
Synthesizing Tradeoff Spaces with Quantitative Guarantees
for Families of Software Systems

Javier Cámara1, David Garlan2, Bradley Schmerl2

Abstract

Designing software in a way that guarantees run-time behavior while achieving an ac-
ceptable balance among multiple quality attributes is an open problem. Providing guar-
antees about the satisfaction of the same requirements under uncertain environments
is even more challenging. Tools and techniques to inform engineers about poorly-
understood design spaces in the presence of uncertainty are needed, so that engineers
can explore the design space, especially when tradeoffs are crucial. To tackle this
problem, we describe an approach that combines synthesis of spaces of system de-
sign alternatives from formal specifications of architectural styles with probabilistic
formal verification. The main contribution of this paper is a formal framework for
specification-driven synthesis and analysis of design spaces that provides formal guar-
antees about the correctness of system behaviors and satisfies quantitative properties
(e.g., defined over system qualities) subject to uncertainty, which is treated as a first-
class entity. We illustrate our approach in two case studies: a service-based adaptive
system and a mobile robotics architecture. Our results show how the framework can
provide useful insights into how average case probabilistic guarantees can differ from
worst case guarantees, emphasizing the relevance of combining quantitative formal
verification methods with structural synthesis, in contrast with techniques based on
simulation and dynamic analysis that can only provide estimates about average case
probabilistic properties.

Keywords: Tradeoff analysis, uncertainty, architectural style, architecture synthesis,
quantitative guarantees, probabilistic model checking

1. Introduction

Engineering modern software-intensive systems requires engineers to explore de-
sign spaces that are often poorly understood due to their complexity and different kinds
of uncertainty about the behavior of their constituent components [1] (e.g., faults, net-
work delays). Achieving a good design with behavioral guarantees and a balance be-

Email addresses: javier.camaramoreno@york.ac.uk (Javier Cámara),
garlan@cs.cmu.edu (David Garlan), schmerl@cs.cmu.edu (Bradley Schmerl)

1University of York, Heslington, York YO10 5GH, UK.
2Carnegie Mellon University, Pittsburgh PA 15213, USA.

Preprint submitted to Journal of LATEX Templates February 26, 2019

tween extra-functional concerns is challenging – especially when the context that the
system will run in contains unknown attributes that are hard to predict. Designing for
this context is as often a matter of luck as it is principled engineering.

Design decisions frequently involve the selection and composition of loosely cou-
pled, pre-existing components or services with different levels of quality (e.g., of re-
liability, or performance) that may be offered by independent providers. For instance,
many current robotic software systems consist of a set of processes running in com-
ponents, potentially on a number of different hosts, connected at run time in a peer-
to-peer topology [2]. Different implementations of these components (e.g., for navi-
gation, planning) offer different levels of energy consumption, reliability, or accuracy.
Similarly, service-based systems are built by composing third-party services with dif-
ferent levels of availability, performance, and cost [3]. Quality attributes of constituent
components in such systems are often subject to uncertainties introduced by nonde-
terministic behaviors of individual components (e.g., derived from the lack of control
over system components in the cloud, humans-in-the-loop, or physical interactions in
cyber-physical systems) that can be captured in the form of probability distributions
(e.g., over the response time of a Web service, fault occurrence). For a designer, it
is difficult to envisage how these uncertainties will affect overall system behavior and
qualities, despite the fact that they can sometimes have a remarkable impact on them.

Often, design spaces are also constrained by the need to design systems within cer-
tain patterns or constraints that comprise an architectural style. Architectural styles [4]
characterize the design space of families of software systems in terms of patterns of
structural organization, defining a vocabulary of component and connector types, as
well as a set of constraints on how they can be combined. Styles help designers con-
strain design space exploration to within a set of legal structures to which the system
must conform. However, while the structure of a system may be constrained by some
style, there is still considerable design flexibility left for exploring the tradeoffs on
many of the qualities that a system must achieve.

Formal characterization of architectural styles combined with formal methods like
Alloy [5] have proved to be a valuable tool to aid designers in exploring rich solution
spaces, by synthesizing possible system configurations that satisfy the constraints im-
posed by a given architectural style [6, 7, 8]. However, these approaches tend to focus
on structural properties; when available, analysis of aspects like system behaviors and
quality are performed separately. So, approaches that reason separately about these
aspects are limited in their ability to consider interactions between behavioral proper-
ties and qualities (e.g., impact of failure in serving a request and a subsequent retry
on overall system performance). Moreover, the approaches that explore non-structural
properties tend to be based either on dynamic analysis or simulations. Such approaches
cannot exhaustively explore the state space of design alternatives or provide formal
guarantees that encompass both their behavior and qualities (both in general, and in
particular, in the presence of uncertainties).

Architects need tools and techniques that can help them explore this complex de-
sign space and guide them to good designs. Providing such tool support demands
investigating questions such as:

• (RQ1) How can we integrate formal descriptions of structural, behavioral, and

2

quality aspects of design alternatives to enable integrated reasoning about all
these aspects?

• (RQ2) How can we effectively streamline the exploration of the solution space
while providing formal guarantees about solutions in the presence of uncertainty
(e.g., with respect to correctness of behaviors, or quantitative and structural con-
straints)?

• (RQ3) If such an approach is feasible, what would be its applicability in different
contexts (e.g., application domains, objectives, sources of uncertainty)?

• (RQ4) What is the added value of analyzing tradeoffs in quantitative guarantees
(as opposed to other methods based e.g., on simulation or dynamic analysis)?

This paper explores these questions by introducing a formal framework that enables
the: (i) exhaustive exploration of a rich space of design alternatives by automatically
synthesizing architecture configurations that satisfy the constraints imposed by an ar-
chitectural style, and (ii) provision of formal guarantees with respect to the functional
behaviors and qualities (i.e., extra-functional properties) of configurations by exhaus-
tively analyzing the state space of each configuration’s behavior. Our framework ex-
plicitly considers interactions between functional behaviors and extra-functional prop-
erties while factoring in uncertainty 3 as a first-class concern.

The framework is grounded on two related formalisms: (i) predicate logic and sets
capture the structural aspects of system configurations, and (ii) probabilistic automata
and formal quantitative verification (e.g., probabilistic model checking [9]) capture
behavior and qualities.

The key novelty of our approach is that it is the first, to the best of our knowledge,
that combines automatic synthesis of design alternatives with quantitative formal ver-
ification that factors in uncertainty as a first-class concern. This combination is not
trivial because reasoning about all these aspects in a unified way entails synthesizing
structurally complex behavioral models (where structure is given by the topology of the
communication among processes) from structural and behavioral models (in particu-
lar, those used for quantitative verification), which are fundamentally heterogeneous
in representation and semantics. Bridging this heterogeneity gap goes beyond mere
pipelining of structural synthesis and probabilistic model checking, and demands the
alignment of model abstractions, as well as specialized algorithms for the synthesis of
structurally complex probabilistic behavioral models, which are the key contribution
of our approach.

With respect to the alignment of models: (i) interaction points (e.g., ports) on the
component-and-connector view of configurations correspond to synchronization points
of component and connector behaviors, (ii) uncertainties are captured as probabilities

3Note that uncertainty can be epistemic in nature (i.e., due to the lack of, incomplete, or inaccurate
information), or aleatoric or due to randomness. Our approach focuses on analyzing quantitative guarantees
in systems where uncertainties are mostly aleatoric and can be captured in terms of probabilistic or fully-
nondeterministic choices. In the remainder of this article, the word uncertainty refers to aleatoric uncertainty,
unless explicitly stated otherwise.

3

in the behavior models of components and connectors, and (iii) reward structures built
on behaviors enable reasoning about quantitative aspects of system behaviors (e.g.,
qualities). We implemented our approach in a prototype tool that uses a back-end
based on Alloy and the PRISM probabilistic model checker [10].

In [11] we introduced a preliminary version of this work that enabled quantitative
analysis of average probabilities and rewards based on discrete-time Markov chains
(DTMC), and illustrated the approach on a Tele Assistance System (TAS) [12] for the
validation of service compositions originally proposed by Baresi et al. in [13]. In this
paper, we extend our formal framework to provide worst and best case scenario guaran-
tees by enabling analysis of maximum/minimum probabilistic and reward guarantees
based on Markov decision processes (MDP). Moreover, we illustrate our approach in a
new robotics scenario based on a ROS [2] pub-sub architecture, and extend evaluation
with the robotics case study and additional results in TAS.

The rest of this paper is organized as follows: Section 2 provides an overview of
our approach. Section 3 describes the TAS exemplar. Next, Section 4 describes the
formalization of models employed by our approach. Section 5 details our approach,
Section 6 describes the ROS robotics case study. Section 7 presents evaluation, and
Section 9 overviews related work. Finally, Section 10 presents some conclusions and
future work.

2. Overview of the Approach

Finding system configurations in an architectural style that satisfy a set of formal
guarantees with respect to their behavior and qualities requires appropriate models and
mechanisms to: (i) systematically generate configurations in the style, and (ii) formally
verify their behavior and qualities. To achieve this goal, we propose a formalization of
architectural style extended with behavioral types that specify the abstract behavior of
components and connectors, as well as quantitative aspects via reward structures built
on their behavioral descriptions (described in Section 4).

