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Abstract—In previous research, we have developed a theoretical
framework to help software architects make better decisions when
planning software evolution. Our approach is based on representa-
tion and analysis of candidate evolution paths—sequences of tran-
sitional architectures leading from the current system to a desired
target architecture. One problem with this kind of approach is
that it imposes a heavy burden on the software architect, who
must explicitly define and model these candidate paths. In this
paper, we show how automated planning techniques can be used
to support automatic generation of evolution paths, relieving this
burden on the architect. We illustrate our approach by applying
it to a data migration scenario, showing how this architecture
evolution problem can be translated into a planning problem and
solved using existing automated planning tools.

I. INTRODUCTION

Software architecture—the discipline of designing the high-
level structure of a software system—is today widely recognized
as an essential element of software engineering. However,
one topic that today’s approaches to software architecture
do not adequately address is software architecture evolution.
Architectural change occurs in virtually all software systems of
significant size and longevity. As systems age, they often require
redesign in order to accommodate new requirements, support
new technologies, or respond to changing market conditions.
At present, however, software architects have few tools to help
them plan and carry out such evolution.

In our previous research, we have developed an approach to
support architects in reasoning about evolution [1], [2], [3], [4].
In our model, the architect considers a set of candidate evolution
paths—sequences of transitional architectures leading from the
current state to a desired target architecture—and a tool helps
the architect to select which path best meets the evolution goals.

A significant limitation of this approach, and other similar
approaches that have been proposed [5], [6], [7], is that they
impose a substantial burden on the architect. The architect
must explicitly define the candidate evolution paths and specify
the architectural transformations within each such path. In this
way, the architect fully defines the evolution space of possible
evolutions under consideration, permitting various kinds of
automated analysis. However, in a scenario with many candidate
evolution paths, and numerous transitions within each path, this
can be an onerous task.

A better approach would be to generate these evolution paths
automatically. Rather than fully specifying the evolution space,
the architect could simply define the initial and target architec-

tures; then a tool could select architectural transformations from
a predefined library of domain-relevant evolution operators and
apply them in sequence to generate candidate paths from the
initial architecture to the target architecture.

While this would alleviate the burden on the architect, it
introduces a new difficulty: determining how to compose these
operators together so as to generate the target architecture from
the initial architecture. (Given n operators, each with m param-
eters ranging over a domain of d architectural elements, there
are (ndm)l evolution paths of length l. Clearly an undirected
brute-force search for an optimal path would be unwise.) This
problem is very much akin to the planning problem in artificial
intelligence [8]: given a description of the state of the world,
a goal, and a set of actions, how can we generate a plan—a
sequence of actions leading from the initial state to the goal?

In this paper, we describe our attempt to apply existing ap-
proaches and tools from automated planning to the architecture
evolution path generation problem. Adapting these existing
approaches to software architecture evolution is a difficult
problem, as it requires consideration of a number of concepts—
architectural changes, technical and business constraints, rich
temporal relationships among events, trade-offs among evolution
concerns—that do not translate easily into the planning domain.

The paper is organized as follows. Section II presents nec-
essary background on architecture evolution and automated
planning. Sections III through V present our main contributions:
• a systematic approach for translating architecture evolution

problems into automated planning problems (Section III);
• an application of the approach to a scenario based on a

real-world evolution problem, which we use to evaluate the
practicality and efficacy of the approach (Section IV); and

• a discussion of the fundamental challenges involved in apply-
ing automated planning technology to software architecture
evolution (Section V).

Finally, Section VI reviews related work, and Section VII
concludes with a discussion of future work.

II. BACKGROUND

A. Software Architecture

Software architecture is the subdiscipline of software engi-
neering that pertains to the overall structure of a software system.
Software architects represent software systems in terms of the
high-level elements of which they are made. At a basic level,
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Fig. 1. A depiction of an evolution graph. Each node is a complete architectural
representation of the system. Edges represent possible evolutionary transitions.
The architect’s task is to select the optimal path through the graph.

a software architecture can be thought of as an arrangement
of components (the computational elements and data stores
of a system) and connectors (interaction pathways among
components) [9]. Although software architecture is a relatively
young field, it has grown rapidly in importance and influence.
Today, software architecture is practiced in some form at nearly
all real-world software organizations of significant size.

B. Software Architecture Evolution

The problem of understanding software architecture evolution,
however, has just begun to be explored. In recent years, we
and other researchers have been working to develop techniques
and tools for understanding and modeling software architecture
evolution [1], [2], [5], [6], [7]. In this section, we describe the
approach that we have developed in our own research [1], [2].
However, many other approaches share conceptual similarities
with our own, and so the general principles that we describe in
the following sections are, by and large, applicable to these other
approaches as well. We discuss this further in Section VI-A.

