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Abstract. Knowledge-intensive processes (KiPs) are processes charac-
terized by high levels of unpredictability and dynamism. Their process
structure may not be known before their execution. One way to cope
with this uncertainty is to defer decisions regarding the process struc-
ture until run time. In this paper, we consider the definition of the process
structure as a planning problem. Our approach uses automated planning
techniques to generate plans that define process models according to the
current context. The generated plan model relies on a metamodel called
METAKIP that represents the basic elements of KiPs. Our solution ex-
plores Markov Decision Processes (MDP) to generate plan models. This
technique allows uncertainty representation by defining state transition
probabilities, which gives us more flexibility than traditional approaches.
We construct an MDP model and solve it with the help of the PRISM
model-checker. The solution is evaluated by means of a proof of concept
in the medical domain and reveals the feasibility of our approach.
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1 Introduction

In the last decades, the business process management (BPM) community has
established approaches and tools to design, enact, control, and analyze business
processes. Most process management systems follow predefined process models
that capture different ways to coordinate their tasks to achieve their business
goals. However, not all types of processes can be predefined at design time –
some of them can only be specified at run time because of their high degree of
uncertainty [18]. This is the case with Knowledge-intensive Processes (KiPs).

KiPs are business processes with critical decision-making tasks that involve
domain-specific knowledge, information, and data [4]. KiPs can be found in do-
mains like healthcare, emergency management, project coordination, and case
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management, among others. KiP structure depends on the current situation and
new emergent events that are unpredictable and vary in every process instance
[4]. Thus, a KiP’s structure is defined step by step as the process executes, by a
series of decisions made by process participants considering the current specific
situations and contexts [13]. In this sense, it is not possible to entirely define
beforehand which activities will execute or their ordering and, indeed, it is nec-
essary to refine them as soon as new information becomes available or whenever
new goals are set.

These kinds of processes heavily rely on highly qualified and trained profes-
sionals called knowledge workers. Knowledge workers use their own experience
and expertise to make complex decisions to model the process and achieve busi-
ness goals [3]. Despite their expertise, it is often the case that knowledge workers
become overwhelmed with the number of cases, the differences between cases,
rapidly changing contexts, and the need to integrate new information. They
therefore require computer-aided support to help them manage these difficult
and error-prone tasks.

In this paper, we explore how to provide this support by considering the pro-
cess modeling problem as an automated planning problem. Automated planning,
a branch of artificial intelligence, investigates how to search through a space of
possible actions and environment conditions to produce a sequence of actions
to achieve some goal over time [10]. Our work investigates an automated way
to generate process models for KiPs by mapping an artifact-centric case model
into a planning model at run time. To encode the planning domain and planning
problem, we use a case model defined according to the METAKIP metamodel
[19] that encloses data and process logic into domain artifacts. It defines data-
driven activities in the form of tactic templates. Each tactic aims to achieve a
goal and the planning model is derived from it.

In our approach, we use Markov decision processes (MDP) because they allow
us to model dynamic systems under uncertainty [7], although the definition of the
planning model enables using different planning algorithms and techniques. Our
approach finds optimal solutions to sequential and stochastic decision problems.
As the system model evolves probabilistically, an action is taken based on the
observed condition or state and a reward or cost is gained [7, 10]. Thus, an MDP
model allows us to identify decision alternatives for structuring KiPs at run time.
We use PRISM [11], a model checker, to implement the solution for the MDP
model.

We present a proof of concept, by applying our method in a medical treatment
scenario, which is a typical example of a non-deterministic process. Medical
treatments can be seen as sequential decisions in an uncertain environment.
Medical decisions not only depend on the current state of the patient, but they
are affected by the evolution of the states as well. The evolution of the patient
state is unpredictable, since it depends on factors such as preexisting patient
illnesses or patient-specific characteristics of the diseases. In addition, medical
treatment decisions involve complex trade-off between the risks and benefits of
various treatment options.
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We show that it is possible to generate different optimal treatment plans
according to the current patient state and a target goal state, assuming that
we have enough data to estimate accurately transition probabilities to the next
patient state. The resulting process models could help knowledge workers to
make complex decisions and structure execution paths at run time with more
probability of success and optimizing constraints, such as cost and time.