Based on our formalization, our approach for design space exploration consists of
three stages (Figure 1):
Configuration generation (Section 5.1), during which a set of configurations that sat-
isfy a set of structural constraints is generated. This process takes as input the descrip-
tion of an architectural style formalized as a set of constraints in predicate logic defined
over abstract types (e.g., those imposed by the style, such as a component of type X can
only be connected to a component of type Y) and a set of concrete architecture element
definitions (i.e., the different instances of candidate components and connectors that
can be employed to realize the architecture). The output is the collection of architec-
ture configurations that satisfy the style constraints.
Configuration behavior model generation (Section 5.2), during which a set of con-

figuration behavioral models that refine the architecture configurations obtained in (1)
is generated. This process takes as input: (i) the set of concrete architecture element

4

!"#$%&'#&("')*&+,')

-

#$%&'#&("')*&+,')!"#

--.+/'012340&"5%4&0

+,')

4&04&06

7(54&%&5&%8')7(54&%&5&%8')

2340&"5%4&0

9'$58%3"5,).+/'0)

!"#$%&'#&("')!"#$%&'#&("')

:,';'4&0

234<%=("5&%34)234<%=("5&%34)

>'4'"5&%34

!"#$%&'#&("')!"#$%&'#&("')

234<%=("5&%340

234<%=("5&%34)234<%=("5&%34)

9'$58%3")?3@',0

234<%=("5&%34)234<%=("5&%34)

9'$58%3")?3@',)9'$58%3")?3@',)9'$58%3" ?3@',

7(54&%<%#5&%34)7(54&%<7(54&%<

54@)A%,&'"%4=

234<%=("5&%34)234<%=("5&%34

?'&"%#0

B(;54C@"%8'4)*/'#%<%#5&%34

234<%=("5&%34)234<%=("5&

9'$58%3")

&%34)("5&

3" ?3@',)9'$58%39'$58%33")3" 3@',3@',?3?3

>'4'"5&%34D'E5"@)D'E5"@)

*&"(#&("'0

1

1

!(&3;5&'@)!45,+0%0

Figure 1: Overview of the approach.

definitions, (ii) the configurations generated in (1), and (iii) the set of behavioral types4

that capture the behavior of each abstract type in the architectural style. For every
configuration, the behavior of each concrete component and connector is instantiated
using the behavioral types of their corresponding abstract types. To realize the bind-
ing among components and connectors in the behavioral model (via synchronization
actions), we employ the topological information of the graph from the architecture
configuration. Note that, while the behavioral type is shared among all component (or
connector) instances of the same type, their actual behavior can differ due to the spe-
cific attributes of the instance that parameterize its behavior (e.g., response time for a
service, or number of retries after a failed service invocation). The behavioral model
of a configuration is constructed as the parallel composition of the behavior of all the
instances in the configuration.
Quantification, filtering and ranking (Section 5.3), during which behavioral and

quantitative properties are checked on the configuration behavioral models. This step
filters out configurations that do not meet a set of properties and constraints imposed
by designers, which may include: (i) behavioral properties (e.g., safety, liveness), and
(ii) quantitative constraints (e.g., on quality attributes). This stage also allows factoring
probabilistic aspects into the analysis of behavioral and quantitative properties, as well
as solution selection that optimizes quantitative properties.

4Although the notion of behavioral type is more general [14], we employ the term to refer to an abstract
state machine specification capturing the behavior of an architectural abstract type.

5

3. Motivating Scenario

We illustrate our approach on the TAS exemplar system [12], whose goal is track-
ing a patient’s vital parameters to adapt drug type or dose when needed, and taking
actions in case of emergency. The system combines three service types in a workflow
(Figure 2).

:Tele
Assistance
Service

:Drug
Service

:Medical
Service

:Alarm
Service

pick=pickTask()

sendAlarm()

sendAlarm()

alt

opt
[analysisResult!=patientOK]

[analysisResult==sendAlarm]

alt
[pick==vitalParamsMsg]

loop

[pick==buttonMsg]

data=getVitalParams()

analysisResult=analyzeData(data)

changeDrug(patientId)

changeDose(patientId)

[pick!=stopMsg]

[analysisResult==changeDrug]

[analysisResult==changeDose]

TAS

Figure 2: Tele assistance service workflow (adapted from [12])

When TAS receives a request that includes the vital parameters of a patient, its Med-
ical Service analyzes the data and replies with instructions to: (i) change the patient’s
drug type, (ii) change the drug dose, or (iii) trigger an alarm for first responders in case
of emergency. When changing the drug type or dose, TAS notifies a local pharmacy
using a Drug Service, and first responders are notified via an Alarm Service.

The functionality of each service type can be implemented by a number of providers
that offer the service with different levels of performance, reliability, and cost. The
metrics employed for the different quality attributes in TAS are the percentage of ser-
vice failures for reliability, and service response time for performance. We consider
that five service providers offer the Medical Service, three offer the Alarm Service, and
only one offers the Drug Service (Table 1).

In this context, finding an adequate design for the system entails understanding the
tradeoff space by finding the set of system configurations that satisfy: (i) structural
constraints imposed by the style (e.g., the Drug Service should not be connected to
an Alarm Service), (ii) behavioral correctness properties (e.g., the system is eventually
going to provide a response – either by dispatching an ambulance or notifying the
pharmacy about a change), and (iii) quality requirements, which can be formulated as
a combination of quantitative constraints and optimizations (Table 2).

6

Service Name Fail. rate Resp. time Cost
(%) (ms.) (usd)

S1 Medical Service 1 0.06 22 9.8
S2 Medical Service 2 0.1 27 8.9
S3 Medical Service 3 0.15 31 9.3
S4 Medical Service 4 0.25 29 7.3
S5 Medical Service 5 0.05 20 11.9

AS1 Alarm Service 1 0.3 11 4.1
AS2 Alarm Service 2 0.4 9 2.5
AS3 Alarm Service 3 0.08 3 6.8
D1 Drug Service 0.12 1 0.1

Table 1: Properties of TAS service providers.

Name Description
R1 The average failure rate should not exceed 0.03%.
R2 The average response time should not exceed 26 ms.
R3 Subject to R1 and R2, the cost should be minimized.

Table 2: Example of quality requirements for TAS.

Generalizing from this scenario, the problem to solve is: “Given an architectural
style A, a set of concrete architecture elements E, a specification of correct behaviors
B, and a set of quality requirements Q, find the set of system configurations combin-
ing elements of E that: (i) conform to style A (i.e., satisfy its structural constraints),
(ii) satisfy the specification of correct behaviors B (i.e., safety and liveness properties),
and (iii) maintain the desired level and/or optimize a set of quality goals specified by
Q.”

Exploring the design space to find the best possible configurations that conform to
the style goes beyond the mere instantiation of architectural types, and entails flexi-
bility when envisaging design alternatives that may not always be obvious to a human
designer. An example in the context of TAS is allowing invocation of multiple alarm
services concurrently. This may of course increase the cost of operating the system, but
can also potentially reduce the response time and increase the reliability of the system
(the combined probability of multiple alarm services failing is much smaller than the
probability of failure of each individual alarm service).

In the next section we describe our formal model, and then detail our approach for
design space exploration in Section 5.

4. Formalizing Structure, Behavior, and Qualities

4.1. Architectural Style, Configurations, and States

We characterize the possible structures of a family of systems that are related by
shared structural and semantic properties employing an architectural style [4].

7

Definition 1 (Architectural Style). Formally, we characterize an architectural style
as a tuple (Σ, CS), where:

• Σ = (CompT,ConnT,Π,Λ) is an architectural signature, such that:

– CompT and ConnT are disjoint sets of component and connector types.

– Π : (CompT ∪ ConnT) → 2D is a function that assigns sets of symbols
typed by datatypes in a fixed set D to architectural types κ ∈ CompT ∪
ConnT . Π(κ) represents the properties associated with type κ. To refer to
a property p ∈ Π(κ), we simply write κ.p. To denote its datatype, we write
dtype(κ.p).

– Λ : CompT ∪ ConnT → 2P ∪ 2R is a function that assigns a set of
symbols typed by a fixed set P to components κ ∈ CompT . This function
also assigns a set of symbols in a fixed set R to connectors κ ∈ ConnT .
Λ(κ) represents the ports of a component (conversely, the roles if κ is a
connector), which define logical points of interaction with κ’s environment.
To denote a port/role q ∈ Λ(κ), we write κ :: q.

• CS is a set of structural constraints expressed in a constraint language based
on first-order predicate logic in the style of Acme [15] or OCL [16] constraints
(e.g., ∀ t:AssistanceServiceT •∃ a:AlarmServiceT • connected(t,a) – “every tele
assistance service must be connected to at least one alarm service”).

For the remainder of this section, we assume a fixed universe AΣ of architectural ele-
ments, i.e., a finite set of components and connectors for Σ typed byConnT∪CompT .
For a given architectural element c ∈ AΣ, we denote its type as type(c).

A configuration is a graph that captures the topology of a feasible structure of the
system in the style.

Definition 2 (Configuration). A configuration in an architectural style (Σ, CS), given
a fixed universe of architectural elements AΣ, is a graph G = (N , E) satisfying the
constraints imposed by CS , where: N is a set of nodes, such that N ⊆ AΣ, and E is a
set of pairs typed by P ×R that represent attachments between ports and roles.

A system state is the combination of a system configuration, along with an assignment
of values for the properties of the nodes in the configuration graph.

Definition 3 (Σ-system State). A Σ-system state s is a pair (G, λ), where G is a sys-
tem configuration, and λ is a function that assigns a value Jc.pKs in the domain of
dtype(κ.p) to every pair c.p, such that c is a node of G, κ = type(c), and p ∈ Π(κ).
The set of all Σ-system states is denoted by SΣ.

Example 1. We can characterize the family of TAS systems by a style with the follow-
ing architectural signature:

CompT = {MedicalServiceT,DrugServiceT,AlarmServiceT, AssistanceServiceT}
ConnT = {HttpConnT}
Π = {(MedicalServiceT, {FailRate,RespTime,Cost}), . . .}
Λ = { (MedicalServiceT, {analyzeDataPS}), (HttpConnT, {CallerR,CalleeR}),
(AssistanceServiceT, {changeDrugPTS, changeDosePTS, sendAlarmPTS, analyzeDataPTS}),
(DrugServiceT, {changeDrugPD, changeDosePD}), (AlarmServiceT, {sendAlarmPAS}) }

8

Employing the elements of that signature, we can specify a set of structural con-
straints that the style imposes on valid configurations (c.f. Listing 1).

Figure 3 depicts a sample TAS configuration with service instances TAS1, S1,
D1, and AS2 (c.f. Fig. 2.a). The connectors are instances of the http connector type
(HttpConnT) for each of the operations that are invoked by the assistance service
TAS1 to change drug type or dose in D1, invoke an alarm in AS2, and analyze patient
data on S1, connecting the corresponding ports on the component instances.

!"#$

%

!"#$

%"&&'&()*+,#,-.'+,!,!/

#$

%

#$

%0,1'+)2#,-.'+,!,!/

3$

%

3$

%3-45#,-.'+,!,!/

"#6

%

"#6

%"2)-7#,-.'+,!,!/

)*)289,3)()!#$:#$

%;((<=>**!/

+?)*5,3>&,!#$:3$

%;((<=>**!/

+?)*5,3-45!#$:3$

%;((<=>**!/
<->+,&&@,A4,&(

%;((<=>**!/

B>-(

=>**,+(>-

=>7<>*,*(

C,5,*1

=)22,-

=)22,-

=)22,-

=)22,,

=)22,,

=)22,,
+?)*5,3-45!#$ +?)*5,3-453$

+?)*5,3>&,!#$ +?)*5,3>&,3$

&,*1"2)-7!#$ &,*1"2)-7"#6

)*)289,3)()!#$

)*)289,3)()#$

&,*1"2)-7!#$:"#6

%;((<=>**!/

=)22,,

=)22,-

Figure 3: Sample TAS configuration.

4.2. Behavior

To extend our formalization of architectural style with behaviors, we introduce the
notion of behavioral type, characterized as a state machine that captures the abstract
behavior of an architectural type in a given style.

