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Abstract. Machine Learning (ML) is increasingly used in domains such
as cyber-physical systems and enterprise systems. These systems typi-
cally operate in non-static environments, prone to unpredictable changes
that can adversely impact the accuracy of the ML models, which are
usually in the critical path of the systems. Mispredictions of ML com-
ponents can thus affect other components in the system, and ultimately
impact overall system utility in non-trivial ways. From this perspective,
self-adaptation techniques appear as a natural solution to reason about
how to react to environment changes via adaptation tactics that can
potentially improve the quality of ML models (e.g., model retrain), and
ultimately maximize system utility. However, adapting ML components
is non-trivial, since adaptation tactics have costs and it may not be clear
in a given context whether the benefits of ML adaptation outweigh its
costs. In this paper, we present a formal probabilistic framework, based
on model checking, that incorporates the essential governing factors for
reasoning at an architectural level about adapting ML classifiers in a
system context. The proposed framework can be used in a self-adaptive
system to create adaptation strategies that maximize rewards of a multi-
dimensional utility space. Resorting to a running example from the en-
terprise systems domain, we show how the proposed framework can be
employed to determine the gains achievable via ML adaptation and to
find the boundary that renders adaptation worthwhile.

Keywords: Machine-Learning based systems · Self-adaptation · Prob-
abilistic Model Checking · Architectural framework.

1 Introduction

Machine learning (ML) is present in most systems we deal with nowadays and is
not a trend that will vanish in the years to come. Like all other components in a
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system, ML components can fail or simply produce erroneous outputs for specific
inputs [14, 15, 8]. This problem is exacerbated by the fact that the environments
in which the ML components operate may be different from those that the
component may have been trained on [31]. When such a situation occurs, the
system is likely to suffer from a problem known as data-set shift [29]. Since
ML components rely on input data to learn representations of the environment,
data-set shift can cause accuracy degradations which ultimately affect system
utility. Hence an important requirement for systems with ML components is to
be able to engineer those systems in such a way as to be able to adapt the ML
components when it is both possible and beneficial to do so.

Current approaches to architecture-based self-adaptive systems provide a use-
ful starting point. Following the well-known MAPE-K pattern [17], a system is
monitored to produce updated architectural models at run time, which can then
be used to determine whether and how a system might be improved through the
application of one or more tactics. In support of this approach, there are a variety
of tactics that might be brought to bear on ML-based systems including model
retraining [32], various incremental model adjustments [20], data unlearning [5],
and transfer learning [27, 16] techniques.

However, deciding both whether and how to adapt an ML-based system is
non-trivial. In particular, typically there are costs as well as benefits for apply-
ing tactics. Determining whether the benefits of improving an ML component
outweigh its costs involves considerations of timing, resources, expected impact
on overall system utility, the anticipated environment of the system, and the
horizon over which the benefits will be accrued. Moreover, in practice there is
often considerable uncertainty involved in all of these factors.

This paper proposes a probabilistic framework based on model checking to
reason, in a principled way, about the cost/benefits trade-offs associated with
adapting ML components of ML-based systems. The key idea at the basis of
the proposed approach is to decouple the problems of i) modelling the impact
of adaptation on the ML model’s quality (e.g., expected accuracy improvement
after retrain) and ii) estimating the impact of ML predictions on system utility.
The latter problem is solved by expressing inter-component dependencies via
an architectural model, enabling automatic-reasoning via model checking tech-
niques. The former is tackled by incorporating in the framework the key elements
that capture relevant dynamics of ML models (e.g., the expected dependency be-
tween improvement of model’s quality and availability of new training data).

We resort to a running example from the enterprise systems domain to show-
case how to instantiate the proposed framework via the PRISM model checker.
Finally, we present preliminary results that show how system utility can be im-
proved through the adaptation of ML components.