The remainder of this paper is organized as follows: Section 2 presents a
motivational medical scenario. Section 3 introduces the theoretical and method-
ological background. Section 4 describes the proposed method to encode a case
model as a planning model. Section 5 reports on the application of the method-
ology in a scenario. Section 6 discusses the obtained findings and related work.
Finally, Section 7 wraps up the paper with the concluding remarks.

2 Motivational example

This section presents a motivational medical case scenario. Suppose we have the
following medical scenario in the oncology department stored in the Electronic
Medical Record (EMR).

Mary, 58 years old, married, two children. She was diagnosed with a lymphoma non-
Hodgkin admitted on 20/07/2019 and is receiving R-ICE Chemotherapy. R-ICE is
named after the initials of the drugs used: rituximab, ifosfamide, carboplatin, etopo-
side. R-ICE is applied as a course of several sessions (cycles) of treatment over a
few months. On 02/10/2019, Mary is supposed to receive the second cycle of R-ICE.
However, on admission, she is febrile at 38◦C and presents severe nausea (Level 4).

In order to receive the second cycle of R-ICE, it is necessary to stabilize
Mary’s health status as soon as possible. Thus, at this time the goal is to decrease
her body temperature to 36.5◦C ≤ Temp ≤ 37.2◦C and reduce the level of
nausea to zero LN = 0. For that, physicians need to choose from vast treatment
strategies to decide which procedures are the best for Mary, in her specific current
context.

Assume that we have statistical data about two possible tactics for achiev-
ing the desired goal: fever (Fvr) and nausea (Nausea) management, shown in
Table 1 adapted from [2]. Each of these tactics can be fulfilled through multiple
activities that have different interactions and constraints with each other, as well
as to the specifics of the patient being treated. For example, (a) treating nausea
with a particular drug may affect the fever, (b) administration of the drug may
depend on the drugs that the patient is taking, (c) drug effectiveness may de-
pend on the patient history with the drug, or (d) giving the drug may depend
on whether the drug has already been administered and how much time has
elapsed since the last dose. These issues make manual combination of even this
simple case challenging, and become much harder for more complex treatments
and patient histories. Support is therefore needed that can take into account
patient data, constraints, dependencies, and patient/doctor preferences to help
advise the doctor on viable and effective courses of treatment.
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Table 1. Tactics templates for fever (Fvr) and nausea (Nausea) management

Tactic: Fever Management (FVR)
Definition: Management of a patient with
hyperpyrexia caused by non-environmental
factors.
Goal: Thermoregulation
(36.5◦C ≤ Temp ≤ 37.2◦C)
Metric: Temperature (Temp)
Preconditions: Temp > 37.2◦C
Activities:
A1.Administer ORAL antipyretic medica-
tion,as appropriate
A2. Administer INTRAVENOUS an-
tipyretic medication, as appropriate
A3. Administer medications to treat the
cause of fever, as appropriate
A4.Encourage increased intake of oral fluids,
as appropriate
A5. Administer oxygen, as appropriate

Tactic: Nausea Management (Nausea)
Definition: Prevention and alleviation of
nausea.
Goal: Stop Nausea (LoN = 0)
Metric: Level of Nausea (LoN)
Preconditions: LoN >0
Activities:
B1. Ensure that effective antiemetic drugs
are given to prevent nausea when possible
(except for nausea related to pregnancy)
B2.Control environmental factors that may
evoke nausea (e.g., aversive smells, sound
and unpleasant visual stimulation
B3.Give cold, clear liquid and odorless and
colorless food, as appropriate

3 Background

This section presents the underlying concepts in our proposal. Subsection 3.1
provides an overview of the METAKIP metamodel; Subsection 3.2 introduces
basic concepts of automated planning; Subsection 3.3 explains Markov decision
process(MDP). Subsection 3.4 describes the PRISM tool and language.

