured in the probability distribution.

The calculation of rEIU uncertain is the key of this model. When collecting re-
ward in uncertainty-aware adaptation, we derive all the potential real values of metric
mc, based on its observed value, and calculate the expected reward based on the proba-
bility distribution of these real values. In other words, the system must have knowledge
of the probability distribution of real values of the metric conditioned to its observed
value P (real mc | obs mc) to calculate rEIU uncertain.

The observed value (obs mc) is normally distributed given a real value (real mc),
based on the joint probability mass function of two discrete random variables:
P (X = x, Y = y) = P (Y = y | X = x) ∗ P (X = x) = P (X = x | Y = y) ∗ P (Y = y)

4.2 Experiments and Observation

To compare uncertainty-aware with uncertainty-ignorant adaptation, we use the analyti-
cal process described in Section 3. For our experiment, we collected the value of reward
for uncertainty-aware and uncertainty-ignorant adaptation with a DoS threshold value
of 60, and different sensor standard deviations in the distribution that captures sensing
uncertainty for mc σobs mc ∈ {10, 20}. The range explored for mc is {0, . . . , 100}.
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Fig. 3. DoS scenario results.

Figure 3 shows the result of our experiments. From these results, we can draw the
following observations (which are consistent with the earlier example):

1. When far from region boundary, uncertainty does not matter. When the value ofmc
is in region DoS or Normal (mc ≥ 60), and moves away from the threshold, the
utility obtained both by uncertainty-aware and ignorant adaptations is similar.



2. When close to the boundary between regions, uncertainty-aware adaptation per-
forms better. When the system is in region DoS, but in values that get close to the
boundary between regions DoS and Normal, there is a chance that the system will
make a sub-optimal decision due to uncertainty. Concretely, uncertainty-ignorant
adaptation can determine that it is safe to blackhole clients based by the value of
obs mc and might incur in penalties for blackholing potentially legitimate clients.

3. The difference between adaptation approaches is greater when standard deviation
is higher. As the standard deviation in sensor inaccuracies increases, we can see
how the utility obtained by uncertainty-ignorant adaptation decreases. If we observe
the plots, focusing on the range 60%- 90% of percentage of malicious clients, there
is a noticeable drop in the utility obtained by the uncertainty-ignorant approach
in the plot on the right, in which the standard deviation σobs mc is doubled with
respect to the one on the left.

5 Related Work

Uncertainty management has been studied by many authors in the field of self-adaptive
systems, but not so far in managing sensing uncertainty. Possibility theory has been
mainly used in approaches that deal with uncertainty in objectives, helping to assess the
positive and negative consequences of uncertainty [1,16,27]. Other approaches employ
probabilistic verification and estimates of the future environment and system behavior
for optimizing the system’s operation. These proposals target the mitigation of uncer-
tainty due to parameters over time [3, 4, 15].

Although these approaches have shown promising results in dealing with different
types of uncertainty they do not cover uncertainty that is directly caused by the infor-
mation that is used as sensing input to the decision-making agent. Such uncertainty is
especially important when the self-adaptive system is managing a cyber-physical sys-
tem. In this case, attackers may exploit compromised sensors and effectors to steer a
system into unsafe states that not only have an impact on the software, but ultimately
on the physical context of the system.

The work in [18] is concerned with the estimation and control of linear systems
when some of the sensors or actuators are corrupted by an attacker. The authors of [13]
tackle a similar problem, with a stronger focus on sensing and state estimation in
continuous-time linear systems, for which an attacker may have control over some of
the sensors and inject (potentially unbounded) additive noise into some of the measured
outputs. To characterize the resilience of a system against such sensor attacks, the au-
thors introduce a notion of “observability under attacks” that addresses the question of
whether or not it is possible to uniquely reconstruct the state of the system by observing
its inputs and outputs over a period of time, with the understanding that some of the
available system’s outputs may have been corrupted by the attacker. The authors of [11]
study CPS subject to dynamic sensor attacks, relating them to the system’s strong ob-
servability. This work identifies necessary and sufficient conditions for an attacker to
create a dynamically undetectable sensor attack and relates them to system dynamics.

Our approach can be regarded as complementary to these works, since it would en-
able us to potentially exploit the information provided by these approaches to improve



decision-making and provide worst-case scenario guarantees. In [7] we reported on an
analogous application of this technique to quantify the benefits of employing informa-
tion about the latency of tactics for decision-making in proactive adaptation, comparing
it against approaches that make the simplifying assumption of tactic executions not
being subject to latency.

6 Conclusions and Future Work

This paper has described an analysis technique based on model checking of stochas-
tic multi-player games that enables us to quantify the benefits in adaptation perfor-
mance of factoring sensing uncertainty explicitly into decision-making. Our results
show that although uncertainty-aware adaptation is not guaranteed to perform better
than uncertainty-ignorant adaptation in all cases, it does perform at least comparably
in all cases (RQ1), and performs better in boundary regions of the state space in which
the dynamics of the system may change (RQ1 and RQ2). This is a relevant finding,
because systems that exhibit variability in the effects of adaptation tactics that depend
on specific run-time conditions may obtain a remarkable benefit in terms of improved
reliability and performance by factoring uncertainty into decision-making.

With respect to future work, we plan on extending decision-making under uncer-
tainty to reason only with partial knowledge about the uncertainty function. The current
version of our approach assumes that information aboutP (observed value | real value)
is known to the system, so it can derive P (real value | observed value). A next log-
ical step is to study how systems can gradually improve their ability to estimate the
real state of the system, i.e. by automatically refining throughout subsequent system
executions the knowledge that the system has about P (real value | observed value).
A second avenue for future work will investigate reasoning about uncertainty reduction
and uncertainty-aware decision-making in human-in-the-loop adaptation, where human
operators may provide information that is inaccurate, continuing the line started in [6,8].
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