The remainder of this document is organized as follows: Section 2 motivates
the need for the proposed framework and highlights existing challenges; Section 3
presents the proposed framework and Section 4 shows how it can be applied.
Section 5 evaluates the framework, Section 6 overviews related work, Section 7
discusses existing limitations and future work and Section 8 concludes the paper.
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2 Motivation

In this work we focus on self-adaptation of ML-based systems which are com-
posed of both ML and non-ML components. For example, fraud detection sys-
tems rely on ML models to output the likelihood of a transaction being fraud-
ulent and on rule-based models (non-ML component) to decide whether to ac-
cept/block/review a transaction based on the ML’s output [2]. Similarly, cloud
configuration recommenders rely on ML models to select the platform (non-ML
component such as a virtual machine) on which users should deploy their jobs.
These recommenders are typically guided by user-defined objective functions
such as minimizing execution time [1, 6].

There are two key requirements associated with reasoning about self-adaptation
of ML components. First, it is necessary to understand if and how ML predic-
tions affect overall system utility. Second, it is necessary to estimate the costs and
benefits of the available adaptation tactics. Let us now discuss the key challenges
associated with each requirement.

i) Impact of Machine Learning Predictions. A key problem that needs
to be addressed to enable automatic reasoning on the dynamics of ML-based
systems is determining to what extent incorrect predictions will impact overall
system utility. In fact, this is not only application but also context dependent.
For example, in cloud configuration recommenders, when the relative difference
in job execution speed between the available cloud configurations is low, ML
mispredictions have little impact on system utility [6]. Similarly, in a fraud de-
tection system, the impact of mispredictions is different in periods with higher
volumes of transactions, in which it is critical to maximize accepted transactions,
while accurately detecting fraud [2].

ii) Estimating Costs and Benefits of Adaptation Tactics. Predicting the
time/cost and benefits of ML adaptation tactics is far from trivial. This predic-
tion is strongly influenced both by the type of models and their settings (hyper-
parameters and execution infrastructure), and by the input data employed in
the adaptation process. For instance, in the case of a tactic that triggers the
retrain of an ML model, the benefits of tactic execution are dependent on the
data available for the process – data more representative of the current environ-
ment contributes to higher benefits. Differently, if the adaptation tactic consists
of querying a human (human-in-the-loop tactic), the benefits are now dependent
on human expertise. Their execution latency and economic cost are also likely
to be different and affected by factors that are inherently tactic dependent, e.g.,
the retraining time is affected by the amount of available training data, whereas
the latency of a human-in-the-loop tactic may depend on the complexity of the
problem the human is required to solve.

In this work, we argue that by leveraging formal methods we can instantiate
the problem of reasoning about the need for adaptation at a general architectural
level. The framework we propose allows us to abstract away from system-specific
issues and instead instantiate the decision of whether to adapt ML components
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Fig. 1: Framework modules and interdependencies.

as a general decision that relies on the key factors of ML-based systems. The
next section introduces our formal framework.

3 Framework for Self-Adaptive ML-based Systems

This section describes a generic framework that can be used to derive formal
models of self-adaptive ML systems. The resulting models can then be utilized
to enable automatic reasoning via probabilistic model checking tools such as
PRISM [19]. In fact, the use of such tools in the self-adaptive systems (SAS)
domain is not new [25, 26, 4]. Conceptually, the proposed framework can be re-
garded as a specialization of the frameworks already proposed in this field, which
targets a specific class of “managed” systems: systems containing ML-based com-
ponents. As such, in the following sections our focus will be on how to capture
the most relevant dynamics of ML-components via abstract and generic models
that can be easily extended and customized to specific use cases.