Our approach is based on considering possible evolution paths
from the initial architecture of the system (as it exists at the
outset of the evolution) to the target architecture (the desired
architecture that the system should have when the evolution is
complete). Each such evolution path can be represented as a
sequence of transitional architectures leading from the initial
architecture to the target architecture. We can represent and
relate these evolution paths within an evolution graph whose
nodes represent transitional architectures and whose edges
represent the possible transitions among them (Fig. 1). These
transitions, in turn, may be understood as sequences of evolution
operators—reusable architectural transformations such as add
adapter or migrate database.

Once the evolution graph is defined, the next step is to apply
analyses to select the optimal path—the one that best meets
the evolution goals, while adhering to any relevant technical
and business constraints, and subject to concerns such as cost
and duration. To support the architect in selecting a path, we
provide two kinds of analysis: evolution path constraints, which
define which paths are legal or permissible, and path evaluation
functions, which provide quantitative assessments of qualities
such as duration and cost. Operators and analyses are generally
specific to particular domains of evolution; for example, an
evolution of a desktop application to a cloud-computing platform

will have different operators and analyses than an evolution
of a thin-client/mainframe system to a tiered web services
architecture.

Further details are given elsewhere [2]. Here it suffices to
observe that while the analysis step (i.e., the execution of
constraints and evaluation functions) is easily automatable,
the definition of the evolution graph (i.e., the definition of
evolution paths in terms of evolution operators and transitional
architectures) is a manual and time-intensive process. This limits
the practical applicability of this kind of approach, since in many
cases it may be difficult to justify the time and effort necessary
to model the evolution paths under consideration.

C. Automated Planning

Given a set of states S, a set of actions A : S → S, an initial
state s0 ∈ S, and a set of goal states Sg ⊆ S, the planning
problem is the task of finding a sequence of actions that, when
applied to s0, yield one of the goal states.1 The planning problem
has broad applications, from robotics to business management
to natural language generation, and has received a great deal of
attention from artificial-intelligence researchers. A variety of
approaches and tools for solving planning problems have been
developed over the last several decades.

To solve a planning problem, a planner must receive a
specification of the problem in a standard format. A number
of specification languages for planning problems have been
devised, but by far the most popular—the lingua franca of auto-
mated planning—is the Planning Domain Description Language.
PDDL was first introduced in 1998 [10] and soon became a
de facto standard in the planning literature, facilitating reuse
of research and allowing easy comparison of planners, systems,
and models [11]. These qualities, along with its feature set, make
PDDL a good choice for our work.

PDDL has undergone several revisions. The version that we
adopt in this paper is PDDL2.1 [11], introduced in 2002, which
greatly enhanced the language’s expressivity by introducing:

• numeric fluents, which provided full support for modeling
numerically valued resources such as fuel and distance;

• durative actions, which greatly enriched the temporal expres-
siveness of the language; and

• plan metrics, which allowed specification of a metric with
respect to which a plan should be optimized (e.g., minimize
fuel consumption).

All three of these are extremely useful for modeling architecture
evolution problems (as we will see later). Most of PDDL2.1 is
now reasonably well supported by the leading planners. There
have subsequently been further additions to the language, such
as the introduction of derived predicates in PDDL2.2 [12] and
constraints and preferences in PDDL3 [13]. While these features
would certainly be useful to us, they are not as broadly supported
by planners, so we chose to target PDDL2.1.

1This is a very abstract formulation of the planning problem. For a discus-
sion of alternative definitions, including some that are more computationally
oriented, see Ghallab et al. [8].
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D. Structure of a PDDL Specification

A PDDL specification comprises two parts, which appear
in separate files: a domain description (consisting chiefly of a
description of possible actions that characterize domain behav-
iors) and a problem description (consisting of the description of
specific objects, initial conditions, and goals that characterize
a problem instance). Thus, a domain description can be shared
across multiple planning problems in the same domain. Both
the domain file and the problem file are expressed in a Lisp-like
syntax, as a list of parenthesized declarations.

In PDDL2.1, a domain file can declare:
• A set of types to which objects may belong. Each type may

optionally declare a supertype. If a type does not declare a
supertype, it is deemed to be a subtype of the built-in type
Object; all types are ultimately subtypes of Object (perhaps
indirectly). A type is simply a name; it does not define a set
of properties or methods. Rather, predicates, functions, and
actions can specify the types that they govern.

• A set of predicates over objects.
• A set of functions that map Objectn → R.
• A set of action schemata, each comprising a list of param-

eters, the conditions under which the action may be taken,
and the effects of the action. A durative action additionally
specifies its duration.

A problem file declares:
• A list of objects.
• The initial conditions, consisting of truth assignments for

predicates and numeric value assignments for functions.
• The goals, which are defined in first-order predicate logic.
• A metric to be minimized or maximized.