3.1 METAKIP: A metamodel for KiPs Definition

Our previous work proposed an artifact-centric metamodel [19] for the defini-
tion of KiPs aiming to support knowledge workers during the decision-making
process. The metamodel supports data-centric process management, which is
based on the availability and values of data rather than completion of activities.
In data-centric processes, data values drive decisions and decisions dynamically
drive the course of the process [18]. The metamodel is divided into four major
packages: case, control-flow, knowledge, and decision in such a way that there is
an explicit integration of the data, domain, and organizational knowledge, rules,
goals, and activities.

The Case Package defines the base structure of the metamodel, a Case. A
case model definition represents an integrated view of the context and environ-
ment data of a case, following the artifact-centric paradigm. This package is
composed of a set of interconnected artifacts representing the logical structure
of the business process. An artifact is a data object composed of a set of items,
attributes, and data values, defined at run time.
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The Knowledge Package captures explicit organizational knowledge, which
is encoded through tactic templates, goals, and metrics that are directly influ-
enced by business rules. Tactics templates represent best practices and guide-
lines. Usually, they have semi-structured sequences of activities or unstructured
loose alternative activities pursuing a goal.

The Control-flow Package defines the behavior of a case. It is composed of
a set of data-driven activities to handle different cases. Activity definitions are
made in a declarative way and have pre- and post-conditions. The metamodel
refines the granularity of an activity that could be a step or a task. A task is
logically divided into steps, which allows better management of data entry on
the artifacts. Step definitions are associated with a single attribute of an artifact,
a resource, and a role type at most. This definition gives us a tight integration
between data, steps and resources.

These packages are used to model alternatives plans to answer emergent cir-
cumstances reflecting environmental changes or unexpected outcomes during the
execution of a KiP. The Decision Package represents the structure of a collabo-
rative decision-making process performed by knowledge workers. We proposed a
representation of how decisions can be made by using the principles of strategic
management, such as, looking towards goals and objectives and embracing un-
certainty by formulating strategies for the future and correct them if necessary.
The strategic plan is structured at run time by goals, objectives, metrics and
tactic templates.

3.2 Automated Planning

Planning is the explicit and rational deliberation of actions to be performed to
achieve a goal [7]. The process of deliberation consists of choosing and organizing
actions considering their expected outcomes in the best possible way. Usually,
planning is required when an activity involves new or less familiar situations,
complex tasks and objectives, or when the adaptation of actions is constrained
by critical factors such as high risk. Automated planning studies the deliberation
process computationally [7].

A conceptual model for planning can be represented by a state-transition
system, which formally is a 4-tuple Σ = (S,A,E, γ), where S = {s1, s2, ....} is
a finite or recursively enumerable set of states; A = {a1, a2, ...} is a finite or
recursively enumerable set of actions; E = {e1, e2, ...} is a finite or recursively
enumerable set of events; and γ : S ×A×E → 2S is a state-transition function.

Actions are transitions controlled by a plan executor. Events are unforeseen
transitions that correspond to the internal dynamics of the system and cannot
be controlled by the plan executor. Both events and actions contribute to the
evolution of the system. Given a state transition system Σ, the purpose of plan-
ning is to deliberate which actions apply into which states to achieve some goal
from a given state. A plan is a structure that gives the appropriate actions.
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3.3 Markov decision process (MDP)

A Markov decision process (MDP) is a discrete-time stochastic control process.
It is a popular framework designed to make decisions under uncertainty, dealing
with nondeterminism, probabilities, partial observability, and extended goals [7].

In MDP, an agent chooses action a based on observing state s and receives
a reward r for that action [10]. The state evolves probabilistically based on the
current state and action taken by the agent.

