

Evolution Styles -

Formal foundations and tool support for

software architecture evolution
David Garlan,

June 2008

CMU-CS-08-142

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Abstract

Architecture evolution is a central feature of virtually all software systems. As new market opportuni-

ties, technologies, platforms, and frameworks become available systems must change their organiza-

tional structures to accommodate them, requiring large-scale and systematic restructuring. Today arc-

hitects have few tools to help them plan and execute such evolutionary paths. In particular, they have

almost no assistance in reasoning about questions such as: How should we stage the evolution to

achieve business goals in the presence of limited development resources? How can we reduce risk in

incorporating new technologies and infrastructure required by the target architecture? How can we

make principled tradeoffs between time and development effort? What kinds of changes can be made

independently, and which require coordinated system-wide modifications? How can an evolution plan

be represented and communicated within an organization? In this report we outline first steps towards

a formal basis for assisting architects in developing and reasoning about architectural evolution paths.

The key insight behind the approach is that at an architectural level of abstraction many system evolu-

tions follow certain common patterns – or evolution styles. By taking advantage of regularity in the

space of common architectural evolutions, and by making the notion of evolutions styles a first-class

entity that can be formally defined, we can provide automated assistance for expressing architecture

evolution, and for reasoning about both the correctness and quality of evolution paths.

This research has benefited from a discussion of Architecture Evolution with the members of the ABLE research

group (Jeff Barnes, Roni Burd, Orieta Celiku, Owen Cheng, George Fairbanks, Jung Soo Kim, Vahe Poladian, and

Bradley Schmerl); members of the SEI SAT initiative who participated in a joint reading group on this topic (Ipek

Ozkaya and Mark Klein). I would also like to acknowledge Sungwon Kang and Dalila Tamzalit, who have sparked

many useful insights about the topic of Architectural Evolution.

Garlan

Keywords: Software Architecture, Architecture Evolution

 Evolution Styles

Table of Contents

1 Introduction .. 1

2 The Problem .. 2

3 Existing Approaches ... 2

4 Approach ... 4

5 Example .. 6

6 Details of the Research Plan .. 8

7 Summary ... 14

Acknowledgements .. 14

References .. 15

Table of Figures

Figure 1. Examples of architectural instances. .. 7

Garlan

 Evolution Styles

1

1 Introduction

Architecture evolution is a central feature of virtually all software systems. As new

market opportunities, technologies, platforms, and frameworks become available

systems must change their organizational structures to accommodate them, in many

cases requiring large-scale and systematic restructuring. In most cases such changes

cannot be made overnight, and hence the architect must develop an evolution plan to

change the architecture (and implementation) of a system through a series of phased

releases, eventually leading to a new target system.

Unfortunately, architects have few tools to help them plan and execute such evolu-

tionary paths. While considerable research has gone into software maintenance and

evolution, dating from the beginning of software engineering, there has been rela-

tively little work focusing specifically on foundations and tools to support architec-

ture evolution. Architecture evolution is an essential complement to software evolu-

tion because it permits planning and system restructuring at a high level of abstrac-

tion where quality and business trade-offs can be understood and analyzed.

In particular, architects have almost no assistance in reasoning about questions

such as: How should we stage the evolution to achieve business goals in the presence

of limited development resources? How can we assure ourselves that intermediate

releases do not break existing functionality? How can we reduce risk in incorporat-

ing new technologies and infrastructure required by the target architecture? How

can we make principled tradeoffs between time and development effort? What kinds

of changes can be made independently, and which require coordinated system-wide

modifications? How can we represent and communicate an evolution plan within an

organization?

We argue that such questions require new foundations that permit architects to rea-

son about and plan large-scale system-wide changes at an architectural level of ab-

straction. Ideally these foundations would allow one to represent architecture evolu-

tion paths as first-class entities that can be expressed precisely and reasoned about.

They should support the expression and checking of correctness conditions (e.g., to

guarantee that a proposed path satisfies certain sequencing constraints), that in-

termediate states of a system evolution do not introduce anomalous behavior, and

that the proposed path will lead to a system with desired architectural properties.

Moreover, they should allow an architect to reason not only about “correct” evolu-

tion, but also make tradeoffs to maximize business goals, such as the time to reach

the target architecture and the costs involved in doing so. Finally, there should be

practical tool support to automate these analyses.

In this report we consider the first steps towards this vision by outlining a formal

basis for assisting architects in developing and reasoning about architectural evolu-

tion paths. The key insight behind the approach is that at an architectural level of

abstraction many system evolutions follow certain common patterns, dictated by the

style of architecture that their origin and target architectures conform to. By taking

advantage of regularity in the space of common architectural evolutions we can pro-

vide automated assistance for expressing architecture evolution, and for reasoning

about both the correctness and quality of evolution paths. We refer to collections of

Garlan

2

related paths as evolution styles. Evolution styles can be defined, reasoned about,

analyzed, applied to the evolution of specific systems, and supported by tools. By

capturing such families we not only raise the level of abstraction for representing

specific evolution paths, but also provide the opportunity for reuse, path analysis,

decision automation, tradeoff analysis, and formal guarantees of correctness.

2 The Problem

In today’s commercial environments architecture evolution is a fact of life. Two pri-

mary forces contribute to this.