A planner takes a domain description and problem description
as input and produces a plan as output—a timed list of actions
(with parameters specified) that achieves the specified goals.

III. APPROACH

The problem of generating an evolution path from an initial
architecture to a target architecture can be framed as a planning
problem in the sense of Section II-C as follows:
• S, the set of states, is defined to be the set of legal software

architectures.
• A, the set of actions, is defined to be the set of evolution

operators.
• s0, the initial state, is defined to be the initial architecture.
• Sg, the set of goal states, is defined to be the singleton set

consisting of the target architecture of the system.
With the problem framed in this manner, we can apply automated
planning tools to the task of generating evolution paths.

In the remainder of this section, we will describe an approach
for translating an architecture evolution problem into a planning
problem expressed in PDDL. (A summary appears in Table I.)
In Section IV, we will make this discussion concrete by showing
how we applied it to a specific architecture evolution problem
and used off-the-shelf planners to generate evolution paths.

TABLE I
SUMMARY OF OUR APPROACH FOR TRANSLATING ELEMENTS OF AN

ARCHITECTURE EVOLUTION PROBLEM INTO PDDL

Evolution Element PDDL Translation
Transitional architecture State

Architectural element type Object type
Architectural element Object
Relationship among archi-
tectural elements

Predicate

Evolution operator Action
Parameter Action parameter
Precondition Action condition
Architectural transformation Action effect
Property Action duration, or action effect modify-

ing function value
Evolution path Plan

Initial architecture Initial state
Target architecture Goal state
Path constraint PDDL3 constraint, or action condition

supported by predicates to track the state
Path evaluation function Metric

A. Representing the Initial and Target Architectures

The first step of modeling an architecture evolution problem
is to specify the initial and target architectures. As noted in
Section II-A, a software architecture is conventionally conceived
as an arrangement of components and connectors. (Of course,
this is a simplification. Architectural specifications may be
enriched in various ways, for example by adding further ele-
ments such as ports and roles, or by decomposing architectural
elements to reveal their substructure. We will see an example of
architectural decomposition in Section IV.) These components
and connectors are often expressed in terms of component types
(such as WebService or Database) and connector types (such as
EventBus or HttpConnection).

PDDL’s type system, though simple, is quite adequate for our
needs. We can define component and connector types as types
in the PDDL domain description, then define the components
and connectors themselves as PDDL objects of the defined types.
Finally, the relationships among the components and connectors
can be expressed using predicates, which are defined in the
domain description and assigned truth values in the problem
description. Fig. 2 shows a simple example.

The specification of the initial architecture will appear within
the :init block, which defines the initial conditions, and the
specification of the target architecture will appear within the
:goal block, which defines the goals.

B. Representing Evolution Operators

An evolution operator, of course, corresponds to a PDDL
action. But how can we actually capture an evolution operator as
an action using the specification facilities that PDDL provides?

In our model of architecture evolution, an operator comprises:
• A set of parameters. For example, a wrap legacy component

operator will take as a parameter the component to wrap. In
PDDL, an action likewise specifies its parameters.

• A description of the architectural transformations that the
operator effects. These are expressed as a sequence of
elementary architectural changes such as delete component
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Domain description

(:types (Component Connector - Object
Client Server - Component
HttpConnection - Connector))

(:predicates
(connects ?c - Connector ?a ?b - Component))

Problem description

(:objects (HttpConn1 - HttpConnection
Client1 - Client
Server1 - Server))

(:init (connects HttpConn1 Client1 Server1))

Fig. 2. An extremely simple software architecture and its PDDL representation.

or attach connector. In PDDL, we can represent these
transformations via the action’s effects.

• A description of the operator’s preconditions. These map into
PDDL in a straightforward manner; in PDDL, any action
may declare its preconditions in terms of predicates and
functions over the action parameters.2

• A list of properties of the operator, used to support evaluation
functions. Examples of properties are the time needed to
carry out the operator, the cost of doing so, and the operator’s
effects on system performance. In PDDL, the duration
property is given special prominence due to its importance
in temporal reasoning; a durative action must specify its
duration. As for the other properties, these are best captured
via PDDL effects. For example, if an evolution operator
has a cost property (indicating that it costs $1,000), we can
define a cost function in the PDDL specification, then add
an increase cost 1000 effect to the action.

One subtlety worth noting is that PDDL does not permit
actions to create new objects (nor destroy existing ones). This is
significant because many evolutions entail the creation of new
architectural elements, or the decommissioning of existing ones.
As a result, in an evolution that may involve creation of new
elements, we must declare some potential objects that do not
exist in the initial architecture but may be used to stand in for
elements created during the evolution. In this case, we can define
an isReal predicate that is false for such potential objects and
becomes true when an action creates a new architectural element
out of a potential object. Such approaches have substantial
limitations and are rather cumbersome, and Frank et al. [14]
identify this as an important limitation of PDDL. (A related
point is that a PDDL specification can have only finitely many
objects, while the set of software architectures reachable via a
set of evolution operations may be infinite in general.)