Figure 1(a) presents a decision network [10] used to represent a MDP. The
state transition function T (s′|s, a) represents the probability of transitioning
from state s to s′ after executing action a. The reward function R(s, a) represents
the expected reward received when executing action a from state s. We assume
that the reward function is a deterministic function of s and a.

(a) (b)

Fig. 1. (a) MDP representation [10] and (b) example syntax of mdp PRISM module
and rewards

MDP treats planning as an optimization problem in which an agent needs
to plan a sequence of actions that maximizes the chances of reaching the goal.
Action outcomes are modeled with a probability distribution function. Goals
are represented as utility functions that can express preferences on the entire
execution path of a plan, rather than just desired final states. For example,
finding the optimal choice of treatment optimizing the life expectancy of the
patient or optimizing cost and resources.

3.4 PRISM

PRISM [11] is a probabilistic model checker that allows the modeling and anal-
ysis of systems that exhibit probabilistic behavior. The PRISM tool provides
support for modeling and construction of many types of probabilistic models:
discrete-time Markov chains (DTMCs), continuous-time Markov chains (CTMCs),
Markov decision processes (MDPs), and probabilistic timed automata (PTAs).



Automated Planning for supporting Knowledge-intensive Processes 7

The tool supports statistical model checking, confidence-level approximation and
acceptance sampling with its discrete-event simulator. It can generate an optimal
adversary/strategy generation for non-deterministic models.

Models are described using the PRISM language, a simple, state-based lan-
guage based on the reactive modules formalism [1]. Figure 1(b) presents an
example of the syntax of a PRISM module and rewards. The fundamental com-
ponents of the PRISM language are modules. A module has two parts: variables
and commands. Variables describe the possible states that the module can be
in at a given time. Commands describe the behavior of a module, how the state
changes over time. A command comprises a guard and one or more updates. The
guard is a predicate over all the variables in the model. Each update describes
a transition that the module can take if the guard is true. A transition is speci-
fied by giving the new values of the variables in the module. Each update has a
probability which will be assigned to the corresponding transition. Commands
can be labeled with actions. These actions are used for synchronization between
modules. Cost and rewards are expressed as real values associated with certain
states or transitions of the model.

4 Dynamic plan generation for KiPS execution

In our approach, plans are fragments of process models that are frequently cre-
ated and modified during process execution. Plans may change as new informa-
tion arrives and/or when a new goal is set. We advocate the creation of a planner
to structure process models at run time based on a knowledge base. The plan-
ner synthesizes plans on-the-fly according to ongoing circumstances. Thereby, it
involves both computer agents and knowledge workers in a constant interleav-
ing of planning, execution (configuration and enactment), plan supervision, plan
revision, and replanning.

4.1 Model Formulation

The run-time generation of planning models according to a specific situation
in a case instance requires the definition of the planning domain and then the
planning problem itself.

Definition 1. Let the case model be represented according to the METAKIP
metamodel. The planning domain is derived from the case model that can be
described using a state-transition system defined as a 5-tuple Σ = (S,A,E, γ, C)
such as that: S is the set of possible case states. A is the set of actions that
are represented by activities inside tactics that an actor may perform. E is the
set of events in the context or in the environment. γ : S × A × E → 2S, is
the state-transition function, so the system evolves according to the actions and
events that it receives. C : S×A→ [0,∞) is the cost function that may represent
monetary cost, time, risk or something that can be minimized or maximized.
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The state of a case is the set of values (available data) of the attributes con-
tained in artifacts of the context and the environment. However, since the number
of attributes of the artifacts is very large, it is necessary to limit the number of
attributes to only the most relevant ones, which determines the current state of
the case at a given time t.

Definition 2. A state st is the set of values corresponding to a set of relevant
attributes {v1, v2, . . . vr}, with r ≥ 1, contained in the business artifacts at a
given time t.