First is the desire to incorporate new technologies, infrastructures and capabilities

into existing systems. For example, many IT-based companies have gone through

evolutions that take them from thin-client, mainframe-based systems, to three- or

four-tiered architectures [10]. The move to a tiered architecture allows them to fac-

tor their application software into more maintainable layers (such as a business tier

or web presentation tier), scale their processing (for example, through replication of

data stores at the data layer or multiple servers at the business logic tier), and take

advantage of common services (such as security) provided by commercial infrastruc-

ture. A similar transformation is now taking place for companies that move from

traditional N-tiered systems to service-oriented architectures.

Second is the prevalence of mergers and acquisitions. Increasingly companies are

opting to buy new systems as a way to expand their business. In many cases the ar-

chitectures of existing and newly acquired systems will not be the same. While ad

hoc integration solutions may work initially, as the number of subsystems increases,

more radical and systematic restructuring will be needed. Therefore architectural

redesign is necessary to achieve a combined system that functions as a single sys-

tem.

In both cases abandoning the existing legacy system(s) and reengineering a new tar-

get system from scratch is not a viable option. Instead, one must create an evolution

plan that achieves a desired architecture through a series of incremental milestones.

Such evolutions require careful planning, Indeed, because in most cases interme-

diate releases require a mixture of old and new technologies and architectures, there

may be considerable risk of inconsistency, performance degradation, loss of functio-

nality, and potential downtime during the transition process. Moreover, there may

be many ways in which one might carry out a plan: for example, some taking longer

time but with lower risk and cost, others with more aggressive schedules that have a

higher competitive pay-off.

3 Existing Approaches

Today’s approaches to solving such problems fall into four categories. The first is

support for software evolution. Since the early days of software engineering there

has been concern for the maintainability of software, leading to concepts such as cri-

teria for code modularization [32], indications of maintainability such as coupling

and cohesion [5][45] code refactoring [29], reverse engineering, regression testing,

and many others [20]. These techniques focus on the code structures of a system,

 Evolution Styles

3

and have led to numerous advances, such as programming language support for

modularization and encapsulation, analysis of module compatibility and substituta-

bility [11], and design patterns that support maintainability [15].

While such advances have been critical to the progress of software engineering, they

generally do not treat large-scale reorganization based on architectural abstractions.

Working primarily in the domain of code units, they do not capture the essential

high-level run-time structures that are necessary to reason about the architecture of

a complex software system. Moreover, the techniques are typically (a) general-

purpose, focusing on general properties of modularity (such as coupling and cohe-

sion), or (b) oriented towards low-level code structures, such as class organizations

in object-oriented programs. In contrast, as we will see, our proposed work focuses

on the reuse of specifications and analyses for domain-specific evolution at an archi-

tectural level of abstraction.

The second closely-related area of research and development is tool support for

project management and planning. For example, modern version control systems

such as RCS [44], CVS [8], and Subversion [6] allow different versions of artifacts to

be compared and reviewed. In most of these tools, the primary managed artifact is

linear source code, rather than architectural structures. Consequently these tools do

not support comparison or reasoning about different versions of the architecture.

More recent software architecture research has investigated architectural versioning

[1][22] but these tools and techniques do not provide any reasoning framework other

than comparison. In particular, they are silent with respect to what might constitute

a correct evolution path or a path that optimizes business goals.

In the domain of project planning, traditional project management approaches and

software development planning approaches such as COCOMO [9] provide ways to

plan and analyze software development. Unfortunately, because they focus primari-

ly on the end state of a maintenance or development effort, they do not provide ways

to directly plan and reason about sequences of developments, nor do they have any

way to state and enforce correctness constraints on any states of a system’s architec-

tural structure. Advice on how to organize architecture evolution steps into waves

and plateaus is given in [14]. The advice is pragmatic in nature, suggesting that in-

troducing major infrastructure changes (waves) should be followed by periods of rel-

ative stability so that new infrastructure changes can be properly adjusted to (pla-

teaus).

The third related area is formal approaches to architecture transformation. A num-

ber of researchers have proposed formal models that can capture structural and be-

havioral transformation [21][40][46]. For example, Wermelinger uses category

theory to describe how transformations can occur in software architecture [46]. His

approach separates computations of a system from its configuration, allowing the

introduction of a "dynamic configuration step" that produces a derivation from one

architecture to the next. Architecture in this sense is defined by the space of all poss-

ible configurations that can result from a certain starting configuration. Grunske

[21] shows how to map architectural specifications to hypergraphs and uses these to

define architectural refactorings that can be applied automatically. These refactor-

ings are shown to preserve architectural behavior. Spitznagel in [39] focuses on the

transformation of architectural connectors as a way to augment the communication

paths between components.

Garlan

4

While such formal approaches lay a foundation for generic forms of architecture op-

erators, essential for reasoning about architectural evolution, unlike the work pro-

posed here, they are not amenable to specialization for specific classes of transfor-

mation and systematic reuse. Moreover, while they can provide some support for

characterizing forms of evolution correctness, but they do not address issues of evolu-

tion quality.

Recently Tamzalit and others have begun to investigate recurring patterns of archi-

tecture evolution, primarily with respect to component-based architectures

[41][42][30]. They use the term evolution style to refer patterns for updating a com-

ponent-based architecture. They provide a formal approach based on a three tiered

conceptual framework. Like the work proposed here, they attempt to capture recur-

ring and reusable patterns of architecture evolution. However, unlike the work that

we propose, they do not explicitly characterize or reason about the space of architec-

ture paths, or apply utility-oriented evaluation to selecting appropriate paths.

The fourth related area is in the area of tradeoff analysis for architectural evolution.