C. Representing Path Constraints

Path constraints are perhaps the most challenging element
of an architecture evolution problem to translate into PDDL.

2For durative actions, this is generalized to include other kinds of
conditions—not only preconditions (conditions that must hold at the start of
an action), but also conditions that must hold at the end of an action, or over
its entire duration. These are specified with the temporal annotations at start,
at end, and over all. (These can also be applied to effects.)

In our previous work [2], we have represented path constraints
using an extension of linear temporal logic (LTL). Temporal
logic provides a natural way of representing a wide variety of
path constraints. For example, a constraint such as “the legacy
bus must not be removed until the new enterprise service bus is
installed” can be quite simply represented in LTL by the formula

legacyBusPresent U esbInstalled,

where legacyBusPresent and esbInstalled are predicates over
architectural models. Unfortunately PDDL2.1 does not have any
means to define constraints using temporal formulas.

One way of addressing this would be to develop a way of
translating temporal formulas into PDDL directly. Indeed, there
is previous work in this direction; Cresswell & Coddington [15]
present a means of compiling an LTL goal formula into PDDL.
They use a two-step process; first they generate a finite-state
machine that accepts traces of the LTL formula, then they encode
this automaton as a collection of facts in PDDL and modify the
actions to track the current state. This process is conceptually
complex and encumbers the specification with numerous state
variables. Therefore, we leave to future work the challenge of
extending this compilation process to the augmented version of
LTL that we use to capture path constraints.

To avoid such conceptual complexities here, we take a
pragmatic approach: we characterize certain restricted classes
of path constraints (with an eye toward the kinds of constraints
that will arise in the example of Section IV) and show how they
can be easily represented using the existing facilities of PDDL.

Constraints that must hold throughout an evolution. The
simplest possible kind of constraint is one that must hold contin-
uously through the entire duration of the evolution (e.g., a system
must always be protected by a firewall, or a trusted component
may never connect directly to an untrusted one). In LTL, such
a constraint takes the form �φ for some propositional formula
φ. Despite their simplicity, these constraints are quite common.
Such a constraint amounts to an architectural constraint that
persists through an evolution. In PDDL, we can model such a
constraint easily (if verbosely) as a condition on every action.

Ordering constraints. Another common class of constraints
comprises constraints that govern the order of the operations that
are to be carried out in the course of an evolution. For example,
a firewall must be installed before connections to a protected
resource are permitted; a high-priority client should receive a
service upgrade before a low-priority one. Such constraints are
also generally easy to model in PDDL. If an operator B must
be preceded by an operator A, then we can have action A set a
predicate, aExecuted, that is a precondition for operator B.

Timing constraints. Constraints on the time at which evolution
operations are carried out, or the time by which certain goals
must be achieved, are extremely common in real-world evolution.
In the simplest case, there may be a requirement that the
evolution be completed by a specific date. In more complex
cases, there may be a set of such requirements: feature A must
be available for client 1 by April, feature B for client 2 by July,
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and so on. These can be modeled in PDDL by setting appropriate
conditions on durative actions.

A more complex kind of timing constraint is a constraint that
certain actions can be performed only at certain times. A real-
world example is that many retailers, such as Amazon.com and
Costco, refrain from making major software changes during the
Christmas shopping season, so as not to introduce bugs during a
period of heavy use. In Section IV, we will see another example,
in which certain operations can be carried out only on certain
days of the week. These are also expressible in PDDL. There
are some challenges, however, which we explore in Section IV.

There are many constraints that do not fit into these categories,
but in our experience, many of the constraints that arise in real-
world evolutions do fall into these groups. In Section IV, we will
see how various constraints can be represented in PDDL.

A final point to note is that PDDL3 has its own notion of
a constraint. Like our constraints, PDDL3 constraints express
conditions that must be met by an entire plan (in contrast
with conditions in PDDL2.1, which are evaluated locally, with
respect to a particular point in time). Moreover, these constraints
are expressed in a syntax reminiscent of temporal logic, with
operators such as always, sometime, at-most-once, and so on.
However, there are substantial restrictions; most significantly,
these modalities may not be nested. As a result, this constraint
language is less expressive than LTL. Nonetheless, PDDL3
constraints would be a useful way of expressing a broad class of
evolution path constraints. However, because we are targeting
PDDL2.1 here, we do not discuss them further.