We instantiate our notion of behavioral type both for discrete-time Markov chains
(DTMC) and Markov decision processes (MDP). The latter instantiation allows cap-
turing aspects such as fully nondeterministic choices that enable maximum/minimum
probability and reward analysis, useful to provide, e.g., worst case scenario probabilis-
tic guarantees that can be obtained only via exhaustive state-space exploration tech-
niques like model checking (unlike average case probabilistic guarantees on DTMC,
which can be approximated via statistical model checking and other Monte Carlo-style
simulation techniques).

Definition 4 (Behavioral Type - DTMC). The behavioral type of an architectural type
κ ∈ CompT ∪ ConnT is a tuple (Sκ, si, PΛ), where Sκ is κ’s state space, charac-
terized by the set of all possible value assignments for properties Π(κ), si ∈ Sκ is an

9

initial state, and PΛ : Sκ × Sκ → [0, 1] × (Λ(κ) ∪ {⊥}) is a transition probability
matrix extended with ports (if κ is a component) or roles (when κ is a connector).

In the definition above, each element PΛ(s, s′) yields: (i) the probability of making a
transition from state s to state s′, and (ii) the port/role (if any) on which the architectural
element typed by κ interacts with its environment when the transition between s and s′

occurs. From a behavioral standpoint, ports and roles define potential synchronization
points for the interaction of different architectural elements in a configuration. We
denote the behavioral type of an architecture element c ∈ AΣ as btype(c).

Definition 5. [Behavioral Type - MDP] The behavioral type of an architectural type
κ ∈ CompT ∪ ConnT is a tuple (Sκ, si,E,∆), where Sκ is κ’s state space, char-
acterized by the set of all possible value assignments for properties Π(κ), si ∈ Sκ is
an initial state, E = Λ(κ) ∪ {τ} is a set of events that correspond to the ports in the
component type (respectively, roles in the connector type) extended with the internal
action τ , and ∆ : Sκ × E → D(Sκ) is a (partial) probabilistic transition function.
D(X) denotes the set of discrete probability distributions over finite set X .

!"#"$%&'(")"*+,-
)"./*01/'2

34")0'#)56

0#0)
401/+"./

!17"#8'(9.'*+,-

!17"#8'(:;8*+,-

!.'#2<$":=*+,-
!.'#2<$":=*+,-

4")0'#)56

.':>01'?"0$

.':>01'56

:'):%

0#0)

.':>01'56 .':>01'?"0$

!"#"$%&'(")"*,-

?"0$@")'AB?"0$@")'

C'201"$,':>01'+<..0.)"#1',':>01'+

Figure 4: AssistanceServiceT and MedicalServiceT behavioral types.

Example 2. Figure 4 depicts the abstract behavior specification of the Assistance-
ServiceT and MedicalServiceT architectural types. Transition labels represent in-
ternal actions, which can be internal to the component (e.g., pickTask after the initial
state in the assistance service), whereas transition labels between brackets denote po-
tential interactions with the environment. Branching transitions (denoted by a circle)
indicate a probabilistic choice, where each branch is labeled by a probability (e.g., the
medical service captures the probability of the service invocation failing with a branch-
ing transition parameterized by the value of property MedicalServiceT.FailRate and
its complementary).

Under DTMC semantics, unlabeled branching transitions implicitly specify a uni-
form probability distribution, and non-branching transitions indicate probability 1. In
contrast, for MDP semantics, both unlabeled branching transitions and multiple out-
going transitions from a given state introduce local nondeterministic choices.

The behavior model of a configuration is obtained by instantiating the behavioral
type all architecture elements in the configuration (c.f. Section 5.2), and performing
the parallel composition (with synchronization on shared actions) of the resulting pro-
cesses.

10

Definition 6 (Configuration Behavior Model). Given an architecture configuration
G = (N = {n1, . . . , nn}, E), we define its behavior model as the parallel composition
(bn1|| . . . ||bnn), where bni∈{1..|N |} is an instance of the behavioral type btype(ni).
Note that all the behavioral types that participate in this parallel composition must
have the same semantics (all of them must be DTMC, or all of them must be MDP).

4.3. Qualities

In addition to structure and behavior, we also need to capture quantitative aspects
of systems to enable the analysis of their qualities. To achieve this goal, we employ
reward structures to quantify information that emerges from the combined behavior
of the different elements in the system and is not explicitly captured by properties
in architectural elements. Two examples are the overall number of lost requests, and
average end-to-end response time of a system, which could be employed to analyze
run-time quality attributes such as reliability and performance, respectively.

Definition 7 (Reward Structure). A reward structure for a system with architectural
signature Σ is a pair (ρ, ι), where ρ : SΣ → R≥0 is a function that assigns rewards to
system state, and ι : SΣ × SΣ → R≥0 is a function assigning rewards to transitions.

State reward ρ(s) is acquired in state s ∈ SΣ per time step, i.e., each time that the
system spends one time step in s, the reward accrues ρ(s). In contrast, ι(s, s′) is the
reward acquired every time that a transition between s and s′ occurs. Our approach
is agnostic with respect to the way in which reward structures are defined. However,
in this paper we assume that rewards over states are defined as sets of pairs (pd, r),
where pd is a predicate over states SΣ, and r ∈ R≥0 is the accrued reward when
s ∈ SΣ |= pd. We consider transition rewards as sets of pairs (p, r), in which p ∈ P is
a port type, and reward r ∈ R≥0 is accrued when an interaction over a port of type p
occurs.

Example 3. To compute the cost of operating a TAS configuration, we define a reward
structure that accrues the cost of invoking each of the services in a configuration as:
(ρ, ι)=(∅, {(̄DrugServiceT::changeDrugPD, DrugServiceT.Cost), (DrugServiceT::change-DosePD,

DrugServiceT.Cost), (AlarmServiceT::sendAlarmPAS, AlarmServiceT.Cost),
(MedicalServiceT::analyzeDataPS, MedicalServiceT.Cost)}).

5. Exploring the Design Space

5.1. Configuration Generation

Generating structurally correct configurations entails: (i) formalizing a set of struc-
tural style constraints that all configurations must respect, (ii) instantiating the con-
straints for a specific set of architecture entities into a concrete relational model, and
(iii) synthesizing the configurations that satisfy the constraints in the relational model.
Formalizing Structural Constraints This is a manual process that can be carried out
by producing a specification in an ADL like Acme, and then translated automatically to
an Alloy specification [17], or directly producing a specification in the latter. Listing 1

11

shows an excerpt of the encoding of the TAS architectural style in Alloy. Lines 1-4
encode the definitions of abstract architectural elements that belong to the architectural
signature like components or connectors, whereas lines 6-8 show a part of the encoding
of general constraints of the architecture (e.g., a component cannot be connected to it-
self). The service types in TAS are encoded as signatures that extend the base signature
Component defined in line 1. For instance, the AssistanceServiceT component type
definition (lines 16-20) includes constraints indicating that it must contain at least one
port for invoking every possible operation type on other services (lines 17-18), and that
those invocation port types can only belong to that type of component (lines 19-20).

1 abstract sig Component {ports: set Port} // Component and Connector abstract definition
2 abstract sig Connector {roles: set Role}
3 sig Port {component: Component}
4 sig Role {connector: Connector, attachment: one Port}
5 // General constraints of the architecture
6 fact { all p:Port | one r:Role | p in r.attachment } // A port is connected to only one role
7 pred conn[c: Component, c’:Component] { some r,r’:Role | r!=r’ and r.attachment.component=c and

r’.attachment.component=c’ and r.connector=r’.connector } // Two components are connected
8 fact { all c,c’:Component | c=c’ => not conn[c,c’] } // A component must not be connected to itself
9 ... // TAS−specific definitions

10 pred invokes[p:Port, p’:Port] { one r:Caller,r’:Callee | r.attachment=p and r’.attachment=p’ and
r.connector=r’.connector } // A port (p) carries out invocations on another one (p’)

11 pred invokesOnly[p:Port, p’:Port] { invokes[p,p’] and all p’’:Port−p’ | not invokes[p,p’’] } // A port carries
out invocations ∗only∗ on another specific port

12 abstract sig HttpConnT extends Connector {} // ∗∗∗ HTTP Connector ∗∗∗
13 abstract sig Caller, Callee extends Role{} // An http connector has a caller and a callee role
14 fact { all c:HttpConnT | one r:Caller, r’:Callee | r in c.roles and r’ in c.roles }
15 fact { all c:HttpConnT | #c.roles=2 } // Every http connector has ∗exactly∗ two roles
16 one abstract sig AssistanceServiceT extends Component{} // ∗∗∗ Tele Assistance Service ∗∗∗
17 { changeDrugPTS & ports != none and changeDosePTS & ports != none and sendAlarmPTS & ports !=

none and analyzeDataPTS & ports != none} // A TAS has one port for every possible operation
18 abstract sig changeDrugPTS, changeDosePTS, sendAlarmPTS, analyzeDataPTS extends Port{}
19 fact { all p:changeDrugPTS+changeDosePTS+sendAlarmPTS+analyzeDataPTS | p.component in

AssistanceServiceT }
20 fact { all c:AssistanceServiceT | c.ports in

changeDrugPTS+changeDosePTS+sendAlarmPTS+analyzeDataPTS }
21 abstract sig DrugServiceT extends Component{ } // ∗∗∗ Drug Service ∗∗∗
22 { changeDrugPD & ports != none and changeDosePD & ports != none and #ports=2 }
23 abstract sig changeDrugPD, changeDosePD extends Port{}
24 fact { all p:changeDrugPD+changeDosePD | p.component in DrugServiceT }
25 fact { all c:DrugServiceT | c.ports in changeDrugPD+changeDosePD }
26 ... // General structure (allowed invocations among ports in different components)
27 fact { all pt:analyzeDataPTS | one ps:analyzeDataPS | invokesOnly[pt,ps] }
28 fact { all pt:changeDrugPTS | one pd:changeDrugPD | invokesOnly[pt,pd] }
29 ...
30 fact { all t:AssistanceServiceT | one d:DrugServiceT | conn[t,d] } // A TAS connects to ∗only one∗ DS

Listing 1: TAS architecture style constraint specification in Alloy (excerpt).
Instantiating Constraints Once the set of structural constraints of the style is for-
malized, we can instantiate a full relational model that will enable us to apply these
constraints to a set of concrete instances that realize concrete configurations. Listing 2
presents an excerpt of concrete components in TAS that correspond to alternative im-
plementations of services available from various providers. This specification includes
the name of the concrete service implementation, along with its type, which matches
one of the abstract types in the specification of structural constraints in Listing 1, and
information related to its quality attributes (Fig 2.a).

Entity definitions are employed to automatically extend the constraints into a full
relational model that includes concrete instances of the different entities in the system.
Listing 3 shows the Alloy code generated to complement the specification in Listing 1.