The work of Kazman et. al. [24] applies existing architectural analysis and trade-off

techniques to improve architectures. The improvements are incremental, and take

into consideration only known attributes. The approach has not been considered for

architecture evolution that looks at large scale, system-wide evolution, over a long

period of time, where there is naturally some uncertainty in the attributes over that

period of time. The work in [31] proposes to use option-based techniques from eco-

nomic option theory to characterize uncertainty and options available in evolution,

and identifies several techniques can then be used to calculate the points in time

where introducing changes would be cost-effective in a business sense. This work is

similar to ours in that it provides some basis for analyzing architectural quality, but

differs in that it does not consider correct architectural transformations or reuse

through evolution styles.

One important subset of this work does focus on architectural evolution for specific

classes of systems. Typically this work addresses architecture evolution in the con-

text of a specific style, such Darwin [26] and C2 [43]. Like the work proposed here,

these approaches can take advantage of domain-specific classes of systems, and the-

reby achieve analytic leverage, as well as tool support for evolution. However, unlike

our proposed work these approaches are limited to systems constructed in the par-

ticular architectural style that they support.

4 Approach

We propose a formal basis for software architecture evolution that has the following

key properties

 Evolution paths can be represented and analyzed as first class entities;

 Classes of domain-specific evolution paths can be formally specified, thereby

supporting reuse, correctness checking, and quality analysis;

 Tradeoff analyses can be performed over alternative evolution paths to optim-

ize expected value under uncertainty; and

 Evolution Styles

5

 Tools can support the description, analysis, tracking, and modification of ar-

chitecture evolution for a particular system through a widely used integrated

development environment framework.

The principal idea behind our approach is the concept of an evolution style. An evolu-

tion style defines a family of domain-specific architecture evolution paths that share

common properties and satisfy a common set of constraints. The key insight is that

by capturing evolution paths for specialized families we can define constraints that

each path in that family must obey, thereby providing guidance (based on past expe-

rience) and correctness criteria (based on formal constraints) for an architect devel-

oping a particular evolution plan in that family. Moreover, we can support reasoning

about the extent to which a specific path satisfies the quality/cost objectives in a par-

ticular business context.

To illustrate what we mean by an evolution style, consider the following typical sce-

narios of evolving an architecture

 from an ad hoc peer-to-peer assemblage of legacy subsystems to a hub-and-

spoke architecture that leverages commercial middleware for coordinating

the subsystems;

 from a traditional thin-client/mainframe system to a four-tiered web services

architecture;

 from a web services architecture based on J2EE to a service-oriented archi-

tecture based on BEA’s WebLogic product family;

 from a control system based on CAN-bus integration to one that supports a

more reliable protocol (e.g., FlexRay [35]).

Each of these examples has the property that they refer to a class of evolutions ad-

dressing a recurring domain-specific architectural evolution problem. (Indeed, such

evolutions are the core concern of an important business segment represented by

well-paid consultants who specialize in assisting companies with such evolutions.)

Each of them has identifiable starting and ending conditions (namely, that the ini-

tial and final system have certain architectural structures). Each embodies certain

constraints – for example, that the set of essential services should not become un-

available during the evolution. Finally, although they share many commonalities,

the specific details of how those evolutions should be carried out may well be influ-

enced by concerns such as the time it takes to do the transformation, the available

resources to carry it out, etc.

We can take advantage of these characteristics of system evolution. Summarized

briefly, we can model an evolution style formally as a (possibly infinite) set of finite

evolution paths, where each path defines a sequence of architectures in which the

first element in the path is the architecture of the current system, and the final ele-

ment is a desired target architecture. Links between successive nodes in a path are

associated with transitions that are selected from a set of evolution operators for that

style. In this respect an evolution style is like a state machine for which an execu-

tion trace defines an evolution path.

Additionally, however, each path in an evolution style is associated with a set of re-

leases, modeled as a subset of the nodes in the path. Intuitively, releases represent

Garlan

6

points in the path at which the system will be deployed. The evolution style may fur-

ther constrain the space of paths in its family by specifying path constraints. Path

constraints embody things like ordering constraints or invariants that must hold for

all nodes or all releases. We can then talk about whether a given path is correct with

respect to an evolution style – meaning that the path is an element of the family cir-

cumscribed by that style.

To complete the picture, we will introduce the notion of an evaluation function that

allows us to compare different paths with respect to quality metrics or to search for

optimal paths in the evolution style. Intuitively, an evaluation function determines

the expected utility (in a probabilistic sense) of a given path with respect to business

and management priorities relative to a space of features (e.g., time, resources, risk,

downtime, etc.) and in the presence of uncertainty.

5 Example

To illustrate the concepts and benefits of our approach, consider the following sim-

ple, but representative, scenario: Company, C, delivers a set of services using soft-

ware and data that is spread out over a loose collection of relatively independent

legacy IT subsystems that have accrued over time. Because of historical independent

development and acquisition, different subsystems are based on different platforms.

For example, one subsystem might be used to manage personnel, and based on a

PeopleSoft platform; another subsystem manages inventory using SAP, and yet

another manages accounts using Oracle Applications. In cases where delivered ser-

vices need to access multiple subsystems, the IT division of C has created ad hoc,

hand-coded bridging elements. For example, there may be connections between the

personnel management and the accounts system to print pay checks, and between

the inventory and accounts to pay suppliers and bill vendors.

This form of system is common in today’s IT world, and represents an example of an

ad hoc peer-to-peer architecture. Each of the software systems has its own language

(e.g., SAP has BAPI, Oracle Applications has its own SQL-like language, etc.), and

these applications and the workflow between them are commonly cobbled together to

suit the IT business as needed. Such a system is difficult to maintain and evolve,

both because the integration code was not developed with future evolution in mind,

and because new technological domains such as online services were not anticipated

when the code was developed.