D. Representing Path Evaluation Functions

As described earlier, an evaluation function provides a quanti-
tative evaluation of a path. There may be evaluation functions
for various dimensions of concern, such as cost and availability.
Ultimately, the architect’s aim is to select the path that best
meets the goals of the evolution. In an evolution with multiple
competing concerns, we can define an evaluation function that
captures a notion of overall path utility, which may be a weighted
composite of primitive functions such as cost and availability.

All of this can be translated into PDDL. Evaluation functions
such as cost and availability can be modeled as nullary functions
in PDDL, and their values can be modified by actions as
appropriate. Finally, we can use these values to set a plan metric
in the problem description, which planners will try to optimize
in generating a plan. This metric can simply be a reference to
a function, or it can be an arbitrary arithmetic expression. The
metric can also incorporate the total duration of the plan by using
the built-in variable total-time.

IV. APPLICATION

To show how this approach can be used in practice, and
to provide a demonstration of its applicability, we applied it
to an evolution scenario. The scenario is based loosely on a
real-world data migration experience that we had previously
elicited (for other purposes) from a practicing software engineer.
We elaborated this experience into a complete description of
an architecture evolution problem, so that it would be specific

enough to operationalize as a planning problem (Section IV-A).
Then, using the approach described above, we translated this
scenario into PDDL (Sections IV-B through IV-F).3 Finally, we
used two different off-the-shelf planners to generate plans and
evaluated the results (Section IV-G).

A. Evolution Scenario

Our example is based loosely on a real-world data migration
scenario, in which a company had to migrate a number of
services from an old data center to a new data center. The
planning for this migration was nontrivial, because there were
a number of interacting constraints governing how the various
services had to be moved. For example:
• Different services had different kinds of availability require-

ments. For example, some services had to be continuously
available for regulatory reasons (zero planned downtime). In
other cases, there were periods when certain services were
required to be online (e.g., the payroll system had to be
online at the end of each payroll period).

• Different services had to be moved in different ways. Some
services (particularly those hosted on Unix systems) could
be easily cloned into the new data center using the corporate
storage area network. Other services were more finicky and
could not be cloned automatically; manual intervention was
required to migrate these services. And there were a few
unique legacy services that were running on custom-built,
special-purpose hardware. These services were so closely
tied to the machines on which they were running that the
only practical way to migrate them was to load the machines
onto a truck and drive them to the new data center.

• No services could be established in the new data center until
a firewall was installed there.

In the real-world experience on which our scenario was based,
the architects experienced significant difficulty in managing
these interacting constraints to develop a satisfactory plan. The
planning process ultimately took roughly six months, and the
migration itself was carried out over several weekends.

We elaborated this scenario by adding additional architectural
details as necessary to create a complete specification of an
architecture evolution problem. For example, although we had
general information about the kinds of architectural elements and
evolution constraints, we did not have a list of specific service
names and locations, so we invented fictitious service names and
assigned them to hosts at will.

The initial architecture is shown in Fig. 3. There are five
hosts in data center DC1, each with one or more services, all
of which must ultimately be migrated to DC2. We defined
a number of specific evolution constraints based on the real-
world constraints above. For example, we specified that the
payroll service in Fig. 3 must be available on Mondays to permit
payroll processing, and we defined rules governing how the
services could be moved (e.g., Unix services can be cloned to

3Space constraints permit us to show only snippets of our PDDL speci-
fication here. However, for the sake of replicability, we have made our entire
specification available at http://www.cs.cmu.edu/~jmbarnes/pddl/.
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Fig. 3. Deployment view of the initial architecture of the data migration scenario.

a new data center over the network, but the analytics engine
is tied to special-purpose hardware that must be physically
relocated). We defined six evolution operators: install network
switch, install firewall, decommission host, clone host, manually
transfer service, and physically relocate host. Finally, we defined
two ways of evaluating path quality: cost and duration. Cost is
affected by when and how systems are migrated (migrating
a system on weekends is more expensive than during normal
working hours, and physically moving a host is much more
expensive than cloning a host over the network). Duration refers
to the overall time to complete the evolution.

B. Representing the Initial and Target Architectures

We represented the initial architecture following the approach
described in Section III. In the domain description, we defined
PDDL types for the architectural element types: DataCenter,
Service, and Host (with subtypes UnixHost and WindowsHost).
We defined predicates to indicate relationships among elements,
such as an is-in predicate that holds when a given host is in
a given data center and an is-on predicate that holds when a
given service is on a given host. With these types and predicates
defined, we were able to translate the initial architecture in Fig. 3
into a PDDL description of the initial state.