3.1 Architectural Overview

As in typical frameworks for SAS, our framework requires specifying the behav-
ior of the following modules: environment, system, and the adaptation manager
(Figure 1). Next, we discuss how each of these modules is modelled in the pro-
posed framework. For the ML component, we further describe its internal state,
how it evolves, and the methods exposed by its interface to allow for inter-
component interactions.
Environment. In the environment component, it is necessary to consider the
types of stimuli to which the system responds/reacts. Additionally, since our
goal is to reason about the impact of environment changes, these must also be
modelled. Examples of environment stimuli are for instance the transactions that
a fraud detection system has to classify or the jobs received by a scheduler.
Adaptation Manager As in typical SAS, the adaptation manager contains a
repository of adaptation tactics. However, and differently from previous work in
this domain, we consider adaptation tactics that directly actuate over the ML
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component [7], such as retraining the ML component. Each adaptation tactic is
specified by: (i) a precondition that triggers its execution and which generally
depends on the state of the system and the environment; (ii) the effects on
the targeted components. We model adaptation tactics as a tuple composed of
tactic cost and tactic latency. This division allows us to study the impact of the
different dimensions of tactics on overall system utility. For example, consider a
retrain tactic. It has a latency associated, since retraining a model takes a non-
negligible amount of time. If that tactic is executed in cloud environments it also
has a monetary cost, which depends both on its latency, and on the underlying
cloud platform selected for the execution. By leveraging model checking tools
such as PRISM [19] we can thus explore alternative adaptation policies with the
objective of identifying the one that, for example, maximizes system utility.
System. The key novelty of our framework is that it enables reasoning about
the adaptation of ML-based systems, which we abstractly define as systems
that comprise two types of components: ML-based and non-ML based compo-
nents (Figure 1). An ML-based component is used to encapsulate an ML-model
that can be queried and updated (e.g., retrained). Non-ML based components
are used to encapsulate the remaining functional components of the system
being managed/adapted. Our framework is agnostic to the modelling of the
application-dependent dynamics of non-ML based components, which can be
achieved by resorting to conventional techniques already proposed in the SAS
literature [4, 25, 26]. However, we require non-ML components to interact with
ML components in two ways: i) pre-processing data to act as input to the ML
component or using the ML component’s outputs to perform some function ii)
affecting system utility by adding negative/positive rewards upon completion of
a task. For example, in an ML-based scheduling system, once a job completes
its execution on the selected cloud platform (a non-ML based component), it
triggers the accrual of a reward (e.g., dependent on the execution time of the
job) on system utility.

As for modelling the ML components, our design aims to ensure the follow-
ing key properties (i) generic – designed to be applicable to offline and online
learning, supervised, unsupervised and semi-supervised models, different types
of ML models (e.g., neural networks, random forests); (ii) tractable – designed
to be usable by a probabilistic model checker like PRISM, having a high level
of abstraction to aid systematic analysis via model checking; (iii) expressive –
designed to capture key dynamics of ML models that are general across ML mod-
els; (iv) extensible – designed to be easily extended to incorporate additional
adaptation tactics and customized to capture additional application specific dy-
namics. The following section introduces the proposed modelling approach for
ML components.

3.2 Machine Learning Components

We consider ML components that solve classification problems, i.e., whose possi-
ble outputs are defined over a discrete domain. We argue that this assumption is
not particularly restrictive given that any regression problem (in which the ML
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model’s output domain is continuous) can be approximated via a classification
problem by discretizing the output domain. We abstractly formalize the behav-
ior of an ML based component by specifying (i) its state, (ii) the set of events
that change its state, (iii) the logic governing how the internal state evolves due
to each possible event.

Machine Learning Component State. The state of an ML component is
characterized by two elements: a confusion matrix and the set of new data
(knowledge) which encodes information regarding the data accumulated so far
by the ML component. The confusion matrix is a tabular way to represent the
quality of a classifier. We opt for using the confusion matrix to abstract over the
internal dynamics of the specific model being used while still capturing the qual-
ity of its predictions. More in detail, it is a matrix n× n where n represents the
number of output classes. In cell (i, j) the confusion matrix maintains the prob-
ability for an input of class i to be classified by the model as belonging to class
j. In fact, due to how it is constructed, it provides access to metrics such as false
positives/negatives, which in turn constitute the basis to compute alternative
metrics, like f-score or recall, that can be of interest for specific applications/do-
mains (e.g., relevant for fraud detection systems [2]). Our framework supports
the specification of multiple confusion matrices, which can be of interest when
there are several types of input to an ML model (e.g., if a scheduler receives
different job types, some easier to classify than others, this could be modelled
by associating a different confusion matrix per job type).