As the company evolves to meet business needs, it can no longer easily change the

integrated functionality or add new integrated functionalities in a timely fashion.

The company’s IT department decides to evolve the system to more centralized and

uniform control using an off-the-shelf integration/coordination technology – specifi-

cally IBM’s Message Queue Series Workflow. By using a unified language to specify

integrated workflow, and adapters that map the workflow onto the existing subsys-

tems’ languages and schema, the number of ad hoc connections between the subsys-

tems is reduced, improving maintainability and extensibility.

Because of the system’s complexity the chief architect at C needs to plan an evolu-

tion path to do this in a set of staged releases. Let us see how using the concept of

evolution styles this might be accomplished.

 Evolution Styles

7

The evolution style for this problem is one that is specialized to the problem of tran-

sitioning systems from an ad hoc peer-to-peer architecture to a hub-and-spoke archi-

tecture, in which the core functionality offered by subsystems remains unchanged,

but the coordination of the parts is changed. Capitalizing on past experience in this

area, the evolution style, which we will call PP2HS, would identify the essential cha-

racteristics of the initial and target architecture families. It would also characterize

the family of architectures for intermediate releases: in this case, a mixture of the

initial and target structures, allowing both peer-to-peer connections as well as hub-

and-spoke. Additionally, PP2HS would identify a set of structure- and behavior-

changing operations. Examples include the introduction of the central hub infra-

structure as a new kind of component (in the mixed intermediate family), addition of

adapters to allow legacy subsystems to talk to the hub, and migration of bridging

component functionality into the hub. Finally, PP2HS would specify a set of path

constraints. These would capture the essential correctness conditions for a valid evo-

lution path. Specifically they would express things like: in every release all existing

functionality must continue to be available, before adapters are introduced the hub

components must be incorporated into the system, when a coordinated service is

transitioned to the hub, all subsystems that are used by that service must have

adapters.

How would this be used by the chief architect at C? Using his tools for architecture

evolution the architect would first select the appropriate evolution style (here,

PP2HS). He would then start to define an evolution path. Likely the starting point

Legend*:

Ad hoc custom components

Subsystem

*Pattern indicates application group

Application code

Pay Salary

Reimburse

Expenses

Bill

Customers

Accounts

Inventory

Personnel

Supply Office

Pay Suppliers

Inventory

Personnel

Accounts

Controller

 …

…

Reimburse Expenses

Pay Employees

Pay Suppliers

Adapter

 Custom workflow
(b) Source architecture

(a) Target architecture

Figure 1. Examples of architectural instances.

Garlan

8

for this would be the characterization of the initial and target architectures. The

tools make it relatively easy to specify these using standard architecture modeling

and visualization techniques. For example, Figure 1 illustrates a drastically simpli-

fied version of the initial and target states. At this point the evolution tools would

check that these two architectures satisfy the pre- and post-conditions required by

PP2HS, perhaps noting situations in which the target architecture is missing certain

required structures, or is otherwise malformed with respect to the target family.

The architect now starts filling in intermediate stages. Again using the tools, he ap-

plies a series of operators of PP2HS to the architecture to produce a first release –

for example, by adding the hub and the adapter for one subsystem as an initial re-

lease. The tools would check that the release is well-formed, and that the path satis-

fies the constraints of PP2HS, warning the architect when it identifies divergences.

This process repeats until the architect has fully specified a set of releases and tran-

sitions to arrive at the target architecture.

Along the way, however, the architect also needs to made decisions about various

tradeoffs, for example, reconciling the available resources (e.g., programmers) with

the effort and time needed to create each release. To do this the architect uses one of

several parameterized evaluation functions for this evolution style. The evaluation

functions require the architect to select dimensions of concern, provide weighted

utilities, and estimates of costs and durations (including uncertainties in those val-

ues).With these annotations in hand the tools calculate for the architect costs and

utility, allowing him to explore alternative scenarios using the tools. Over time as

the evolution proceeds the architect will update the values, and perform recalcula-

tions, perhaps leading to revisions of the remaining releases on the path.

6 Details of the Research Plan

We now describe a formal framework on which our approach is based, followed by a

more detailed description of the specific research approach and problems that must

be solved.

6.1 A Formal Model for Evolution Styles

Formally, we define an evolution space to be a 5-tuple (A, I, F, Ops,) where

 A is a set of architectures,

 I A is a set of initial architectures,

 F A is a set of target architectures,

 Ops is a set of operator names, and

 A x Ops x A is a relation that describes how architectures are trans-

formed according to the operators in Ops.

We then define the behavior of an evolution space S = (A, I, F, Ops,), denoted

Beh(S), as all traces <a0, op1, a1, op2, … opn, an> such that

ai A, opi Ops, a0 I, an F, and (ai, opi+1, ai+1) .

An evolution path over an evolution space (A, I, F, Ops,) is a pair (t, R) such that

t Beh(S),

 Evolution Styles

9

R Range(t) A is a subset of the range of t restricted to architectures, and

if t = <a0, op1, a1, op2, … opn, an> then ao, an R.

The R in the above definition refers to the set of release points in the path. We de-

note the set of all evolution paths over an evolution space S by EP(S).

An evolution style over an evolution space S is a subset of EP(S). That is, an evolu-

tion style constrains the collection of paths to a subset of those otherwise permitted

by simple application of operators.