12

Every instance is encoded into a signature that extends its corresponding abstract type.
The definition of every signature is preceded by a lone quantifier, indicating that the
presence of a specific instance in a valid system configuration is optional. Quality at-
tribute information is not used to analyze structural aspects of the system, and hence is
abstracted in the Alloy specification. These are used later for behavioral configuration
model generation (Section 5.2).

S1 [type: MedicalServiceT, failureRate: 0.06, responseTime: 22, cost: 9.8];
AS1 [type: AlarmServiceT, failureRate: 0.3, responseTime: 11, cost: 4.1];

Listing 2: Concrete service implementation definitions for TAS (excerpt).

lone sig D1 extends DrugServiceT{}
lone sig S1, S2, S3, S4, S5 extends MedicalServiceT{}
lone sig AS1, AS2, AS3 extends AlarmServiceT{}
lone sig TAS1 extends AssistanceServiceT{}

Listing 3: Concrete service implementation definitions for TAS in Alloy.
Configuration Synthesis Once a model instantiating the style constraints is available,
we use the Alloy analyzer to find all relational models that describe configurations
satisfying the constraints imposed by the style and employ a set of concrete architecture
elements (e.g., TAS service implementations).

To do that, we invoke the run command and impose a constraint on the cardinal-
ity of the different sets of entities (determined by the maximum available number of
components of each type) using an additional predicate (Listing 4). As an example, we
run the predicate TAS for a maximum number of 10 instances of each signature in the
model, and impose a restriction of one implementation per type of service, except for
AlarmServiceT, for which we impose a maximum of 2 instances.

pred TAS {#DrugServiceT=1 and #AlarmServiceT=2 and #MedicalServiceT=1}
run TAS for 10

Listing 4: Synthesizing TAS configurations in Alloy.
Figure 5 shows two TAS configurations, generated from the Alloy model described in
this section. The structure on the left is analogous to the one depicted in Figure 3,
in which TAS is able to invoke a service of each type. However, the structure on the
right describes a configuration in which TAS can invoke alarm services AS2 and AS3,
potentially increasing reliability and performance when an alarm is raised, but probably
at the expense of a higher cost. This second configuration results from the flexibility
in the cardinality constraints imposed by Listing 4, line 1, which allows more than one
alarm service to be employed in a configuration.

At this point, we can generate alternative configurations for a system in a given
style, employing a set of concrete elements as building blocks for the configuration.
However, if we want to be able to determine which configurations satisfy some criteria
defined over the behavior or the qualities of the solution, we need to include additional
specifications that go beyond structure. In the next section, we describe how to ex-
pand structures into behavioral models that are amenable to analysis that takes into
consideration behavioral and quantitative aspects of system configurations.

5.2. Configuration Behavior Model Generation

The behavior model of a configuration can be obtained by instantiating the behav-
ioral type of each of the architecture elements in the configuration, and performing the

13

!"#$

%

!"#$

%"&&'&()*+,#,-.'+,!,!/

#0

%

#0

%1,2'+)3#,-.'+,!,!/

4$

%

4$

%4-56#,-.'+,!,!/

"#7

%

"#7

%"3)-8#,-.'+,!,!/

9((:;<**!=

9((:;<**!$

9((:;<**!>

;)33,-?

;)33,-7

;)33,-=

;)33,,>

;)33,,=

;)33,,7
+@)*6,4-56A!# +@)*6,4-56A4

+@)*6,4<&,A!# +@)*6,4<&,A4

&,*2"3)-8A!#> &,*2"3)-8A"#$

)*)3BC,4)()A!#

)*)3BC,4)()A#

9((:;<**!?

;)33,,?

;)33,->

&,*2"3)-8A!#$
!"#$

%

!"#$

%"&&'&()*+,#,-.'+,!,!/

#0

%

#0

%1,2'+)3#,-.'+,!,!/

4$

%

4$

%4-56#,-.'+,!,!/

"#7

%

"#7

%"3)-8#,-.'+,!,!/

9((:;<**!>

9((:;<**!7

9((:;<**!=

A<-(

;<**,+(<-

;<8:<*,*(

;)33,-$

;)33,->

;)33,-7

;)33,,$

;)33,,>

;)33,,7
+@)*6,4-56A!# +@)*6,4-56A4

+@)*6,4<&,A!# +@)*6,4<&,A4

&,*2"3)-8A!# &,*2"3)-8A"#

)*)3BC,4)()A!#

)*)3BC,4)()A#

9((:;<**!$

;)33,,=

;)33,-=

"#=

%

"#=

%"3)-8#,-.'+,!,!/

;)33,-$
;)33,,$

9((:;<**!7

&,*2"3)-8A"#>

A<-(

D,6,*2

Figure 5: Graphical representation for two TAS configurations synthesized using Alloy.

parallel composition of the resulting processes. Algorithms 1 and 2 receive as input the
configuration of the system G = (N , E) and the set of behavioral types for the differ-
ent architecture elements β, and return the configuration behavior model for G (for the
DTMC-based and MDP-based semantics, respectively).

Algorithm 1 Configuration behavior model generation (DTMC)
1: B := ∅
2: for all n ∈ N do
3: Pν := ∅
4: P ∗Λ := {t ∈ PΛ | btype(n) = (Sκ, si, PΛ) ∧ ip(t) 6= ⊥}
5: for all t ∈ P ∗Λ do
6: At := {(p, r) ∈ E | (parent(p) = n ∨ parent(r) = n) ∧ iptype(p) = ip(t)}
7: for all at ∈ At do
8: Pν := Pν ∪ {states(t) 7→ (prob(t)/|At|, label(at))}
9: end for

10: end for
11: B := B ∪ {(Sκ, si, (PΛ\P ∗Λ) ∪ Pν)}
12: end for
13: return (b1|| . . . ||bn) • bi∈{1..|N|} ∈ B

5.2.1. DTMC-based Behavior
The algorithm starts with an empty set of behaviors B (line 1), and incremen-

tally adds the behavior of each node in the configuration graph, which is instanced
by: (1) Determining the set of transitions P ∗Λ of the behavioral type that interact with
the environment (line 4). Function ip returns the interaction point (port or role type)
associated with every element of PΛ in the behavioral type. btype returns the behav-
ioral type of an architecture element. (2) For each transition identified in (1), creating
an instance of the transition for every other node to which the current one is attached
in the configuration (lines 6-9). In line 6, the set of attachments in the configuration
graph for the current node is identified. Here, interaction point type function iptype
identifies the type of a port or role, whereas parent returns the node that a port or role
belongs to. Line 8 adds new transition instances, adjusting the probability contribution

14

of the transition according to the number of instances created for a given transition
in P ∗Λ. Since this version of the semantics of behavioral types is inspired by discrete-
time Markov chains, the original probability of the transition prob(t) is divided equally
among transition instances. Function states returns the pair of source and target state
for a transition, whereas prob returns its associated probability. Function label gener-
ates a unique label for an attachment, defined as a pair port-role. (3) Creating a new
behavior instance incorporating the original elements of btype(n) (line 11). This pro-
cess describes the behavior of graph node n, in which transitions identified in (1) are
substituted by the new set of transition instances Pν identified in (2).
The algorithm finishes returning the parallel composition of the processes in B.

5.2.2. MDP-based Behavior
Similarly to Algorithm 1, Algorithm 2 starts with an empty set of behaviors B

(line 1), and incrementally adds the behavior of each node in the configuration graph.
However, in this case the instantiation process changes due to the differences in the un-
derlying semantics of MDP. Specifically, the instantiation process consists of: (1) De-
termining the set of tuples in ∆ that correspond to internal actions (∆∗, line 5). We
recall that each tuple in ∆ encodes the mapping of a state and an event (including the
special event τ that designates internal actions) to a probability distribution. (2) For
each tuple of ∆ corresponding to an action that interacts with the environment (i.e.,
not in ∆∗), creating an instance of the tuple for every other node to which the current
one is attached in the configuration (lines 6-11), which are stored in ∆ν . Similarly to
the DTMC-based semantics case, the set of attachments in the configuration graph for
the current node is identified in line 7. For each tuple in ∆ν , the original event is sub-
stituted by a unique label used for synchronization generated using the function label
presented earlier (line 9). (3) The new behavior instance is put together by replacing
the original set of events in the behavioral type by the aggregated set of labels gener-
ated for synchronization in Eν , and the original ∆ by the union of the set of tuples that
correspond to internal events ∆∗ with the set of generated tuples for synchronization
∆ν (line 13). The algorithm returns the parallel composition of the processes in B.

Algorithm 2 Configuration behavior model generation (MDP)

1: B := ∅
2: Eν := ∅
3: for all n ∈ N do
4: ∆ν := ∅
5: ∆∗ := {((s, e),D) ∈ ∆ | e = τ}
6: for all ((s, e),D) ∈ ∆\∆∗ do
7: At := {(p, r) ∈ E | (parent(p) = n ∨ parent(r) = n) ∧ iptype(p) = e}
8: for all at ∈ At do
9: ∆ν := ∆ν ∪ {(s, label(at)) 7→ D}

10: Eν := Eν ∪ {label(at)}
11: end for
12: end for
13: B := B ∪ {(Sκ, si, Eν ,∆∗ ∪∆ν)}
14: end for
15: return (b1|| . . . ||bn) • bi∈{1..|N|} ∈ B

15

PCTL Property (avg. case) PCTL Property (worst case) Description

Rrt
=?[F (serviceOK ∨ timeout)] Rrt

max=?[F (serviceOK ∨ timeout)] Performance - response
time accrued until transac-
tion is finished or there is a
timeout.

Rcost
=? [F (serviceOK ∨ timeout)] Rcost

max=?[F (serviceOK ∨ timeout)] Cost accrued from using
services in a transaction.

1− P=?[F serviceOK] 1− Pmin=?[F serviceOK] Reliability - probability of
success in completing a
transaction.

Table 3: PCTL properties for TAS.

5.3. Quantification, Filtering and Ranking

After obtaining the behavioral models for the possible configurations of the system,
we can assess behavioral, as well as quantitative constraints and properties on them.
This analysis might also include probabilistic aspects in the behavioral and quantita-
tive properties (e.g., reliability of services on which TAS relies), so we propose to
employ probabilistic temporal logics to capture them. We illustrate formalization us-
ing PCTL [9], although these specifications can be adapted to other types of proba-
bilistic temporal logic for behavioral descriptions inspired by other formalisms (e.g.,
continuous-time Markov chains, probabilistic timed automata).

This step identifies configurations that do not meet a set of properties and con-
straints imposed by designers, which may include: (i) behavioral properties (e.g.,
safety, liveness), and (ii) quantitative constraints (e.g., on quality attributes).

Example 4. We want to assess the overall response time, reliability, and cost of config-
urations in TAS. We define serviceOK , changeDoseOK ∨ changeDrugOK ∨ sendAlarmOK as
a predicate indicating that TAS provided some of the possible service types correctly.
Moreover, we assume the predicate timeout captures failed service invocation.