The second element of the ML component’s state represents the knowledge
maintained by the ML component. This is characterized by the data which
the model has already used for training purposes, and the new data that is
continually gathered during operation and that represents the current state of
the environment the system is operating in. However, the representation of this
knowledge is application dependent. While in simpler use-cases it may be enough
to simply maintain a counter for the inputs that arrive in the system, in more
complex scenarios the data gathered during execution may encode important in-
formation to characterize the environment (e.g., measures of dataset shift [29]).
This knowledge can be used by the adaptation tactics when these are executed
over the ML component.

Machine Learning Component Interface. In order for the other components
in the system to interact with the ML component, we propose a general inter-
face that enables this interaction. Generally, any ML component that supports
adaptation requires three key methods: query, update knowledge, and retrain.
Clearly, new methods can be added to this interface to tailor the framework
to specific application requirements. For example, to capture manipulations of
the dataset (e.g., sub-sampling certain types of inputs) or to support further
adaptation tactics (e.g., unlearning).

As the name suggests, query is used to solicit a prediction from the ML com-
ponent. The internal behavior of the ML component when issuing predictions is
abstracted away by reasoning only over the likelihoods specified in the confusion
matrix of the event that is being classified. More precisely, the output event pro-
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duced by executing a query is a probabilistic event, which can assume any of the
possible output classes of the classifier, with the probability given by classifier’s
confusion matrix.

The method update knowledge should be called when the system has reacted
to an event and thus there is new data to be accounted for. The framework
can keep track either of the pair 〈ML input, ML prediction〉 or of the triple
〈ML input, ML prediction, real output〉. The selection of either option is domain
dependent. For example, in the fraud detection domain, knowing the actual value
of a transaction (legitimate or fraudulent) is not always possible [28]. The tuple
is thus required when this is the case. Finally, retrain corresponds to retraining
the ML model resorting to the data stored in the ML component’s state.

Any method has an associated cost and latency that directly impact system
utility. These are captured by the framework as follows. The latency is used to
determine after how many units of time the effects of each method are applied to
the component (and to the system). The cost of executing each method (when
the method has a cost) is discounted from the system’s utility.

Machine Learning Component State Evolution. Whenever any of the pre-
viously described interface methods is triggered, the state of the ML component
can be altered. Since query consists only of asking the ML model for a prediction,
it does not alter the component’s state. update knowledge changes the knowledge
of the ML component by adding instances to that set. Finally, retrain changes
both elements of the state. Both the confusion matrix and the knowledge are
updated to reflect the execution of the adaptation tactic. In the case of a re-
train adaptation tactic the data used for executing the tactic is updated in the
knowledge such that it is no longer considered new data. At the same time, the
confusion matrix is updated to reflect the current performance of the model after
having been trained with the additional data. In fact, we propose a simple model
that aims to capture the improvements to the confusion matrix given by the exe-
cution of a retrain adaptation tactic. The rationale behind the proposed model is
that the larger the number of new examples seen since the last training (i.e., new
data), the larger should be the expected reduction in the misclassification rate.
Specifically, the confusion matrix should be updated as follows. The diagonal is
incremented by a factor δ = (100− cellii) ∗ new data ∗ impactfactor that is pro-
portional to the model’s loss and to the amount of new data. The impactFactor
allows for flexibility in different types of retrain (e.g., when the hyper-parameters
of the model are also updated, the benefits may be higher). The remaining cells
in the same row should then be updated as cellij = cellij − δcellij/(1 − cellii).
The rationale behind the formula is that the non-diagonal cells are reduced pro-
portionally to δ while ensuring that no cell gets a value lower than 0, and that
the total reduction on non-diagonal cells is equal to δ.