Actions in the METAKIP metamodel are represented by the activities within
a tactic. Tactics represent best practices and guidelines used by the knowledge
workers to make decisions. In METAKIP, they serve as tactic templates to be
instantiated to deal with some situations during the execution of a case instance.
Tactics are composed of a finite set of activities pursuing a goal. A tactic can
be structured or unstructured. A tactic is a 4-tuple T = (G,PC,M,A), where:
G is a set of variables representing the pursuing goal state, PC is a finite set of
preconditions representing a state required for applying the tactic, M is a set
of metrics to track and assess the pursuing goal state, and A is a finite set of
activities.

In METAKIP, an activity could be a single step or a a set of steps (called a
task). An activity has some preconditions and post-conditions (effects). We map
activities into executable actions. An executable action is an activity in which
their effects can modify the values of the attributes inside business artifacts.
These effects can be deterministic or non-deterministic.

Definition 3. An action is a 4-tuple a = (Pr,Eff, Pb, c) where: Pr is a finite
set of preconditions. Eff is a finite set of effects. Pb is a probability distribu-
tion on the effects, such that, Pef (i) is the probability of effect ef ∈ Eff and∑

ef∈Eff Pef (i) = 1. c is the number which represents the cost (monetary, time,
etc.) of performing a.

As the state-transition function γ is too large to be explicitly specified, it is
necessary to represent it in a generative way. For that, we use the planning op-
erators from which it is possible to compute γ. Thus, γ can be specified through
a set of planning operators O. A planning operator is instantiated by an action.

Definition 4. A planning operator O is a pair (id, a) where a is an action and
id is a unique identifier of action a.

At this point, we are able to define the planning problem to generate a plan
as a process model.

Definition 5. The planning problem for generating a process model at a given
time t is defined as a triple P = (OSt, GSt, ROt), where: OSt is the observable
situation of a case state at time t. GSt is the goal state at time t, a set of
attributes with expected output values. ROt represents a subset of the O that
represents only available and relevant actions for a specific situation during the
execution of a case instance at a given time t.
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Definition 6. The observable situation of a case instance C state at a given
time t is a set of attributes OSt = {v1, v2, . . . , vm}, with m ≥ 1, such that
vi ∈ St ∪ It for each 1 ≤ i ≤ m, where the state of C is St and the set issues in
the situation of C is It.

Definition 7. The goal state of an observable situation of case instance C at
a given time t is the set of attributes GSt = {v1, v2, . . . , vm}, with m ≥ 1, such
that, for 1 ≤ i ≤ m, vi is an attribute with an expected output value, vi belongs
to an artifact of C. These attributes are selected by the knowledge workers. Some
metrics required to asses some goals inside tactics can be added to the goal. GSt

represents the expected reality of C.

GSt serves as an input for searching an execution path for a specific situation.
Different goal states can be defined over time.

Definition 8. Let P = (OSt, GSt, ROt) be the planning problem. A plan π is
a solution for P . The state produced by applying π to a state OSt in the order
given is the state GSt. A plan is any sequence of actions π = (a1, ..., ak), where
k ≥ 1. The plan π represents the process model.

Our problem definition enables the use of different planning algorithms and
the application of automatic planning tools to generate alternatives plans. As
we are interested in KiPs, which are highly unpredictable processes, we use
Markov Decision Processes for formulating the model for the planner. MDPs
allows us to represent uncertainty with a probability distribution. MDP makes
sequential decision making and reasons about the future sequence of actions and
obstructions, which provides us high levels of flexibility in the process models.
In the following, we show how to derive an MDP model expressed in the PRISM
language from a METAKIP model automatically.

4.2 PRISM model Composition

Algorithm 1 shows the procedure for automatically generate the MDP model
for the PRISM tool, where the input parameters are: OSt, GSt, set of domain
Tactics, t is the given time, PP minimum percentage of preconditions satis-
faction, and PG minimum percentage of goal satisfaction, both PP and PG
are according to the rules of the domain. As described in Section 3.4, a mod-
ule is composed of variables and commands. Variables of the module are the
set of attributes from the case artifacts that belong to OSt ∪ GSt. Commands
are represented for the relevant planning operators ROt. The name of the com-
mand is the identifier of the action, the guards are the preconditions precond
and the effects Effects are the updates with associated probabilities. Rewards
are represented by the cost of actions cost(a) and are outside of the module of
PRISM.