An evolution evaluation function over an evolution style E is a mapping EP(E)

R 0. An evolution function represents a quality metric that allows us to compare any

two evolution paths within an evolution style. Note that the evaluation function is

independent of the evolution style reflecting the principle that different organiza-

tions will assign different evaluations to paths in the style, depending on their busi-

ness goals.

Finally, we define the set of release paths to be the set of equivalence classes of paths

under the following relation: two evolution paths (t1, R) and (t2, R) are release

equivalent if and only if t1 R = t2 R. That is to say, the sequence of appearances

of the release points is the same in both traces. Thus, release paths are a kind of ab-

straction over evolution paths, focusing only on the sequence of releases in a path,

and not the order of (micro) steps that lead from one release to another. In practice,

we believe that many analyses will be in terms of release paths, rather than the

more detailed evolution paths.

6.2 Specifying Evolution Styles

While the formal model outlined above provides a good mathematical framework for

understanding evolution styles and analyses of paths, it is not by itself very practic-

al. To make the concepts useful in practice we need specification languages (and

tools) that allow architects to easily define and analyze evolution styles, paths, etc.

A significant component of our on-going research in this area is the definition of

these specification languages. In particular, based on the formal model above, we are

developing ways to characterize (a) architectures, (b) sets of architectures, (c) evolu-

tion operators, (d) path constraints, (e) releases, and (f) evaluation functions. We

outline how we are addressing each of these, indicating the specific research issues

that we are currently pursuing.

(a) Specifying Architectures:

For this aspect of the research we specify architectures in a relatively standard way

using the Acme architecture description language (ADL) [19]. Like most modern

ADLs, including UML 2.0, an architecture is represented as a graph in which the

nodes represent components and the edges represent connectors [13][27][33][37].

Components correspond to the major run-time computational elements and data

stores of a system, while connectors define the pathways of interaction between

them. Interfaces of components are termed ports. Architectures may be defined hie-

rarchically: elements may be elaborated as sub-architectures at a more detailed lev-

el.

Garlan

10

Augmenting architectural structure, we allow the elements of an architecture (com-

ponents, connectors, ports)1 to be annotated with properties that provide more de-

tailed semantics. While the list of properties will vary from architecture to architec-

ture, typically they are used to represent things like performance properties (for

components), protocols of interaction (for connectors), or signatures of required and

provided services (for ports).

(b) Specifying Sets of Architectures:

To represent sets of architectures we use the established notion of architectural fam-

ilies as embodied in ADLs, such as Acme [17][19]. Specifically, an architectural fami-

ly is defined by specifying a vocabulary of architectural structures as a set of compo-

nent, connector and port types, together with a set of constraints that determine

how instances of those types can be composed into systems. Constraints may also

refer to properties of the elements. In Acme constraints are specified in a first-order

predicate logic, similar to UML’s OCL, but augmented with architecture functions,

such as retrieving the set of components connected to another one, returning the set

of ports of a component, etc. (For details of the constraint language see [19].)

Referring back to the example of Section 5, there would likely be three relevant fam-

ilies: the peer-to-peer family of the initial system, the hub-and-spoke family of the

target system, and the combination family for intermediate releases. Component

types in the hub-and-spoke family would include things like the hub and various

adapters. Connector types would include the standard adapter-hub communication

protocol, as well as the specialized connectors that link adapters to subsystems.

Constraints might specify that all service-delivering subsystems must be connected

to the hub (possibly via an adapter).

(c) Specifying Evolution Operators:

As in the formal model, an evolution style comes with a set of operators that are spe-

cific to that style. For example, the evolution style for the example in Section 5 in-

cluded operators to add an adapter to a system and connect it to a subsystem, to add

a new hub to the system, and to migrate service functionality into the hub.

Defining a usable evolution operator specification language is a challenging research

problem. As a starting point we are building on existing work on the definition of

architectural operators from a related project focused on dynamic adaptation [12].

Specifically, an operator is defined in an imperative way using a set of primitive ar-

chitecture operators and standard programming control constructs (conditionals,

loops, etc.). Primitive operators include adding, removing, or replacing architectural

elements, attaching connectors to component ports, encapsulating a part of an archi-

tecture as a higher level component, and changing the value of a property.

Research questions that we hope to answer in this research focus on elaboration of

the imperative language, and exploration of other more-declarative ways of specify-

ing evolution operators, perhaps in the style of graph grammars used in [46] or re-

write rules as in [23].

(d) Specifying Releases

1 In the remainder of this proposal we use the term “architecture element” to refer generally

to components, connectors, and ports.

 Evolution Styles

11

Given an evolution path, specifying a release is a relatively straightforward matter

of identifying which architectures in the sequence are intended for deployment.

In the context of practical evolution tools, we expect that the notion of releases will

take center stage. In particular, as illustrated in the above scenario, we envision

that architects will typically plan their evolutions by specifying release paths (i.e.,

sequences of releases), which, as noted above, provide a simplified view and abstract

over the details of the specific low-level operations that were used to get from one

release to another.

(e) Specifying and Using Path Constraints

Path constraints are used to identify the set of evolution paths allowed by the evolu-

tion style. In particular, they can be used to restrict releases to being in a particular

family, making sure that certain dependencies in evolution are reflected (e.g., re-

quiring certain architectural structures to be in place before other operations are

performed), or preserving invariants across all releases. For example, in the above

scenario, path constraints might require that no externally accessible services are

removed in any release.