Dealing with Uncertainty. As shown by recent work in SAS, capturing uncer-
tainty and including it when reasoning about adaptation contributes to improved
decision making [4, 25, 26]. Uncertainty can affect a range of components, includ-
ing non-ML components (e.g., the execution time of a job on a specific cloud
platform is unknown), ML components (e.g., in the fraud domain, as there is



8 M. Casimiro et al.

no real time access to real labels of transactions, we cannot measure the cur-
rent model’s performance, but at most estimate it [28]), and adaptation tactics
(e.g., with 90% probability retrain is expected to reduce the misclassification
rate, however in the remaining 10% of the cases the misclassification rate re-
mains the same). In the proposed framework, uncertainty regarding a specific
component or event can be naturally integrated by defining the affected state of
the component/event via discrete distributions built leveraging historical data.
Uncertainty can thus be conveniently captured by expressing the outcome of an
uncertain action (or state) via a probabilistic event.

4 Model Checking the Need for Adaptation

This section exemplifies, based on a running example, how to leverage the pro-
posed framework to reason about whether to adapt ML components. By intro-
ducing in the formal model non-deterministic choices between the tactics avail-
able for execution, a model-checking based approach can be used to determine,
at any time, which adaptation tactic to enact in order to maximize system util-
ity. We implement our framework using the PRISM [19] tool, which allows to
model non-deterministic phenomena via probabilistic methods such as Markov
Decision Processes (MDPs) and generate optimal strategies for reward-based
properties. PRISM has been extensively used by the literature on Self-Adaptive
Systems (SAS) to reason about adaptation trade-offs [26, 25, 21, 9].

We start by introducing a simple use-case, which was selected to exemplify
the framework. The following sections then describe the modules of the PRISM
model in more detail. Due to lack of space, we do not provide details about
the implementation of the framework and of the running example in PRISM.
However, we are working on a technical report that includes these details and
will make it available in the near future.
Running Example. Consider a system that receives jobs and has to select a
platform for them to execute. As it is often the case in practice, we assume that
the execution time of a job on a given platform depends on the job’s charac-
teristics, i.e., it may execute faster on a platform than on another [1, 6]. Each
time a job completes, the system receives a fixed reward. As such, in a given
period, the system will strive to complete as many jobs as possible by selecting
the platform that can execute each incoming job in the shortest amount of time,
so as to accrue the maximum benefits possible. For example, the system could
receive different data analytic jobs with diverse characteristics (e.g. neural net-
work (NN) training, data stream processing) [1, 6]. The system then relies on an
ML component to decide the best platform for a specific job to execute in. For
instance, the training of a neural network can be offloaded to GPUs or CPUs.
While both platforms allow the system to complete its task (i.e., execute the job)
one platform may be more efficient (lower latency) than the other, thus allowing
the system to complete more jobs in a given horizon. We are interested in scenar-
ios in which the type of job generated by the environment is altered, for example
due to data-set shift [29], thus leading the ML model to lose accuracy [18].
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Machine Learning Adaptation. To equip the system with adaptation capa-
bilities, so that it can deal with environment changes and accuracy fluctuations
of the ML-based predictor, for instance due to unknown jobs (e.g., unseen NN
topology), we consider that each time a new job arrives, the adaptation manager
can decide between simply querying the current ML model (i.e., no adaptation/-
tactic nop) or adapting it (tactic retrain), in order to increase its accuracy and
maximize the likelihood of executing the job in the preferred platform. The re-
train adaptation tactic consists of incorporating additional training data in a
new version of the model [32]. However, the execution of this tactic requires a
non-negligible time interval for its effects to manifest themselves in the system,
and has a monetary cost (e.g., if retrain is performed in the cloud) [1, 6]. As
such, overall system utility is defined as the sum of the benefits of completing
jobs minus the cost of executing a tactic (tactic nop has no cost).