For finding the set of relevant planning operators ROt, first, we select tactics
whose preconditions must be satisfied by the current situation OSt and whose
goal is related to the target state GSt. This can be done by calculating the
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Algorithm 1 PRISM Model Generator

Require: OSt, GSt, Tactics, t, PP, PG
V ← OSt ∪GSt . Attributes of OSt and GSt correspond to PRISM variables
for all T ∈ Tactics do . For each tactic

p1 ← |T.PC ∩OSt|/|T.PC| . Percentage of satisfied preconditions
p2 ← |GSt ∩ T.G|/|GSt| . Percentage of achievable target goal
if p1 ≥ PP and p2 ≥ PG then . If percentages are acceptable

ST ← ST ∪ T . Add to the set of selected tactics
end if

end for
RT ← SelectRevevantTactics(ST ) . Relevant tactics for the current situation OSt

At ← CheckAvailableActivities(RT, t) . Select available activities at time t
ROt ← CreateP lanningOperators(At)
C ← CreateCommands(ROt)
R← CreateRewards(ROt)
V ← V ∪ {T.M : T ∈ RT} . Add necessary metrics to evaluate
CreatePRISMModel(V,C,R)

percentages of both the satisfied preconditions and achievable goals. If these
percentages are within an acceptable range according to the rules of the domain,
the tactics are selected. Second, this first set of tactics is shown to the knowledge
workers who select the most relevant tactics. The set of the selected relevant
tactics is denoted as RT . From this set of tactics, we verify which activities
inside the tactics are available at time t. Thus, the set of available actions at
time t is denoted by At = a1, a2, . . . , an. Finally, With At is possible to create
the set of relevant planning operators ROt.

4.3 Plan Generation

To generate plans in PRISM, it is necessary to define a property file that contains
properties that define goals as utility functions. PRISM evaluates properties over
an MDP model and generates all possible resolutions of non-determinism in the
model, state graphs, and gives us the optimal state graph. The state graph
describes a series of possible states that can occur while choosing actions aiming
to achieve a goal state. It maximizes the probability to reach the goal state
taking into consideration rewards computed, that is maximizing or minimizing
rewards and costs.

In our context, a property represents the goal state GSt to be achieved while
trying to optimize some criteria. Then, PRISM calculates how desirable an exe-
cuting path is according to one criterion. Thus, plans can be customized accord-
ing to knowledge workers’ preferences (costs and rewards). To generate a plan,
we need to evaluate a property. The generated plan is a state graph that repre-
sents one fragment of a process model to be executed at time t. The generated
process model shows case states as nodes and states transitions as arcs labeled
with actions which outcomes follow probability distribution function. According
to this state graph, the knowledge worker could choose which action to execute
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in a particular state. This helps knowledge workers to make decisions during
KiPs execution.

5 Proof of Concept

This section formulates a patient-specific MDP model in PRISM for the medical
scenario presented in Section 2. In the area of health care, medical decisions can
be modeled with Markov Decisions Processes (MDP) [5, 17]. Although MDP is
more suitable for certain types of problems involving complex decisions, such as
liver transplants, HIV, diabetes, and others, almost every medical decision can
be modeled as an MDP [5].

We generate the PRISM model by defining the observable situation OSt,
Goal state GSt, and the set of relevant planning operators ROt.

Taking in consideration the medical scenario, the observable situation is
OS0 = {Temp0 = 38◦, LN0 = 4} and the goal state is GS0 = {36.5◦C ≤
Temp ≤ 37.2◦C,LN = 0} where: Temp is the temperature of the patient and
LN is the level of Nausea, both attributes of the Health Status artifact. We as-
sume that the set of relevant tactics RT according to the current health status
of the patient are fever and nausea management, presented in Section 2.