As a starting point, we are investigating the use of a subset of temporal logic. This

choice is a natural one given the fact that our underlying model of architectural

styles is an augmented state machine. In particular, evolution spaces give rise to

standard Kripke structures [7] in a direct way, where the node labels represent arc-

hitectural properties expressed as predicates that hold for a given architecture in a

behavioral path. Therefore, temporal formulas over evolution spaces can be inter-

preted in a straightforward manner.

Among the operators that we expect to include are the standard temporal modali-

ties:

 □ – always, to represent properties of paths that are invariant.

 – eventually, to represent the existence of an architecture in a path that

has certain properties

 U – until, to represent properties that must remain true of a path until some

other property becomes true.

Given a set of path constraints and a proposed evolution path (or release path), be-

cause of the finite nature of paths, it becomes possible to check whether that path

satisfies the constraints. Thus tools can check the correctness of path constraints.

Research questions that we hope to answer for this component of the research in-

clude: What constraint operators are most useful? Are the standard temporal opera-

tors adequate to express realistic constraints? What properties of a system are im-

portant to represent in path constraints? In practice is it sufficient to specify con-

straints over release paths, or do we also need to support specifications of full evolu-

tion paths?

(f) Specifying and Using Evaluation Functions

The purpose of an evaluation function is to help the architect determine whether a

path satisfies business and management goals. In general, evaluation functions will

depend on attributes specific to a particular business context: (a) the qualities of

concern (cost, functionality, time, etc.) and their relative priorities, and (b) con-

Garlan

12

straints on resources (numbers of personnel to do the work, time to get out a new

release, etc.).

An important component of our research is to iudentify practical ways to specify

evaluation functions in terms of these attributes. As a starting point, we are investi-

gating specification of the following kinds of auxiliary information:

(a) A vector of quality attributes that can be associated with releases, together

with a utility function that determines the value of a certain release based on

its associated quality attributes.

(b) A vector of cost attributes that can be associated with operations, together

with a cost function that calculates the aggregate cost of a sequence of opera-

tions.

(c) A set of constraints on costs and qualities that determine the business con-

text.

Each of the values in these three categories is represented stochastically, incorporat-

ing a measure of the uncertainty in the values. This is important because cost and

benefit valuations are rarely precise. Given these, we believe we will be able to cal-

culate the overall expected utility of a given path relative to business constraints.

As illustrated earlier, the primary use of such analysis will ultimately be to provide

feedback to an architect about costs and quality of a given evolution path, allowing

the architect to explore the consequences of different decisions about the path. For

example, the architect may decide to use a few releases with major changes, requir-

ing the investment of substantial resources to achieve this, but reducing the time to

reach the target architecture. Alternatively, if time is not a constraint, and cost is a

constrained resource, the architect may decide to stretch the evolution out over a

larger number of releases. The use of an evaluation function based on the attributes

listed above will permit such tradeoff analyses.

Important research questions to answer include: What is the best way to represent

such vectors, functions and uncertainties? What algorithms should be used to de-

termine expected utility? Is it possible to abstract over operator costs to release

transition costs, thereby simplifying the job of specify?

However, in addition to giving feedback on specific evolution paths we anticipate

that it will also be possible to use this same information to automatically generate

candidate paths for the architect. To do this we are exploring two techniques.

The first is the use of Markov Decision Processes (MDPs). An MDP is a mathemati-

cal framework that can be used to model problems in which outcomes are partly un-

der the control of a decision maker and partly decided probabilistically. Formally,

an MDP is a discrete-time stochastic control process defined by a 4-tuple (S, A,

P.(∙,∙), R(∙)), where:

 S is a set of possible states,

 A is a set of actions,

 P.(∙,∙) is a transition probability matrix, and

 R(∙) is an immediate reward function.

 Evolution Styles

13

The state of the decision maker changes over time, in part due to the actions he

chooses. In each state, s, there are a number of actions a for the decision maker to

choose from. The destination state s’ is determined randomly according to the tran-

sition probability matrix P.(∙,∙). Formally, Pa(s, s’) = Pr(st+1 = s’ | st = s, at = a),

where t is the current time, i.e. Pa(s, s’) is the probability of going into state s’ when

the decision maker chooses action a while in state s at time t. When the decision

maker is in state s, an immediate reward equal to R(s) is earned. Earned rewards

accrue over time.

The objective of the decision maker is to accumulate the maximum reward possible

over time. This is accomplished by solving for a policy π that provides the optimal

action to choose in each state, regardless of prior history of states. There are a num-

ber of known solutions to finding an optimal policy. These solutions use iterative

methods or dynamic programming (also known as backwards induction).

Because the architectural evolution of a system requires the architect to make choic-

es at each evolutionary step, and the outcome of a step exhibits some degree of un-

certainty, we believe that architectural evolution may be characterized as an MDP,

which can be solved for the optimal policy for architectural evolution for that system,

which specifies the appropriate transformation decision to make in every evolutio-

nary state.