4.1 Modelling the Components of the Framework

Environment. We model the environment as generating two types of job (J1
and J2) according to probability pJob1 (or pJob2=1-pJob1 ). Although it could
be trivially extended to generate more job types, having only two is enough for
the purpose of reasoning about whether to adapt the ML component.
Adaptation Manager. The adaptation manager is responsible for triggering
adaptations. In the running example, two tactics are available to be executed: nop
(no operation) and retrain. Whenever the system receives a new job generated
by the environment, the pre-condition for the tactics’ execution is true. At this
point, the model checker, when asked to synthesize optimal policies, decides
whether to adapt or do nothing and triggers the corresponding tactic in the
ML component. The latency of the tactic is accounted for by the ML component
during tactic execution. The tactic’s cost is subtracted from the system’s rewards
when the job completes its execution.
Non-Machine-Learning Component. The non-ML component, which is re-
sponsible for simulating the execution of the jobs has two possible platforms at
its disposal. When the environment generates a new job, and after the adapta-
tion manager has selected the adaptation tactic to execute, the executor is ready
to deploy the job on the selected platform. To simulate the execution, it needs to
know the latency of the job. As there is intrinsic uncertainty in determining job
execution latency, we assume the existence of historical data which can be used
to construct distributions of possible execution latencies. These distributions can
be discretized (as shown in Table 1) and fed to PRISM so that model checking
is feasible and this uncertainty is explicitly modeled. Whenever a job completes,
the utility of the system is updated by adding the job completion reward and
subtracting the tactic execution cost.
Machine Learning Component. In this use-case, since there are two possible
execution platforms and two input job types, we define two binary confusion
matrices: one for each type of job. As for the knowledge element of the state
of the ML component, in order to model this aspect, we count the inputs of
each type that are received and use this count as a proxy for the amount of
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Table 1: Discretized distribution of job latencies for both job types and for
each platform and corresponding likelihoods. Each cell in each matrix has the
probability of the corresponding PRISM transition. That is, in Table 1a with
probability 18% the predicted latency for a job is 3 on platform 1 (P1) and 8
on platform 2 (P2). If, for this situation, the ML component is very accurate,
it will select platform 1 to deploy the job, since P1 has the lowest latency. The
difference between job types lies in the accuracy of the ML model for each.

(a) Job latency depends on the plat-
form in which it is executed. Thus, in
this case, ML accuracy has an impact
on system utility.

P1
P2

lat. 6 8 10

lat. prob. 20% 30% 50%

3 60% 12% 18% 30%

5 30% 6% 9% 15%

7 10% 2% 3% 5%

(b) The diagonal accounts for more
than half of the probability, thus it is
more likely that the latency of a job will
be the same regardless of the platform,
which means that ML accuracy should
have no impact on system utility.

P1
P2

lat. 3 5 7

lat. prob. 15% 70% 15%

3 15% 2.25% 10.5% 2.25%

5 70% 10.50% 49.0% 10.50%

7 15% 2.25% 10.5% 2.25%

information encoded in these new inputs. This count is increased whenever an
input arrives and reset whenever the tactic is executed. This information then
contributes to the impact of the retrain adaptation tactic on the ML component.
The increase in model’s accuracy is computed as described in Section 3.2.

4.2 Collecting Rewards

Since the system receives a fixed reward whenever it completes a job, its goal
is to maximize the number of jobs completed in a given time period, while
simultaneously minimizing the costs spent on retraining. This requires seeking
an adequate trade-off between investing time and resources to retrain the model
and reasoning about the expected impact of the current accuracy on system
utility. Since model checking tools require the specification of properties in order
to compute optimal policies, we verify with PRISM a property that maximizes
system utility when the state “end” is reached, i.e., when the time period expires.