Table 2 shows the specification of one activity of each tactic, showing their
preconditions, effects with their probability, time, and cost of execution. We
modeled the activity effects with probabilities related to the probability of the
patient to respond to the treatment. For example, the possible effects of apply-
ing the activity Administer ORAL antipyretic medication are: (E1) the patient
successfully responds to treatment, occurring with a probability 0.6; (E2) 30%
of the time the patient partially responds to treatment where their temperature
decreases by 0.5◦ or more fails to reach the goal level; and (E3) the patient does
not respond at all to treatment or gets worse (occurring with a probabiltiy of
0.1). The other activities are similarly modeled according to the response of the
patient.

Assuming that all activities from both tactics are available, the set of actions
is At = {A1, A2, A3, A4, A5, B1, B2, B3}. Then, it is possible to model the set
of relevant planning operators ROt. Having OSt, GSt and ROt, it is possible to
generate the MDP model in the language PRISM.

Once we created the MDP model, the following properties were evaluated:
minimize time and cost while reaching the target state. The optimal plan to
achieve the goal state GSt while minimizing the cost shows that reachability is
eight iterations. The resulting model has 13 states, 35 transitions, and 13 choices.
Figure 2 presents only a fragment of the model generated, highlighting the most
probable path from the initial state to the goal state. The first suggested action
is B1 (labeled arc) with possible outcome states with their probabilities. If the
most probable next state is achieved, the next action to perform is A1 which
has a probability of 0.6 to reach the goal state. Knowledge workers can use
this generated plan to help them decide which is the next activity they should
perform in a particular state. As new events might emerge and new information
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Table 2. Activity modeling

Activity A1: Administer Oral an-
tipyretic medication, as appropriate
Pre-condition: ((Temp >37.2) and (LN=0
or LN=1)) and (allergic= false) and (conflict
with current medications = false) and (medi-
cation is available = true)
Effects:

E1: p=0.6 Respond to treatment (Temp = 37)
E2: p=0.3 Partial Respond to treatment
(Temp = Temp - 0.5)
E3: p=0.1 Not Responding to treatment
(Temp = Temp + 0.5)
Task execution time : 5 min
Cost: 0.08

Activity B1: Ensure that effective
antiemetic drugs are given to prevent
nausea when possible
Pre-condition: Pregnancy(FALSE) and (LN
>2) and (allergic =false) and (conflict with
current medications= false)
Effects:
E1: p=0.7 Respond to treatment (LN=0)
E2: p=0.2 Partially respond to treatment
(LN=LN -1)
E3: p=0.1 Not Responding to treatment
(LN=LN +1))
Task execution time : 5 min
Cost: 0.08

can become available, this plan can be revised and re-planned if needed. For
that, new MDP models are created.

Fig. 2. Plan for reaching the goal state optimizing the cost

6 Discussion and Related Work

In the last decades, there has been a growing interest in highly dynamic process
management, with different types of approaches that deal with the variability,
flexibility, and customization of processes at design time and at run time. Most
approaches start from the premise that there is a process model to which different
changes have to be made, such as adding or deleting fragments according to
a domain model or generate an alternative sequence of activities due to some
customization option. A few approaches use automated planning for synthesizing
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execution plans. Laurent et al. [12] explored a declarative modeling language
called Alloy to create the planning model and generate the plans. This approach
seems to be very promising for activity-centric processes, but not effective enough
for data-centric processes, as data is not well-enough treated to be the driver of
the process as required in KiPs.