Representing the target architecture as a set of goal conditions,
on the other hand, entails some subtleties. In principle, we
could define the target architecture by the same method that
we defined the initial architecture—specify exactly which
services are on which hosts and which hosts are in which data
center. In practice, however, this would be a bit too restrictive.
Because services can be migrated in multiple ways—cloning,
manual service-by-service migration, or physical relocation—
there are actually multiple legal end states. For example, we
could clone ClientWebsiteHost1 onto a new host in DC2 and

decommission ClientWebsiteHost1, or we could instead move
ClientWebsiteHost1 itself to DC2. These would result in slightly
different end states, but either is permissible from the standpoint
of path correctness; the choice should be left to the planner. Thus,
we defined the goals of the evolution in more general terms; we
defined a permissible end state to be one in which (1) all services
end up in DC2 and (2) no hosts remain in DC1.

In principle, these goals are easy to represent in PDDL:

(:goal (and
; All services end up in DC2.
(forall (?s - Service)

(exists (?h - Host) (and (is-on ?s ?h) (is-in ?h DC2))))

; No hosts remain in DC1.
(not (exists (?h - Host) (is-in ?h DC1)))))

Unfortunately, practical considerations prevent such a straight-
forward approach. Many planners—including the OPTIC plan-
ner that we use in Section IV-G—do not support goals with
negative or existential operators. To get around this, we defined
helper predicates such as was-migrated (to indicate that a service
has been migrated) and was-removed-from (to indicate that
a host has been removed from a data center) and modified
the actions to update them throughout the evolution. We then
declared our goals as follows:

(:goal (and
; All services end up in DC2.
(forall (?s - Service) (was-migrated ?s))

; No hosts remain in DC1.
(was-removed-from ClientWebsiteHost1 DC1)
(was-removed-from ClientWebsiteHost2 DC1)
(was-removed-from SafetyDbHost DC1)
(was-removed-from FinanceHost DC1)
(was-removed-from AnalyticsHost DC1)))

This complicated the domain description, but it allowed us to
express our goals crisply despite the limitations of planners.

C. Representing the Evolution Operators

We represented the operators as actions in accordance with
the approach described in Section III. Fig. 4 shows an example:
the action for manual migration of a service from one host to
another. Much of this is straightforward. The action first defines
its parameters: the service being migrated, the hosts it is moving
from and to, and the current day (we will explain this parameter
in Section IV-D). Then it defines its duration: 3.9 hours.

Many of its conditions correspond directly to preconditions
of the evolution operator. For example, to migrate a service s
from host h1 to host h2, clearly s must be on h1 at the outset.
We also require that h1 is in DC1 and h2 is in DC2 (we only
want to move services from DC1 to DC2), and we require that
the firewall and network switch are already installed.

The conditions that reference no-work-in-progress, today, and
time-since-last-day are used in modeling the passage of time,
which we describe in Section IV-D.

Many of the effects are straightforward specifications of
the evolution operator’s architectural transformations. When
the manuallyMigrateService operator is applied, the effect on
the architecture is that service s is now on host h2. We
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(:durative-action manuallyMigrateService
:parameters (?s - Service ?h1 ?h2 - Host ?d - Day)
:duration (= ?duration 3.9)
:condition (and

(at start (is-on ?s ?h1))
(over all (is-in ?h1 DC1)) (over all (is-in ?h2 DC2))
(over all (has-firewall DC2))
(over all (network-switch-installed))
(at start (not-yet-migrated ?s))
(over all (can-be-migrated-individually ?s))
(over all (ok-to-move-on ?s ?d))
(at start (no-work-in-progress))
(over all (today ?d))
(over all (>= (allowed-downtime ?s) 3.9))
(at start (<= time-since-last-day 4.1)))

:effect (and
(at end (is-on ?s ?h2))
(at end (was-migrated ?s))
(at end (not (not-yet-migrated ?s)))
(at end (not (is-unused ?h2)))
(at start (not (no-work-in-progress)))
(at end (no-work-in-progress))
(at start (increase (total-cost) (∗ 20 (cost-multiplier ?d))))
(at end (increase current-hour 3.9))
(at end (increase time-since-last-day 3.9))))

Fig. 4. Expression of an evolution operator in PDDL.

also must set here a number of helper predicates, as men-
tioned in Section IV-B, such as was-migrated, not-yet-migrated,
and is-unused. The effects that mention no-work-in-progress,
current-hour, and time-since-last-day are used to support the
modeling of the passage of time and will be discussed in
Section IV-D. Finally, the effect that increases total-cost is used
for cost optimization, described in Section IV-F.

D. Representing Time

The most difficult part of representing this scenario in PDDL
was capturing its temporal aspects. The temporal features that
PDDL provides fall well short of this scenario’s needs. In partic-
ular, this scenario (like many evolution problems) is steeped in
references to real-world time—that is, clock time, or calendar
time. The payroll service must be available on Mondays; the
accounting service can be moved only on weekends; operations
are most expensive when carried out on weekends. PDDL is ill
suited to representing such considerations. PDDL’s conception
of time is a continuous timeline, extending from zero to infinity.
To reason about concepts such as Mondays and working hours,
we must model them ourselves—and do so in a way consistent
with PDDL’s own model of time. This is rather difficult.