Based on these predicates, we define properties in Table 3 that employ the reward
quantifier of PCTL to quantify the expected response time and cost of a configuration by
accruing the response time and cost rewards rt and cost, respectively. The third prop-
erty 1− P=?[F serviceOK] quantifies the overall reliability of a configuration (i.e., that
the system will fail to provide correct service) by employing the probabilistic quantifier
of PCTL.

The first column of properties in the table quantify the probabilistic aggregate value
across all possible executions of a DTMC. However, we can formulate analogous prop-
erties to analyze worst case scenario guarantees based on the probabilistic quantifiers
Pmin/Pmax and Rmin/Rmax over MDP of PCTL [18]. Hence, for TAS, the properties for
worst case scenario analysis in the second column of the table capture minimization of
the probability of success for reliability, as well as maximization of response time and
cost for the other two qualities.

16

6. Case study: Mobile Robotics Software Architecture

We apply our approach to a second case study in the domain of mobile service
robotics. These systems are used to perform tasks like fetching mail, or escorting a
visitor to an office within a building. To achieve their mission, these robots must carry
out actions like navigating from one location to another while avoiding obstacles that
might dynamically appear, and where batteries may require recharging. These systems
are also limited in what they can sense, and this creates uncertainty in their location and
the resources they may have left to complete a plan. Despite these uncertainties, they
must attempt to ensure safe operation and effective use of resources (such as battery).

We focus on a subset of the software architecture of a mobile service robot that
deals with sensing and robot localization.

6.1. Objectives
The non-functional requirements of this sub-architecture are maximizing operation

safety, and minimizing energy consumption (Table 4). Concretely, requirements R1
and R2 are related to safety because the localization service should provide accurate
localization information (R1), in a timely manner (R2). Accurate information not pro-
vided in a timely fashion is effectively rendered inaccurate because it does not reflect
anymore the state of the world and increases the chances of undesirable incidents (e.g.,
collisions). Finally, requirement R3 concerns energy consumption minimization, sub-
ject to safety requirements.

Name Description

R1 The accuracy of localization information should not be below accuracy thr%.
R2 The response time of localization should not exceed timeliness thr ms.
R3 Subject to R1 and R2, energy consumption should be minimized.

Table 4: Example of quality requirements for the robotics architecture

6.2. Architectural Style
The underlying implementation of this architecture is based on the robotics oper-

ating system ROS [2], which follows a pub-sub style 5 in which different components
(nodes and nodelets 6) publish information to topics, which is consumed by other sub-
scribing components. In particular, configurations in this architecture contain three
component categories (Table 5): (a) sensing, which manages physical sensors that cap-
ture information from the environment, (b) localization, which produces information
about the position of the robot in the environment, based on lower-level information
(either directly captured by a sensor, or processed by another component), and (c) aux-
iliary, which perform different functions like transforming data, so that it can be con-
sumed by a particular type of (localization) component.

5The formal Alloy specification of this style can be found in Appendix A.
6A nodelet is a particular component type in ROS designed not to run as a separate process (as in nodes),

but as an algorithm that can be loaded within a single process along with other nodelets, thus reducing
communication and memory copying overhead.

17

Category Name Energy Consumption (mwhr) Accuracy Requires
Sensing lidar 30 N/A -

kinect 10 N/A laserscanNodelet
camera 12 N/A markerRecognizer

headlamp∗

Localization amcl 12 0.98 -
mrpt 5 0.90 -
markerLocalization 0.1 0.99 -

Auxiliary laserscanNodelet 0 N/A -
markerRecognizer 0 N/A -
headlamp 2 N/A -

Table 5: Mobile robotics architecture: component types and properties

Name Delay (ms) Reliability Publishers Subscribers
laserScanTopic 1.2 0.97 lidar amcl

laserscanNodelet mrpt
sensorMsgsImageTopic 2.25 0.87 kinect laserscanNodelet

camera markerRecognizer
markerPoseTopic 0.8 0.94 markerRecognizer markerLocalization

Table 6: Mobile robotics architecture: topics and properties

Every component in the architecture has a given energy consumption rate,7 and
might require additional auxiliary components to interoperate with the rest of the sys-
tem. For instance, Table 5 shows that the kinect component requires an additional
laserscanNodelet component, whereas the lidar component does not. This is ex-
plained because the lidar publishes sensed information from the laser scanner in a
format that can be directly consumed by localization components like amcl and mrpt,
whereas the information published by the kinect has to be preprocessed by the laser-
scanNodelet before it can be consumed by the localization components. Similarly,
the camera component requires an additional markerRecognizer component that
can take the images published by the camera and generate visual marker information
that can be consumed by the markerLocalization component, which generates robot
pose information based on the recognition of visual markers placed in the robot’s en-
vironment. Precisely because this type of localization relies on visual information, the
camera may require the additional headlamp component under low light conditions.

Communication among components is done via topics (Table 6), which introduce
different delays due to the processing of messages in queues, and also have differ-
ent levels of reliability derived from the fact that when queues are full, messages are
dropped with the probability given in the table. The allowed publishers and subscribers
to each of the topics are also displayed in the table. For instance, both amcl and mrpt
localization can consume laser scan information published to the laserScanTopic (ei-

7Quantitative values of the properties in Table 5 are used for illustration purposes and do not necessarily
reflect values on the actual robot.

18

ther published by the lidar directly, or by the laserscanNodelet, based on kinect
sensed information). In terms of reliability and delay, the sensorMsgsImageTopic to
which both the camera and the kinect publish, has the lowest reliability and highest
delay, given that publishing of images requires more bandwidth than laser scan infor-
mation, and the processing of messages is more intensive.

6.3. Behavioral Types
Figure 6 shows a graphical representation of the behavioral types for the robotics

architecture. Topics (left) receive a message from publishers via a pub port, and then
execute the internal action process, which can result with probability DROP RATE
in the dropping of the message (the value of the reliability for topics displayed in Ta-
ble 6 corresponds to 1-DROP RATE). If the message is not dropped, then it is sent to
subscribers via sub ports.

DROP_RATE

init

received

[pub]

processeddropped

process

[sub]
sent

19DROP_RATE ACC_RATE

init

received

[sub]

degradedprocessedOK

process
19ACC_RATE

init

received

[sub]

sent

[pub]

ComponentTLocalizationTTopicT

init

sensed

sense

sent

[pub]

SensorT

Figure 6: Mobile robotics architecture behavioral types.

Focusing on components, their general behavior is receiving a message via the sub
port, and then publish it via the pub port. In contrast, sensing components do not
subscribe to any topics. Instead, they first capture information via the internal action
sense, and then publish the information to a topic via pub. Localization components
only subscribe to a topic, and can successfully process a message with probability
ACC RATE (which corresponds to the values in column accuracy on Table 5), or gen-
erate degraded information instead with probability 1-ACC RATE. This probabilistic
choice models the inherent level of accuracy of different localization mechanisms.

6.3.1. Rewards
This robotics scenario incorporates two reward structures that encode energy con-

sumption and time. Concerning time, only topics introduce delays (constant DELAY
in ms., according to the values shown in column delay of Table 6) in the processing
of messages, which is accumulated in a time reward whenever the internal action pro-
cess is executed. With respect to energy, every component and topic accumulates
an amount of energy consumed per time unit (ERATE, column energy consumption in
Tables 5 and 6) in a energy reward.

6.4. Quantifying Satisfaction of Objectives
Overall, we want to assess the accuracy of the localization information, delay, and

energy consumption for every possible configuration of this architecture. To do so, we

19

PCTL property Description
P=?[F processedOK] Probability that the localization component

in a configuration will eventually process the
message and produce localization informa-
tion without degrading.

Renergy
=? [F (processedOK ∨ degraded ∨ dropped)] Energy reward accrued until the message is

either dropped, or processed by the local-
ization component (either correctly or de-
graded).

Rtime
=? [F (processedOK ∨ degraded ∨ dropped)] Time reward accrued until the message is

either dropped, or processed by the local-
ization component (either correctly or de-
graded).

Table 7: PCTL properties for quantification and ranking of objectives in the robotics scenario

employ the PCTL formulas shown in Table 7.
The first formula is used to determine the satisfaction of the accuracy requirement

R1 in Table 4. By quantifying the probability that the localization component present
in the configuration will eventually process correctly the message and produce accurate
localization information (encoded in processedOK), this property factors in both the
reliability of all the topics through which the message has to be communicated from
sensor to localization component (i.e., the probability that the message will be dropped
along the way), as well as the inherent accuracy of each localization component.

The second and third formulas are analogous, and they both compute the accrued
reward for every possible type of execution, which may end up dropping a message in
any of the topics (captured by dropped), or processing the message either in degraded
mode or accurately (processedOK).

7. Evaluation

We present in this section our evaluation, which aims at answering the four research
questions posed in the introduction.

To evaluate the approach, we ran a prototype implementation of our proposal both
on the TAS exemplar and the robotics scenario described earlier in the paper. The
prototype that employs Alloy 4.2 for synthesizing configurations and PRISM 4.3.1 for
behavioral and quantitative analysis. The experiments were run on an Intel Core i7
2.8GHz with 16 GB RAM.

7.1. Tele Assistance System (TAS)
We ran our analysis to compute the set of feasible solutions for TAS that meet the

set of structural constraints described in Listing 1, using the set of service implementa-
tions described in Fig. 1.

7.1.1. Space Size and Computation Time
Table 8 shows that the overall computation time for generating and analyzing the

solution space was approximately 20 seconds, out of which 8% was used to gener-
ate 90 configurations (Alloy) and 270 behavioral configuration DTMC models (90 x 3

20

possible values for the parameter that specifies number of retries after a failed service
invocation), and the corresponding 270 MDP models for worst case analysis. Check-
ing deadlock freeness and the six quantitative properties defined in Example 4 took
approximately 92% of the time.

Configurations 90
Configuration behavioral models (DTMC) 270
Configuration behavioral models (MDP) 270
Configuration behavior model generation time 1.661 s. (8.18 %)
Configuration behavioral model checking time (PRISM - DTMC) 7.66 s. (37.73 %)
Configuration behavioral model checking time (PRISM - MDP) 10.98 s. (54.08 %)
Total computation time 20.301 s.

Table 8: Problem instance size and computation time

7.1.2. Analysis Results
The plots on Figure 7 show the best cost that can be achieved in a system config-

uration when the response time and failure rate are constrained to the thresholds on
the horizontal axes. The plots on the left show average case probabilities and rewards
based on the analysis of a DTMC version of the model, whereas the right-hand side of
the figure shows plots that correspond to worst case scenario analysis based on a MDP
version of the model.