SmartPM [16] investigated the problem of coordinating heterogeneous com-
ponents inside Cyber-Physical systems. They used a PDDL (Planning Domain
Definition Language) planner that evaluates the physical reality and the ex-
pected reality and synthesize a recovery process. Similarly, Marrella, Andrea,
and Lespérance proposed an approach [15] to dynamically generate process tem-
plates from a representation of the contextual domain described in PDDL, an
initial state, and a goal condition. However, for the generation of the process tem-
plates, it is assumed that tasks are black boxes with just deterministic effects.
On the other hand, Henneberger et al. [8] explored an ontology for generating
process models. The generated process models are action state graphs (ASG).
Although this work uses a very interesting semantic approach, they did not
consider important aspects such as resources and cost for the planning model.

There has been an increasing interest in introducing cognitive techniques for
supporting the business process cycle. Ferreira et. al. [6] proposed a new life cycle
for workflow management based on continuous learning and planning. It uses a
planner to generate a process model as a sequence of actions that comply with
activity rules and achieve the intended goal. Hull and Nezhad [9] proposed a
new cycle Plan-Act-Learn for cognitively-enabled processes that can be carried
out by humans and machines, where plans and decisions define actions, and
it is possible to learn from it. Recently, Marrella [14] showed how automatic
planning techniques can improve different research challenges in the BPM area.
This approach explored a set of steps for encoding a concrete problem as a PDDL
planning problem with deterministics effects.

We introduce the notion of the state of a case regarding data-values in the
artifacts of a case instance. From this state, we can plan different trajectories
towards a goal state using automated planning techniques. Our solution gener-
ates action plans considering the non-deterministic effects of the actions, new
emerging goals and information, which provides high levels of flexibility and
adaptation. As we describe a generic planning model, it is possible to use dif-
ferent planning algorithms or combine other planning models, such as the clas-
sical planning model or the hierarchical task network (HTN), according to the
structuring level of the processes at different moments. Thereby, we could apply
this methodology to other types of processes, from well-structured processes to
loosely or unstructured processes.

Our approach relies on MDP, which requires defining transition probabilities,
which in some situations can be very difficult and expensive to get. Nowadays a
huge amount of data is produced by many sensors, machines, software systems,
etc, which might facilitate the acquisition of data to estimate these transition
probabilities. In the medical domain, the increasing use of electronic medical
record systems shall provide the medical data from thousands of patients to be
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used and derive these probabilities. A limitation in MDPs refers to the size of
the problem because the size of the state-space explodes, and it becomes more
difficult to solve. In this context, several techniques for finding approximate
solutions to MDPs can be applied in addition to taking advantage of rapidly
increasing processing power in the last years.

Flexible processes could be easily designed if we replan after an activity exe-
cution. In fact, our approach suggests a system that has a constant interleaving of
planning, execution, and monitoring. In this way, it will help knowledge workers
during the decision-making process.

7 Conclusion

Process modeling is usually conducted by process designers in a manual way.
They define the activities to be executed to accomplish business goals. This task
is very difficult and prone to human errors. In some cases (e.g., for KiPs), it is
impossible due to uncertainty, context-dependency, and specificity. In this pa-
per, we devised an approach to continually generate run-time process models
for a case instance using an artifact-centric case model, data-driven activities,
and automatic planning techniques, even for such loosely-structured processes
as KiPs. Our approach defined how to synthesize a planning model from an
artifact-oriented case model defined according to the METAKIP metamodel.
The formulation of the planning domain and the planning problem rely on the
current state of a case instance, context and environment, target goals, and tactic
templates from which we can represent actions, states, and goals. As our focus is
KiPs management, we chose to use the MDP framework that allows representing
uncertainty, which is one of KiPs essential characteristics. To automatically gen-
erate the action plan, we used the tool PRISM, which solves the MDP model and
provides optimal solutions. Future work will develop a user-friendly application
for knowledge workers to interact with the planner and improve the presenta-
tion of plans in such a way that it is more understandable to them. Our goal
is to develop a planner which combines different types of planning algorithms
to satisfy different requirements in business processes, especially regarding the
structuring level. This planner will be incorporated into an infrastructure for
managing Knowledge-intensive processes.
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