In this scenario, we are interested only in working hours; the
company, in this scenario, has only day employees, and all work
takes place between 9 a.m. and 5 p.m. We therefore interpret
PDDL’s timeline within an eight-hour day cycle; time indices
between 0 and 8 represent Monday, times between 8 and 16
represent Tuesday, and so on.

This simplifies the specification because we do not need to
model the empty nighttimes. However, it also creates some
difficulties. We now must prohibit actions from spanning day
boundaries; we do not want the planner to schedule a four-hour
action as beginning at time 6 (Monday at 3 p.m.) and ending

at time 10 (Tuesday at 11 a.m.). An action must be completed
within a single day. Enforcing this rule in PDDL is difficult.

First we need a way to keep track of time. In PDDL, an
action does not know when it is occurring; that is, it has no way
to refer to the current time. If we want to keep track of time,
then, we must do it ourselves. To do so, we define a nullary
function, current-hour, and we add to each action an effect,
(at end (increase current-hour ?duration)), to set its value.4

If PDDL provided a sufficiently rich set of arithmetic oper-
ators, this alone would be sufficient to prevent actions from
crossing day boundaries; each action could have a precondition

?duration + (current-hour mod 8) ≤ 8.

Unfortunately, PDDL does not have a modulo operator. In-
stead we must further complicate the specification with a
time-since-last-day function. As with current-hour, every ac-
tion has an effect that increments this value by the action’s
duration. We also create a special action, waitTillNextDay, that
waits until the next multiple of 8 and resets the value of
time-since-last-day to 0. Finally, we give each action a precon-
dition, <= time-since-last-day (- 8 ?duration), that prevents each
action from being scheduled when there is less time remaining
in the day than is required to carry out the action.4

Days of the week pose yet another challenge. Recall that some
services can be moved only on certain days; for example, the
accounting service can be moved only on weekends. Again,
with a modulo operator, this would be easy; weekends are
those times such that 40 ≤ current-hour mod 56 < 56. Since
PDDL lacks a modulo operator, we must again complicate the
domain description, this time by defining a Day type (with values
Monday, Tuesday, etc.) and a predicate over days, today, that
indicates the current day. We then modify the waitTillNextDay
action to set this predicate. This will permit us to express
constraints pertaining to days of the week in Section IV-E.

A final temporal rule that we enforced was to forbid concur-
rency. This scenario describes a single, small team of engineers
evolving a simple information system; they can work on only
one thing at a time. PDDL2.1, on the other hand, is based on an
action execution model that is concurrent by default; a planner
will gladly schedule all actions to occur simultaneously at time 0
if allowed to do so. To prevent this, every action has a condition
that prevents it from executing when the no-work-in-progress
predicate is true; every action sets this predicate to false at the
beginning of its execution and resets it to true at the end.

E. Representing the Path Constraints

We have already seen the representation of some of the
constraints in this scenario. The prohibition on concurrency,
for example, is achieved by means of action conditions and
effects. The requirement that a firewall must be installed before
any services are migrated is similarly simple to model via a
has-firewall predicate that is set by the installFirewall action and
appears as a precondition for all the migration actions.

4As can be seen in Fig. 4, we actually hard-code the duration rather than
using the ?duration parameter, because some planners have trouble when the
?duration parameter appears in effects and conditions.
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The availability constraints were more challenging to model.
We saw in Section IV-D that a substantial infrastructure is
required to model days of the week in a way that can support
the expression of these constraints. With this infrastructure in
place, we can specify which services may be moved on which
days by defining a predicate, ok-to-move-on, over services and
days, and setting its values in the problem description (e.g.,
ok-to-move-on AccountingService Saturday). Then, we set on
each migration action a condition that the given service may
be moved on the current day. To do so, we add a parameter
?d - Day to the action to represent the current day (which we
enforce with a today ?d condition) and then add the condition
ok-to-move-on ?s ?d (see again Fig. 4 for a full example).

We use a similar strategy to define the constraints governing
how different services may be migrated. For example, to define
which services can be manually migrated over the network,
we define a can-be-migrated-individually predicate over services,
which is a condition of the manuallyMigrateService action.

Most of these constraints are specified using the same general
idiom: the constraints themselves often appear as action condi-
tions, but they often are supported by predicates that keep track
of state (which is maintained through the use of action effects).
This is an ad hoc version of the kind of state-based reasoning
that would occur if we were to adopt a more formal means of
translating constraints expressed in temporal logic into PDDL à
la Cresswell & Coddington, as suggested in Section III-C.