The second approach that we are exploring is the use of a new technique called Sim-

ple Temporal Problems with Preferences and Uncertainties (STPPU) to provide a

planning schedule in the presence of desired quality attributes and uncertain timing

constraints [34]. An STPPU is a combination of Simple Temporal Networks with

Uncertainty and Simple Temporal Network with Preferences, each of which are ex-

tensions of simple temporal networks. Variables in the network are time points, and

edges are constraints between the time points. An STPPU partitions time points into

those that can be controlled, and those that are fixed by the environment. An

STPPU is represented using the tuple (Vx, Vo, Ec, Eu, EQc), where:

 Vx is a set of time points that can be controlled. For example, the starting and

ending points of particular steps in the evolution;

 Vo is a set of time points that represent observable events over which there is

no control. For example, in architectural evolution these could represent

business restrictions such as the time that the evolution should complete, the

time period for which contractors are available, or the required release dates;

 Ec is the set of controllable edges, representing a simple temporal constraint

between two timepoints, such that lbij ≤ Vj - Vi ≤ ubij, i,j Ec, Vj Vx, and

Vi Vx Vo, and lb and ub are lower and upper bounds;

 Eu is the set of contingent edges with constraints set by the environment, as

above, except i,j Eu, Vi Vx Vo, Vj Vo;

 EQc is the set of quality profiles associated with controllable edges. The qual-

ity profiles could be desired architectural qualities, or desired cost and per-

sonnel requirements. The quality profiles are assumed to be piece-wise linear

and convex.

Garlan

14

The STPPU can then be used to find an execution strategy (i.e., path) that works in

all realizations, is optimal in each of them, and where certain qualities (expressed as

preferences) are met. Algorithms for finding paths tractably in polynomial time are

given in [34].

7 Summary

In this report we have outlined what we feel to be promising first steps to a formal

basis for architectural evolution. The key idea is to focus on evolution paths, with

the goal of choosing an optimal path to achieve business objectives of an organiza-

tion. Optimality is achieved by adopting a utility-theoretic approach, allowing us to

tailor the analysis to the context. Additionally, we characterize recurring patterns as

a set of related paths, which we term evolution styles. Such styles can be formally

characterized, and supported by tools. Our on-going work in this area is devoted to

finding ways to make this formal basis practical through notations and tools that

allow evolution planners to specify the relevant constraints of their domain, invoke

analyses specific to their context, and plan effectively for a series of phased releases

of a system.

Acknowledgements

This research has benefited from a discussion of Architecture Evolution with the

members of the ABLE research group (Jeff Barnes, Roni Burd, Orieta Celiku, Owen

Cheng, George Fairbanks, Jung Soo Kim, Vahe Poladian, and Bradley Schmerl);

members of the SEI SAT initiative who participated in a joint reading group on this

topic (Ipek Ozkaya and Mark Klein). I would also like to acknowledge Sungwon

Kang and Dalila Tamzalit, who have sparked many useful insights about the topic of

Architectural Evolution.

 Evolution Styles

15

References

[1] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, D. Garlan. Differencing

and Merging Architectural Views. Accepted for publication in the Auto-

mated Software Engineering Journal, Springer, 2008.

[2] R. Allen, D. Garlan. A Formal Basis for Architectural Connection. ACM

Transactions on Software Engineering and Methodology, 6(3):213-249, July

1997.

[3] R. Allen, R. Douence, D. Garlan. Specifying and Analyzing Dynamic Soft-

ware Architectures. Fundamental Approaches to Software Engineering, in

Lecture Notes in Computer Science 1382 1998.

[4] R. Allen, D. Garlan, J. Ivers. Formal Modeling and Analysis of the HLA

Component Integration Standard. In Proc. the Sixth International Sympo-

sium on the Foundations of Software Engineering (FSE-6),.1998.

[5] C. Baldwin, K. Clark. Design Rules: The Power of Modularity, Volume I.

MIT Press, Cambridge MA, 1999.

[6] B. Behlendorf, C.M. Pilato, G. Stein, K. Hancock, and B. Collins-Sussman,

“Subversion Project Homepage,” http://subversion.tigris.org, 2003.

[7] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P.

Schoebelen, P. McKenzie. Systems and Software Verification: Model-

checking Techniques and Tools. Springer, 2001.

[8] B. Berliner. CVS II: Parallelizing software development. In Proc. the 1990

USENIX Conference, Jan. 22-26, 1990, Washington, D.C.

[9] B. Boehm. Software Engineering Economics. Englewood Cliffs, NJ. Pren-

tice-Hall, 1981.

[10] B. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-

Oriented Software Architecture – A System of Patterns, Volume I. Wiley,

1996.

[11] S. Chaki, N. Sharygina, and N. Sinha. Verification of Evolving Software. In

Proceedings of the 3rd International Workshop on Specification and Verifi-

cation of Component-based Systems (SAVCBS) 2004.

[12] S.-W. Cheng, D. Garlan, B. Schmerl. Architecture-based self-adaptation in

the presence of multiple objectives. In Proc. the ICSE 2006 Workshop on

Software Engineering for Adaptive and Self-Managing Systems (SEAMS),

Shaghai, China, 2006.

[13] P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J.

Stafford. Documenting Software Architectures: Views and Beyond. Addison

Wesley, 2002.

[14] M. Erder, P. Pureur. Transitional Architectures for Enterprise Evolution.

IT Professional, 8(3):10-17, May/June, 2006.

http://subversion.tigris.org/

Garlan

16

[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley 1994.

[16] D. Garlan, M. Shaw, C. Okasaki, C. Scott, R. Swonger. Experience with a

course in on Architectures for Software Systems. In Lecture Notes in Com-

puter Science 640:23-43, 1992.

[17] D. Garlan, R. Allen, J. Ockerbloom. Exploiting style in architectural design

environments. In Proc. SIGSOFT’94: The 2nd ACM SIGSOFT Symposium

on the Foundations of Software Engineering, pp. 179-185, Dec. 1994.

[18] D. Garlan, R. Allen, J. Ockerbloom. Architectural Mismatch, or Why it’s

hard to build systems out of existing parts. Proc. the 17th International Con-

ference on Software Engineering, 1995.