5 Results

In this section, we evaluate whether the proposed framework can reason about
the trade-offs of ML component adaptation. Specifically, to understand whether
adding self-adaptation functionalities to ML-based systems translates into in-
creased benefits to the system, we investigate two research questions:
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Fig. 2: Utility gains achievable due to ML adaptation when the system operates
in an execution context in which ML accuracy impacts system utility.

RQ1 – What are the estimated utility gains achievable through ML adaptation?
RQ2 – Under what conditions does the framework determine that ML adapta-
tion improves overall system utility?
Experimental settings. In our experiments we varied the following parame-
ters: (i) the retrain cost; (ii) the retrain latency (1, 5, 10); and (iii) the prob-
ability that the environment generates each type of job (from 0 to 1 with 0.1
increments). Throughout all experiments we set to 100% the probability of the
environment generating a new job. Since we are interested in modelling environ-
ment changes, we assume that the ML model has better knowledge for one type
of job than for the other, which is assumed to be the environment change. Thus,
the ML model has an accuracy of 95% for jobs of type 1 and an accuracy of 50%
for jobs of type 2 (these correspond to symmetric confusion matrices), and the
impact factor is set to 0.1 for both types of jobs. Job latencies and uncertainty
in each platform are set according to Table 1.
Results. Figure 2 shows, for an execution context in which ML accuracy affects
system utility, the utility gains achievable due to ML adaptation. The difference
between plots corresponds to the latency of execution of the retrain tactic. We
can see that, regardless of how this parameter is set, adapting the ML component
improves system utility in specific areas of the space. Determining the boundary
that divides the areas of the space in which it is worth/not worth adapting is
thus a critical aspect. Our framework is capable of determining this boundary,
which we show in the following paragraphs.

The plots in Figure 3 represent, for different execution contexts and tactic
latency, the conditions of the environment in which adapting the ML model
improves overall system utility. We now focus on Figure 3a and analyze the
impact of the retrain cost and job probability variables. As expected, for low
values of retrain cost, the framework tells us that adaptation is always worth it,
regardless of the environment stimuli. However, as the cost starts to increase,
adaptation is no longer the optimal action when the environment is more likely
to generate jobs of type 1. This is due to the fact that, since the ML model
has a good knowledge for jobs of type 1, the costs of adaptation outweigh its
benefits. Differently, when the environment generates more jobs of type 2 (prob.
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Fig. 3: Areas of the space in which ML adaptation improves overall system utility.
Black squares correspond to configurations in which it is worth adapting. White
squares correspond to configurations in which having the option to adapt does
not improve utility. The top row corresponds to the execution context of Table 1a
and the bottom row to the execution context of Table 1b.

job 1 < 50%), the tolerated cost of adaptation tactics increases. As tactic latency
increases (Figures 3b and 3c), we see that in order for adaptation to be worth
it, its cost must also be lower than in scenarios with lower latency.

The difference between the figures in the top row (Figures 3a, 3b,3c) and
the figures in the bottom row (Figures 3d, 3e,3f) is the execution context of the
system, that is, the latencies of the jobs in each platform and their probabilities
(which are set according to Table 1). For the bottom row it is more likely that
a job has the same latency regardless of the platform (Table 1b). In such a
situation, having an inaccurate ML model has little impact on system utility.
The comparison between top and bottom rows demonstrates this effect: for the
bottom row plots, adaptation pays off only in very few scenarios and only when
tactic cost is low. In fact, we see that when latency is high (Figure 3f), the cost
of retrain has to be close to zero for adaptation to provide benefits.

Overall, our preliminary results confirm that adaptation of ML components in
systems improves overall system utility (RQ1). Our framework also shows that,
in this concrete example, if the costs of adaptation are too high, adaptation
pays off if: (i) the environment changes very fast (probability of job 1 lower
than 0.5), or (ii) the tactic has a low latency. The framework further shows that
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in execution contexts in which ML accuracy is not expected to impact system
utility, ML adaptation rarely pays off (RQ2).