Moreover, results on the top of the figure correspond to analysis of all the possible
behaviors of the configurations, whereas the plots in the bottom focus only on the
behaviors that involve the selection of an alarm as the task to carry out (i.e., it does not
include the behaviors that correspond to changing the drug dose or type). The reason
why we analyze this additional case is showcasing that our analysis technique can be
flexibly tailored to target specific behaviors of the system that may be of particular
interest to architects. In this case, the rationale is that reliability of configurations is
not so important when changing drug type or dose, but it is critical when raising an
alarm, and we want to discover how the satisfaction of extra-functional requirements
compares to the general case.

We start by focusing on the general-average case (Figure 7 top left). The plot
shows that lower response times and higher reliability levels incur higher cost. This
is aligned with expectations, and consistent with the properties of service providers
(better response times and reliability are more expensive), and the fact that having
the flexibity to add redundant services (e.g., alarm service) to increase reliability and
reduce response time increases cost.

Moving on to the general-worst case analysis (top right), we can observe that the
general observations made for the average case still hold, but the actual levels of re-
liability, timeliness, and cost minimization that can be guaranteed by configurations
noticeably differ from the average case. The plot shows much more conservative val-
ues, with reliabilty values close to 0.96 for the cheapest configurations (compared to
0.98 for the average case), and much higher costs in general for analogous levels of
timing and reliability.

The bottom half of the figure shows the plots that restrict analysis to the behaviors
in which the selected task is raising the alarm. Hence, instead of using all the PCTL

21

0.98
0.99

0.99
1

20

30

8

10

Reliability (%) Resp
onse

tim
e (m

s.)C
os

t(
us

d)

0.97
0.98

0.99

20

30

40

10

12

Reliability (%) Resp
onse

tim
e (m

s.)C
os

t(
us

d)

0.99
0.99

1

20

30

8

10

Reliability (%) Resp
onse

tim
e (m

s.)C
os

t(
us

d)

0.97
0.98

0.99

20

30

40

10

12

14

Reliability (%) Resp
onse

tim
e (m

s.)C
os

t(
us

d)

Figure 7: TAS analysis results: average case probabilistic guarantees (left) and worst case scenario analysis
(right).

properties employed for the general case described in Example 4, we substitute the
reliability property (1− P=?[F serviceOK]) used to evaluate R1 by:

1− P=?[(F sendAlarm)⇒ (F serviceOK)]

Hence, only execution paths in which there is an occurrence of an alarm invocation
are taken into consideration to determine the probability of successfully completing
the service (sendAlarm encodes an invocation of the alarm service). For worst-case
scenario analysis, we substitute the probabilistic quantifier P by Pmin.

In this case, average case results (bottom left) show similar results to the general
case, with slightly higher reliability levels. However, we can see that there is a notice-
able difference in worst case analysis (bottom right), which yields results that clearly
differ from the general case. In particular, we can observe that the highest levels of
reliability are preserved, but at a higher expense. This is consistent with the results
shown in the configuration maps 8 shown in Figure 8 (which correspond to the four

8Configuration maps depict which configurations are optimal for the quantitative guarantees explored in
every point of the state space. Every color in the map represents a configuration, which is optimal in the
enclosed area of that color. It is useful to imagine the maps in Figure 8 as a zenithal planar projection of the
plots in Figure 7.

22

0.98 0.99 0.99 1 1

15

20

25

30

35

Reliability (%)

R
es

po
ns

e
Ti

m
e

(m
s.

)

0.96 0.97 0.98 0.99 1

20

30

40

Reliability (%)

0.98 0.99 0.99 1 1

15

20

25

30

35

Reliability (%)

R
es

po
ns

e
Ti

m
e

(m
s.

)

0.96 0.97 0.98 0.99 1

20

30

40

Reliability (%)

Figure 8: TAS analysis results: configuration maps

plots shown in Figure 7). The map in the bottom left shows a different configuration
(marked in red) for the highest reliability level, compared to the map on the top left.
Indeed, this configuration increases the overall reliability of the system by incorporat-
ing an additional alarm service (c.f. Figure 5), which in turn increases the cost of the
configuration.

An additional observation obtained from the configuration maps in Figure 8 is that,
while both the general case and the constrained send alarm case show different configu-
rations (particularly, when approaching higher levels of reliability), worst case analysis
shows that there is a much more reduced set of optimal configurations for guaranteeing
different levels of reliability and timeliness, compared to the average case, which is
much more fragmented. This can provide interesting insights to architects, who can
consider the suitability of supporting certain variants of system configurations, which
can provide benefits only in a limited number of cases.

7.2. Mobile Robotic System

We analyze the satisfaction of the requirements for the different configurations in
the robotics architecture, according to the properties described in Table 7, and the com-

23

0.8

0.9
1.5

2
2.5

20

40

Accuracy (%) Time (ms)

E
ne

rg
y

(m
w

hr
)

laserScanTopic delay = 1.2 ms

0.8

0.9

2.5
3

3.5

20

40

Accuracy (%) Time (ms)

E
ne

rg
y

(m
w

hr
)

laserScanTopic delay = 2 ms

Figure 9: ROS TurtleBot configuration analysis results

ponent and topic properties described in Tables 5 and 6.

7.2.1. Space Size and Computation Time
Table 9 shows that the overall computation time for generating and analyzing the

solution space was approximately 1.6 seconds, out of which 30% was used to generate
six configurations (Alloy) and 12 behavioral configuration DTMC models (6 x 2 pos-
sible values for the parameter that specifies latency of the laserScanTopic). Checking
deadlock freeness and the three quantitative properties defined in Table 7 took approx-
imately 69% of the time.

Configurations 6
Configuration behavioral models (DTMC) 12
Configuration behavior model generation time 0.504 s. (30.93 %)
Configuration behavioral model checking time (PRISM - DTMC) 1.125 s. (69.07 %)
Total computation time 1.629 s.

Table 9: Problem instance size and computation time

7.2.2. Analysis Results
Figure 9 shows the results of analyzing the energy cost, accuracy, and timeliness

tradeoffs of different configurations for two different execution contexts: in the first
one (left), the system is operating in normal conditions and the delay for the laser-
ScanTopic is 1.2 ms, whereas in the other one (right), we assume an operating context
under which the topic is saturated and its latency is 2 ms.

Results show clear difference in extra-functional requirement satisfaction in the two
cases. While the low latency case shows that less accurate configurations are energy
efficient and timely (maximum processing time is around 2.7 ms), the high latency case
shows that timeliness decreases noticeably (maximum 3.5 ms) for that same level of
accuracy.

These results are consistent with our expectations, and are backed by the configu-
ration maps shown in Figure 10, which show an increased coverage of Configuration

24

2 (camera + markerLocalization) in the high latency case, in detriment of Configu-
ration 0 (lidar+mrpt), which is dominated in that region of the space, since it provides
similar or lower levels of timeliness and energy efficiency in this case.

0.75 0.8 0.85 0.9 0.95
1

1.5

2

2.5

3

Accuracy(%)

Ti
m

el
in

es
s(

m
s)

laserScanTopic delay = 1.2 ms

0.75 0.8 0.85 0.9 0.95

2

2.5

3

3.5

Accuracy(%)

Ti
m

el
in

es
s(

m
s)

laserScanTopic delay = 2 ms

mrpt

lidar

laserScanTopic

markerRecognizer

camera

sensorMsgsImageTopic markerPoseTopic

markerLocalization

headlamp

laserscanNodelet

kinect

sensorMsgsImageTopic laserScanTopic

mrpt

laserscanNodelet

kinect

sensorMsgsImageTopic laserScanTopic

amcl

markerRecognizer

camera

sensorMsgsImageTopic markerPoseTopic

markerLocalization

amcl

lidar

laserScanTopic

Configuration+0 Configuration+1

Configuration+2 Configuration+3

Configuration+4 Configuration+5

Component Topic TopicPublishes+to Topic Subscribes+toLegend:

Figure 10: ROS TurtleBot configuration maps

7.3. Discussion
Our evaluation has shown that our approach is able to bridge the gap between

structural synthesis and quantitative verification, providing the mechanisms required
to generate and analyze quantitative guarantee tradeoff spaces for families of software
systems (RQ1 and RQ2).

An architect can take the results provided by our approach and make informed
design decisions based, for instance, on the available budget for the project and legal

25

constraints on the level of reliability and timeliness demanded of systems for first-
aid response, or energy efficiency and reliability of software components in robotics
systems.

Instantiating the approach in two different domains, with different architectural
styles, quality objectives, sources of uncertainty, and types of analysis (average and
worst-case scenario) provides a promising indicator of generality (RQ3), even if the
current embodiment of the approach is inspired by a specific model of formal architec-
tural description (Acme), and probabilistic formalisms (DTMC and MDP). However,
most constructs employed to formalize the architectural style are fairly standard and the
approach for synthesis of configurations is adaptable to other languages and underlying
models (e.g., OCL). In terms of behavior descriptions, DTMC and MDP constrain the
analysis to a discrete time model and average case of probabilities/rewards, although
adaptations can be carried out to adapt behavioral analysis to other probabilistic behav-
ior descriptions such as PTA ot CTMC for finer-grained time analysis.

An additional aspect that our evaluation has underlined is that there can be impor-
tant differences between disparate classes of quantitative guarantees (e.g., average vs.
worst case), which point to the relevance of methods that integrate formal quantitative
verification with structural synthesis, as opposed to methods based only on dynamic
analysis or simulation, which can provide only probabilistic average approximations
with relative precision (RQ4). Moreover, evaluation has shown that the configurations
that provide good guarantees for a certain set of objectives do not necessarily coincide
across different types of analysis, further emphasizing the importance of providing ar-
chitects with tools and techniques to enable the exploration of quantitative guarantees
across architectural design spaces.

8. Threats to validity

The approach is based on a specific style of structural description (Alloy) and prob-
abilistic behavioral formalisms (DTMC and MDP). However, the constructs employed
to formalize structures are fairly standard and synthesis of configurations is adaptable to
other languages/models (e.g., OCL). Concerning behavior descriptions, the fact that the
approach was successfully instantiated for different probabilistic formalisms and analy-
ses hints at feasibility of adapting the approach to other formalisms such as continuous-
time Markov chains (CTMC) or probabilistic timed automata (PTA) for finer-grained
time analysis.

An additional assumption that our approach relies on is that there is an existing
architectural specification of the components and connectors in the system, as well as
behavioral specifications of their interfaces. Although such specifications might not be
readily available in all systems, architecture discovery (with formal underpinnings that
rely on architectural styles) from running systems has already been covered in previous
research [19]. Learning of probabilistic behavioral specifications from observed sys-
tem behavior has also been covered in the literature [20]. The latter approach enables
extraction of probabilistic behavior descriptions for component and connectors in the
form of probabilistic automata (DTMC and MDP among them) that are compatible
with probabilistic model checking and our approach.