[19] D. Garlan, R. Monroe, D. Wile. Acme: An architecture description inter-

change language. In Proc. CASCON’97, pp. 169-183, Nov. 1997.

[20] C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamentals of Software Engineer-

ing. Prentice Hall 1991.

[21] L. Grunske. Formalizing Architectural Refactorins as Graph Transforma-

tion Systems. Proc. the 6th International Conference on Software Engineer-

ing, Artificial Intelligence, Networking and Parallel/Distributed Computing

and First ACIS International Conference on Self-Assembling Wireless Net-

works (SNPD/SAWN’05). Towson, MD, 23-25 May, 2005.

[22] A. van der Hoek, D.M. Heimbigner, and A.L. Wolf. Versioned Software Ar-

chitecture. In Proc. the Third International Software Architecture Work-

shop, pp. 73-76, Orlando, FL, Nov. 1998.

[23] P. Inverardi, A. Wolf. Formal specification and analysis of software archi-

tectures using the chemical abstract machine model. IEEE Transactions on

Software Engineering, Special Issue on Software Architecture, 21(4):373-

386, April, 1995.

[24] R. Kazman, L. Bass, M. Klein. The essential components of software archi-

tecture design and analysis. The Journal of Systems and Software 79, pp.

1207-1216, 2006.

[25] T. LaToza, D. Garlan, J. Herbsleb, B. Myers. Program Comprehension as

Fact Finding. In Proc. the 6th Joint Meeting of the European Software En-

gineering Conference and the ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering (ESEC/FSE 2007), pp. 361-370, Dubrovnik,

Croatia, Sept. 2007.

[26] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying distributed soft-

ware architectures. Proc. the 5th European Software Engineering Confe-

rence (ESEC’95) 1995.

[27] N. Medvidovic, R. Taylor. A classification and comparison framework for

software architecture description languages. IEEE Transactions on Soft-

ware Engineering 26(1):70-93, Jan. 2000.

 Evolution Styles

17

[28] R. Monroe, D. Garlan. Style-based reuse for software architectures. In Proc.

the Fourth International Conference on Software Reuse, April, 1996.

[29] W. Opdyke, R. Johnson. Refactoring: An aid in designing application

frameworks and evolving object-oriented systems. Proc. the Symposium of

Object Oriented Programming Emphasizing Practical Applications (SOOP-

PA), 1990.

[30] M. Oussalah, N. Sadou, D. Tamzalit. SAEV: a Model to Face Evolution

Problem in Software Architecture. Proceedings of the International ERCIM

Workshop on Software Evolution, April 2006.

[31] I. Ozkaya, R. Kazman, M. Klein. Quality-Attribute-Based Economic Valua-

tion of Architectural Patterns. Software Engineering Institute Technical

Report CMU/SEI-2007-TR-003, 2007.

[32] D.L. Parnas. Information Distribution Aspects of Design Methodology. Proc.

the IFIP Conference ’71, 1971, Booklet TA-3, pp. 26-30.

[33] D. Perry, A. Wolf. Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes, 17(4):40-42, 1992.

[34] F. Rossi, K. Venable, N. Yorke-Smith. Uncertainty in soft temporal con-

straint problems: a general framework and controllability algorithms for

the fuzzy case. JAIR 27:617-674, 2006.

[35] J. Rushby. “Bus architectures for safety-critical embedded systems.” In Lec-

ture Notes in Computer Science 2211, 2001.

[36] M. Shaw, D. Garlan. Formulations and Formalisms in Software Architec-

ture. Computer Science Today: Recent Trends and Developments, 1000,

1995.

[37] M. Shaw, D. Garlan. Software Architectures: Perspectives on an Emerging

Discipline. Prentice-Hall, 1996.

[38] B. Spitznagel. Compositional Transformation of Software Connectors. PhD

Thesis, School of Computer Science, Carnegie Mellon University Technical

Report CMU-CS-04-128, May 2004.

[39] B. Spitznagel, D. Garlan. A Compositional Approach for Constructing Con-

nectors. Working IEEE/IFIP Conference on Software Architecture. 2001.

[40] B. Spitznagel, D. Garlan. A Compositional Formalization of Connector

Wrappers. In Proc. the 2003 International Conference on Software Engi-

neering (ICSE’03), 2003.

[41] D. Tamzalit, N. Sadou and M. Oussalah. Evolution problem within Compo-

nent-Based Software Architecture. Proceedings of the 2006 International

Conference on Software Engineering and Knowledge Engineering

(SEKE'06). July 2006.

[42] D. Tamzalit, M. Oussalah, O. Le Goaer, A. Seriai. Updating Software

Architectures: a style-based approach. International Conference on

Software Engineering Research and Practice, July 2006.

Garlan

18

[43] R. Taylor, N. Medvidovic, K. Anderson, E. Whitehead, E. Robbins, K. Nies,

P. Oriezy, D. Dubrow. A component- and message-based architectural style

for GUI software. IEEE Transactions on Software Engineering 22(6), 1996.

[44] W.F. Tichy. RCS: a system for version control. Software: Practice and Expe-

rience, 15(7):637-54, 1985.

[45] E. Yourdan, L. Constantine. Structured Design. Englewood Cliff, NJ: Pren-

tice-Hall, 1978.

[46] M. Wermelinger, J.L. Fiaderob. A graph transformation approach to soft-

ware architecture reconfiguration. Science of Computer Programming

44:133-155, 2002.