6 Related Work

Existing frameworks for reasoning about self-adaptation are mostly focused on
dealing with uncertainty [25, 26, 4] and on analyzing human involvement and
the benefits of providing explanations [9, 21–23]. Differently, the framework we
propose is concerned with analyzing the trade-offs of adapting an ML component
of a system when it has a negative impact on system utility.

In the literature on self-adaptive systems ML has been leveraged by recent
works to improve different stages of the MAPE-K loop, such as the Plan and
the Analysis stages [13]. Works focusing on collective SAS have also researched
the most common learning strategies employed in these systems, finding that
reinforcement learning is the most common [10, 12]. Differently from both these
lines of work, our framework is focused on single-agent systems that rely on ML
in order to work as expected. Our framework, which leverages self-adaptation to
improve AI in systems, is aligned with the vision of Bureš [3], that argues for a
new self-adaptation paradigm in which self-adaptation and AI benefit and enable
one-another. This is also aligned with the vision for continual AutoML [11], which
advocates for architectures that can manage ML systems and adapt them in the
face of adversities (such as uncertainty, data-set shift, outliers).

The literature on continual/lifelong learning addresses problems which self-
adaptive systems also face [30, 24]. Specifically, this branch of literature focuses
on open-world problems (i.e., unexpected changes can occur) and on how to learn
new tasks from past tasks. In fact, as discussed in our prior work, the techniques
developed in this field can be thought of as tactics of self-adaptive systems to
adapt ML models [7]. Instead, in this work, we present an actual model-checking
based framework to reason about whether the benefits of executing an adaptation
tactic outweigh its costs and improve overall system utility.

7 Threats to Validity and Future Work

Our framework relies on the assumption that we have access to historical data,
however this might not be the case for all systems. Specifically, for new deploy-
ments of systems (e.g. new client of a fraud detection company) there is an
initial period during which data must be collected. Nonetheless, we believe this
assumption is acceptable since this data collection period is also required to have
an initial training set with which to train the ML component.

Additionally, in this work we adopt a pragmatic strategy for modelling the
benefits of a retrain tactic, which corresponds to instantiating a parametric
model that defines the benefits of retrain as being proportional to the model’s
loss and to the amount of new data gathered since the previous execution of
the tactic. However, this corresponds to a simple model of the benefits of adap-
tation. In fact, not only is it possible that this relationship is not linear, but
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also there are likely other factors that influence the benefits of a tactic and that
should be considered. Examples of such factors are the latency of a tactic and
the context of the system upon the tactic’s execution. Taking the example of
the retrain tactic, intuitively one would expect the benefits provided by such a
tactic to increase as its execution latency also increases, i.e., when the system
is retrained for a longer period. However, it is also expected that the achievable
accuracy will plateau at some point, thus not corresponding to a linear relation-
ship. As future work, we plan to study how the benefits of different adaptation
tactics vary based on parameters such as tactic execution latency, application
and application context, to extend our current model of adaptation benefits to
account for these factors.

Finally, since in the presented use case we considered a single adaptation
tactic (model re-train), we plan to conduct the aforementioned study on sev-
eral adaptation tactics. This corresponds to extending the repertoire of tactics
considered by the framework and also entails the extension of the framework to
account for dynamic environments.

8 Conclusion

In this paper we proposed a framework to reason about the need to adapt ML
components of ML-based systems. Resorting to a running example, we showed
how to instantiate the framework in a practical setting and how system utility
can be improved through the adaptation of ML components. We further demon-
strated how the adaptation decision boundary is affected by environment changes
and execution context. As next steps, we plan to investigate more fine-grained
approaches to modelling the effects of retraining ML models, as well as to ex-
tend our framework to consider additional adaptation tactics (e.g., unlearning
and human-in-the-loop).
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