26

Focusing on internal validity, the degree of formal assurance on configurations pro-
vided by the approach is computationally expensive, and entails risks derived from the
cost both of configuration synthesis and behavior analysis (derived from exploring po-
tentially large state spaces of individual configuration behavior). These risks can be
mitigated by exploiting the hierarchical relations that are naturally present in software
designs, in which components interact in a structured way [21]. Hence, synthesis of
different subsystems with local constraints can be done independently and then com-
posed, reducing the cost of configuration synthesis.

9. Related Work

Uncertainty in software architecture is a subject that has been broadly explored
in recent years and includes approaches that have tackled uncertainties due to epis-
temic uncertainties that have to do with the imprecision and incompleteness of in-
formation [22, 23]. Due to space constraints, we cannot provide an exhaustive com-
pilation of related works, and focus instead on the subset of works akin to our pro-
posal. These works can be categorized into: (i) formalization of architectural styles,
and (ii) architecture-based quantitative analysis and optimization techniques that deal
with aleatoric uncertainties.

(1) Formalization of architectural styles: Formalization of styles has been explored
to define formal semantics of modeling languages. Kim and Garlan [17] propose an
automatic translation from Acme into Alloy relational models on which they verify
properties implied by the style. Wong et al. [24] also employ Alloy to check the con-
sistency of rules among multiple styles that might be combined in complex systems.
In addition to property verification, other approaches also explore constraint solving
for synthesizing architectures [6, 8]. Bagheri and Sullivan [6] employ architecture syn-
thesis for generating architectural models from architecture-independent application
models, emphasizing the separation of style choices from application description. In
contrast, Maoz et al. [8] propose an approach that employs synthesis to merge different
partial component-and-connector views. All the aforementioned approaches focus on
structural properties and differ from ours in that they do not consider behavioral, quan-
titative, or probabilistic aspects of system descriptions, being unable to systematically
analyze nondeterministic system behaviors and their effects on quality attributes.

(2) Architecture-based quantitative analysis and optimization: Other approaches
focus on analyzing and optimizing quantitative aspects of architectures using mecha-
nisms that include stochastic search and/or Pareto analysis [25, 26, 27]. PerOpteryx [26]
takes as input an architectural model described using the Palladio component model
and tries to automatically improve it by searching for Pareto-optimal solutions em-
ploying a genetic algorithm. ArcheOpterix [25] uses an evolutionary algorithm for
optimizing the architecture of embedded systems. DeepCompass [27] is a framework
that analyzes different architectural alternatives along the dimensions of performance
and cost to find Pareto-optimal solutions. While these and other approaches in systems
engineering (e.g., [28]) can give estimates and optimize quantitative aspects of designs,
they do not support synthesis of configurations (which have to be manually specified),
and do not provide any formal guarantees concerning the behavior or quantitative prop-
erties of the variants.

27

A different category of approach based on formal quantitative verification is based
on product line reliability analysis [29, 30, 31, 32]. Such approaches can analyze col-
lections of system designs encoded in a feature model individually or collectively. A
recent approach to continuous-time probabilistic design synthesis [33] uses a template-
based solution to generate and analyze alternative system designs, but does not em-
phasize high level modeling, assuming an existing encoding of design options in a set
of discrete variables and leaving out of scope any systematic enforcement of struc-
tural variants in the designs. Compared with these product line and template-based
approaches, our proposal focuses not only on variability, but also on structure, being
able to synthesize design alternatives that satisfy complex structural constraints from
much more abstract specifications that do not require detailed description of variability
points.

Other approaches [7, 34] have recently combined architecture synthesis with sim-
ulation and dynamic analysis to provide estimates of quantitative properties of sys-
tem variants. TradeMaker [34] synthesizes design spaces for object-relational database
mappings, in which individual designs are subject to static and dynamic analysis to
extract performance metrics. Dwivedi et al. [7] propose using architectural models
coupled with automated design space generation for making fidelity and timeliness
tradeoffs. These approaches share with ours the idea of synthesizing a solution space
from a set of constraints and analyzing individual solutions independently. However,
they do not explore exhaustively the state space of individual solutions and hence are
unable to provide guarantees about solution behaviors or their interaction with system
qualities. This shortcoming is particularly evident in the case of worst case scenarios,
which our approach is able to analyze with as shown in Section 7, in contrast with the
other approaches described above.

10. Conclusions and Future Work

We have presented an approach to help architects explore the design space of fam-
ilies of software systems, giving them a tool to make informed design decisions by
providing insight into the formal guarantees of solutions and tradeoffs among their
qualities. Our approach enables the analysis of behavioral (i.e., safety, liveness) and
quality properties (e.g., quantitative constraints, optimality) of solutions, considering
interactions among them, as well as uncertainties captured via probabilities in models.

Our evaluation shows feasibility (RQ1 and RQ2) and indicates potential for gener-
ality derived from the application of our approach to case studies in different domains
and types of probabilistic analysis (RQ3). However, one of the most interesting find-
ings stems from the fact that our results show that configurations that are optimal in
providing average case guarantees do not coincide in general with configurations that
optimize worst case guarantees (only accessible via exhaustive state space exploration
techniques like probabilistic model checking, in contrast with related work that are
based on simulation or dynamic analysis). This underlines the importance of incor-
porating the class of approach we propose to the array of tools available to software
architects (RQ4).

Although in this paper we have focused on spaces in which design decisions are
dominated by the selection and composition of pre-existing components, design spaces

28

in which a non-trivial part of the system components have to be built from scratch
have been left out of scope. We plan on extending our approach for such systems
by exploring probabilistic parametric model checking techniques [35] to automatically
find the ranges for quality attribute values that components to be implemented would
have to provide to satisfy global system constraints on qualities.

A second direction for future work concerns scalability. The degree of formal as-
surance on configurations provided by the approach is computationally expensive, and
entails risks on the computation cost of configuration synthesis (derived from the cost
of finding instances of configurations in a rich configuration space) and configuration
behavior analysis (derived from exploring potentially large state spaces of individual
configuration behavior). These risks can be mitigated by exploiting the hierarchical
structure and relations that are naturally present in complex architectures in which
components interact in a structured way. Hence, synthesis of different subsystems with
local constraints can be done independently and then composed, reducing the cost of
configuration synthesis. This approach has been successfully used in other works that
exploit mappings between specifications defined at different levels of abstraction [21],
or incremental analysis techniques [36]. This mitigation also allows exploiting paral-
lelism in the analysis, during which the behavior of configurations of subsystems can
be independently analyzed using assume-guarantee compositional quantitative verifi-
cation [37]. In this case, the computation time for the analysis would be dominated
by the largest subsystem that can be independently analyzed (prior experience with
PRISM suggest times under 10s for configurations of 250+ components, including
probabilistic behavior [38]).
Acknowledgments. This material is based on research sponsored by AFRL and DARPA under agreement number FA8750-

16-2-0042. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-

standing any copyright notation thereon. The views and conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the AFRL,

DARPA or the U.S. Government.

References

[1] D. Garlan, Software engineering in an uncertain world, in: Proc. of the Workshop
on Future of Software Engineering Research, FoSER, 2010.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng, Ros: an open-source robot operating system, in: ICRA WS on Open
Source Software, 2009.

[3] S. Mahdavi-Hezavehi, M. Galster, P. Avgeriou, Variability in quality attributes of
service-based software systems: A systematic literature review, Inf Softw Technol
55 (2). doi:http://dx.doi.org/10.1016/j.infsof.2012.08.
010.

[4] M. Shaw, D. Garlan, Software architecture - perspectives on an emerging disci-
pline, Prentice Hall, 1996.

29

http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2012.08.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2012.08.010

[5] D. Jackson, Alloy: A lightweight object modelling notation, ACM Trans. Softw.
Eng. Methodol. 11 (2). doi:10.1145/505145.505149.

[6] H. Bagheri, K. J. Sullivan, Model-driven synthesis of formally precise, styl-
ized software architectures, Formal Asp. Comput. 28 (3). doi:10.1007/
s00165-016-0360-8.

[7] V. Dwivedi, D. Garlan, J. Pfeffer, B. Schmerl, Model-based assistance for making
time/fidelity trade-offs in component compositions, in: 11th International Confer-
ence on Information Technology: New Generations, ITNG 2014, IEEE CS, 2014.
doi:10.1109/ITNG.2014.107.

[8] S. Maoz, J. O. Ringert, B. Rumpe, Synthesis of component and connector
models from crosscutting structural views, in: European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ES-
EC/FSE’13, ACM, 2013. doi:10.1145/2491411.2491414.

[9] M. Z. Kwiatkowska, G. Norman, D. Parker, Stochastic model checking, in: FM
for Performance Evaluation, 7th Int. School on Formal Methods for the Design of
Computer, Communication, and Software Systems, Vol. 4486 of LNCS, Springer,
2007.

[10] M. Z. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of proba-
bilistic real-time systems, in: Computer Aided Verification, Vol. 6806 of LNCS,
Springer, 2011.

[11] J. Cámara, D. Garlan, B. R. Schmerl, Synthesis and quantitative verification of
tradeoff spaces for families of software systems, in: A. Lopes, R. de Lemos
(Eds.), Software Architecture - 11th European Conference, ECSA 2017, Can-
terbury, UK, September 11-15, 2017, Proceedings, Vol. 10475 of Lecture Notes
in Computer Science, Springer, 2017, pp. 3–21.

[12] D. Weyns, R. Calinescu, Tele assistance: A self-adaptive service-based system
exemplar, in: 10th IEEE/ACM International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS 2015, IEEE Computer
Society, 2015. doi:10.1109/SEAMS.2015.27.

[13] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, P. Spoletini, Validation of
web service compositions, IET Software 1 (6). doi:10.1049/iet-sen:
20070027.

[14] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, G. Zavattaro, Foun-
dations of session types and behavioural contracts, ACM Comput. Surv. 49 (1)
(2016) 3:1–3:36.

[15] D. Garlan, R. T. Monroe, D. Wile, Acme: an architecture description interchange
language, in: Proceedings of the 1997 conference of the Centre for Advanced
Studies on Collaborative Research, November 10-13, 1997, Toronto, Ontario,
Canada, IBM, 1997. doi:10.1145/782010.782017.

30

http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1007/s00165-016-0360-8
http://dx.doi.org/10.1007/s00165-016-0360-8
http://dx.doi.org/10.1109/ITNG.2014.107
http://dx.doi.org/10.1145/2491411.2491414
http://dx.doi.org/10.1109/SEAMS.2015.27
http://dx.doi.org/10.1049/iet-sen:20070027
http://dx.doi.org/10.1049/iet-sen:20070027
http://dx.doi.org/10.1145/782010.782017

[16] J. Warmer, A. Kleppe, The Object Constraint Language: Getting Your Models
Ready for MDA, Addison-Wesley, 2003.

[17] J. Kim, D. Garlan, Analyzing architectural styles, J Syst Software 83 (7). doi:
10.1016/j.jss.2010.01.049.

[18] M. Z. Kwiatkowska, D. Parker, Automated verification and strategy synthesis for
probabilistic systems, in: D. V. Hung, M. Ogawa (Eds.), Automated Technol-
ogy for Verification and Analysis - 11th International Symposium, ATVA 2013,
Hanoi, Vietnam, October 15-18, 2013. Proceedings, Vol. 8172 of Lecture Notes
in Computer Science, Springer, 2013, pp. 5–22.

[19] H. Yan, D. Garlan, B. R. Schmerl, J. Aldrich, R. Kazman, Discotect: A system for
discovering architectures from running systems, in: A. Finkelstein, J. Estublier,
D. S. Rosenblum (Eds.), 26th International Conference on Software Engineering
(ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom, IEEE Computer
Society, 2004, pp. 470–479. doi:10.1109/ICSE.2004.1317469.
URL https://doi.org/10.1109/ICSE.2004.1317469

[20] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, B. Nielsen, Learning
deterministic probabilistic automata from a model checking perspective, Machine
Learning 105 (2) (2016) 255–299.

[21] E. Kang, A. Milicevic, D. Jackson, Multi-representational security analysis, in:
Proc. of the 24th Symposium on Foundations of Software Engineering, FSE,
2016.

[22] N. Esfahani, K. Razavi, S. Malek, Dealing with uncertainty in early software
architecture, in: W. Tracz, M. P. Robillard, T. Bultan (Eds.), 20th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-20), SIG-
SOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012, ACM, 2012, p. 21.
doi:10.1145/2393596.2393621.
URL https://doi.org/10.1145/2393596.2393621

[23] L. Cheung, L. Golubchik, N. Medvidovic, G. S. Sukhatme, Identifying and ad-
dressing uncertainty in architecture-level software reliability modeling, in: 21th
International Parallel and Distributed Processing Symposium (IPDPS 2007), Pro-
ceedings, 26-30 March 2007, Long Beach, California, USA, IEEE, 2007, pp. 1–6.
doi:10.1109/IPDPS.2007.370524.
URL https://doi.org/10.1109/IPDPS.2007.370524

[24] S. Wong, J. Sun, I. Warren, J. Sun, A scalable approach to multi-style archi-
tectural modeling and verification, in: 13th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2008), 2008.

[25] A. Aleti, S. Bjornander, L. Grunske, I. Meedeniya, Archeopterix: An extendable
tool for architecture optimization of aadl models, in: Model-Based Methodolo-
gies for Pervasive and Embedded Software, 2009. MOMPES ’09. ICSE Work-
shop on, 2009. doi:10.1109/MOMPES.2009.5069138.

31

http://dx.doi.org/10.1016/j.jss.2010.01.049
http://dx.doi.org/10.1016/j.jss.2010.01.049
https://doi.org/10.1109/ICSE.2004.1317469
https://doi.org/10.1109/ICSE.2004.1317469
http://dx.doi.org/10.1109/ICSE.2004.1317469
https://doi.org/10.1109/ICSE.2004.1317469
https://doi.org/10.1145/2393596.2393621
https://doi.org/10.1145/2393596.2393621
http://dx.doi.org/10.1145/2393596.2393621
https://doi.org/10.1145/2393596.2393621
https://doi.org/10.1109/IPDPS.2007.370524
https://doi.org/10.1109/IPDPS.2007.370524
http://dx.doi.org/10.1109/IPDPS.2007.370524
https://doi.org/10.1109/IPDPS.2007.370524
http://dx.doi.org/10.1109/MOMPES.2009.5069138

[26] A. Martens, H. Koziolek, S. Becker, R. Reussner, Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms, in: Int. Conf. on Performance Engineering, WOSP/SIPEW, ACM,
2010.

[27] E. Bondarev, M. R. V. Chaudron, E. A. de Kock, Exploring performance trade-
offs of a jpeg decoder using the deepcompass framework, in: 6th WS on Software
and Performance, WOSP, ACM, 2007.

[28] A. D. MacCalman, P. T. Beery, E. P. Paulo, A systems design exploration ap-
proach that illuminates tradespaces using statistical experimental designs, Syst.
Eng. 19 (5).

[29] C. Ghezzi, A. M. Sharifloo, Model-based verification of quantitative non-
functional properties for software product lines, Information & Software Tech-
nology 55 (3) (2013) 508–524.

[30] P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier, Profeat: feature-oriented engi-
neering for family-based probabilistic model checking, Formal Aspects of Com-
puting.

[31] T. Castro, A. Lanna, V. Alves, L. Teixeira, S. Apel, P. Schobbens, All roads lead
to rome: Commuting strategies for product-line reliability analysis, Sci. Comput.
Program. 152 (2018) 116–160.

[32] A. Lanna, T. Castro, V. Alves, G. N. Rodrigues, P. Schobbens, S. Apel, Feature-
family-based reliability analysis of software product lines, Information & Soft-
ware Technology 94 (2018) 59–81.

[33] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska, N. Paoletti, Design-
ing robust software systems through parametric markov chain synthesis, in: 2017
IEEE International Conference on Software Architecture, ICSA 2017, Gothen-
burg, Sweden, April 3-7, 2017, IEEE, 2017, pp. 131–140.

[34] H. Bagheri, C. Tang, K. J. Sullivan, Trademaker: automated dynamic analysis
of synthesized tradespaces, in: 36th Int. Conf. on Software Engineering, ACM,
2014.

[35] E. M. Hahn, H. Hermanns, B. Wachter, L. Zhang, Param: A model checker for
parametric markov models, in: Computer Aided Verification, Springer, 2010.

[36] H. Bagheri, S. Malek, Titanium: efficient analysis of evolving Alloy specifica-
tions, in: Proc. of the 24th Symposium on Foundations of Software Engineering,
FSE 2016, 2016.

[37] K. Johnson, R. Calinescu, S. Kikuchi, An incremental verification framework
for component-based software systems, in: Proceedings of the 16th International
ACM Sigsoft Symposium on Component-based Software Engineering, CBSE
’13, ACM, 2013. doi:10.1145/2465449.2465456.

32

http://dx.doi.org/10.1145/2465449.2465456

[38] J. Cámara, D. Garlan, B. Schmerl, A. Pandey, Optimal planning for architecture-
based self-adaptation via model checking of stochastic games, in: 30th ACM
Symposium on Applied Computing (SAC), 2015.

Appendix A: Robotics Architectural Style Alloy Model

1

2 // Components and connectors
3 abstract sig component {pub: set topic, sub: set topic}
4 abstract sig topic {pub: set component, sub: set component}
5

6 fact {all c:component,t:topic | (c in t.sub <=> t in c.sub) and (c in t.pub <=> t in c.pub) }
7

8 // Components
9

10 // Sensing
11 abstract sig sensing extends component {}
12 lone sig kinect extends sensing {}
13 lone sig lidar extends sensing {}
14 lone sig camera extends sensing {}
15

16 // Localization
17 abstract sig localization extends component {}
18 lone sig amcl extends localization {}
19 lone sig mrpt extends localization {}
20 lone sig markerLocalization extends localization{}
21 lone sig laserscanNodelet extends component {}
22

23 // Auxiliary
24 lone sig markerRecognizer extends component {}
25 lone sig headlamp extends component {}
26

27 // Connectors (Topics)
28 lone sig laserScanTopic extends topic{}
29 lone sig sensorMsgsImageTopic extends topic{}
30 lone sig markerPoseTopic extends topic{}
31

32 // Constraints − PUB−SUB
33 pred publishesTo[c:component, t:topic] { t in c.pub }
34 pred onlyPublishesTo[c:component, t:topic] { publishesTo[c,t] and all t’:topic−t | not publishesTo[c,t’] }
35

36 pred subscribesTo[c:component, t:topic] { t in c.sub }
37 pred onlySubscribesTo[c:component, t:topic] { subscribesTo[c,t] and all t’:topic−t | not subscribesTo[c,t’]

}
38

39 pred doesNotSubscribe[c:component] { all t:topic | not subscribesTo[c,t] }
40 pred doesNotPublish[c:component] { all t:topic | not publishesTo[c,t] }
41

42 fact { all t:topic | t in component.pub+component.sub }
43

44 // Constraints − ROS−TurtleBot
45

46 // Sensing constraints
47 fact { all c:lidar | onlyPublishesTo[c,laserScanTopic] }
48 fact { all c:kinect | onlyPublishesTo[c,sensorMsgsImageTopic] }
49 fact { all c:camera | onlyPublishesTo[c,sensorMsgsImageTopic] }
50 fact { all c:sensing | doesNotSubscribe[c] }
51

52 // Aux component constraints
53 fact { all c:laserscanNodelet | onlyPublishesTo[c,laserScanTopic] }
54 fact { all c:laserscanNodelet | onlySubscribesTo[c,sensorMsgsImageTopic] }
55

56 fact { all c:markerRecognizer | onlySubscribesTo[c,sensorMsgsImageTopic] }

33

57 fact { all c:markerRecognizer | onlyPublishesTo[c,markerPoseTopic] }
58

59 fact { doesNotSubscribe[headlamp] and doesNotPublish[headlamp] }
60

61 // Localization constraints
62 fact { all c:localization−markerLocalization | onlySubscribesTo[c,laserScanTopic] }
63 fact { all c:markerLocalization | onlySubscribesTo[c,markerPoseTopic] }
64 fact { all c:localization | doesNotPublish[c] }
65

66 pred config{
67 (some camera or some kinect) <=> some sensorMsgsImageTopic
68 (some laserscanNodelet or some lidar) <=> some laserScanTopic
69 some markerRecognizer <=> some markerPoseTopic
70 some kinect <=> some laserscanNodelet
71 some camera <=> some markerLocalization
72 some camera <=> some markerRecognizer
73 some headlamp => some camera
74 one sensing
75 one localization
76 }

Listing 5: Robotics architecture style specification in Alloy.

34

	Introduction
	Overview of the Approach
	Motivating Scenario
	Formalizing Structure, Behavior, and Qualities
	Architectural Style, Configurations, and States
	Behavior
	Qualities

	Exploring the Design Space
	Configuration Generation
	Configuration Behavior Model Generation
	DTMC-based Behavior
	MDP-based Behavior

	Quantification, Filtering and Ranking

	Case study: Mobile Robotics Software Architecture
	Objectives
	Architectural Style
	Behavioral Types
	Rewards

	Quantifying Satisfaction of Objectives

	Evaluation
	Tele Assistance System (TAS)
	Space Size and Computation Time
	Analysis Results

	Mobile Robotic System
	Space Size and Computation Time
	Analysis Results

	Discussion

	Threats to validity
	Related Work
	Conclusions and Future Work