F. Representing the Path Evaluation Function

In this evolution, the goal is to minimize cost; thus we have
a single evaluation function, which we model in PDDL by
the nullary function total-cost. The value of this function is
incremented by the actions, and the function is defined as the
goal metric in the problem description.

The main complication is that the costs of actions are not
fixed. Actions are more expensive on weekends than during
normal working hours. The straightforward way to model this
would be with conditional effects. Unfortunately they are not
well supported (by now a familiar refrain).

Instead we introduce a cost-multiplier function over days,
which we value at 1 for weekdays and 3 for weekends. Since
each action has a parameter representing the current day of the
week (see Section IV-E), each action can incorporate this cost
multiplier in its effect on total-cost, as shown in Fig. 4.

G. Generating an Evolution Path

The final PDDL specification was of moderate size: 24 objects,
14 predicates, 8 functions, 130 initial conditions, and 9 durative
actions (each with, on average, 8 conditions and 9 effects). With
the specification complete, the next step was to generate a plan.

We used two different planners to demonstrate a key advan-
tage of PDDL: its status as a lingua franca supported by many
planners. We chose LPG-td [16] and OPTIC [17] as the two
planners due to their feature sets, ease of installation and use,
maturity, planning quality, and general good reputation.

Both planners work by first attempting to generate a correct
(but possibly low-quality) plan, then progressively refining the

0.000: (installswitch monday) [1.900]
1.901: (installfirewall dc2 monday) [0.900]
2.802: (clonehost2 clientwebsitehost2 unusedunixhost1 clientwebsiteservice3 clientwebsiteservice4 monday) [1.900]
4.703: (clonehost2 clientwebsitehost1 unusedunixhost2 clientwebsiteservice1 clientwebsiteservice2 monday) [1.900]
6.604: (waittillnextday monday tuesday) [1.399]
8.004: (physicallymovehost1 analyticshost analyticsservice tuesday) [5.900]
13.905: (clonehost1 safetydbhost unusedunixhost3 safetydbservice tuesday) [1.900]
15.806: (waittillnextday tuesday wednesday) [0.201]
16.008: (decommissionhost safetydbhost dc1 wednesday) [3.899]
19.908: (decommissionhost clientwebsitehost2 dc1 wednesday) [3.899]
23.809: (waittillnextday wednesday thursday) [0.200]
24.011: (decommissionhost clientwebsitehost1 dc1 thursday) [3.899]
27.911: (manuallymigrateservice payrollservice financehost analyticshost thursday) [3.899]
31.812: (waittillnextday thursday friday) [0.200]
32.013: (waittillnextday friday saturday) [8.000]
40.015: (manuallymigrateservice accountingservice financehost analyticshost saturday) [3.899]
43.915: (waittillnextday saturday sunday) [4.100]
48.016: (waittillnextday sunday monday) [8.000]
56.017: (decommissionhost financehost dc1 monday) [3.899]

Fig. 5. Output from OPTIC showing an optimal evolution plan. In bold are
action names, which are followed by the action parameter assignments. At the
beginning of each line is the time at which the action is executed.

plan to improve its quality. Both planners correctly interpret our
PDDL specification, find a correct solution within a few seconds,
and refine it into an optimal solution soon thereafter.

Fig. 5 shows an optimal plan generated by OPTIC. Ob-
serve that services are always moved by the cheapest means
permissible—cloning is preferred, with manual migration and
physical host transfer used only when required. In addition, the
planner avoids scheduling any unnecessary activity on weekends;
the only service migrated on the weekend is the accounting
service, which is forbidden to be moved during weekdays.

To reliably quantify the planners’ performance on our spec-
ification, we ran our specification on each planner ten times
on an Amazon EC2 medium instance (which has 3.75 GiB of
memory and processing power roughly equivalent to a single 2.2-
GHz core). Conducting multiple runs was particularly important
because LPG-td’s plan generation is highly nondeterministic;
the initial plan is created based on a random seed.

In all ten runs, OPTIC was able to find a correct plan within
8 seconds and an optimal one (i.e., one that achieves the
minimum possible cost) within 10 seconds. LPG-td was much
slower at finding an optimal plan (unsurprisingly, since it is a
much older planner than OPTIC), but it did succeed consistently
within a few minutes, and it always found a correct, nonoptimal
solution very quickly. Table II presents summary statistics.

We also ran a modified version of the problem in which we
asked the planners to minimize plan duration and ignore cost.
Times for these runs appear in the lower part of Table II.

V. FINDINGS

Our experience demonstrated the viability of using automated
planning tools to solve architecture evolution problems, but it
also revealed challenges. We now discuss our main findings.

PDDL is expressive enough to capture the significant con-
cerns of an evolution problem. Despite some challenges, we
were able to capture the evolution scenario in its entirety. The
PDDL model of a planning problem is broadly consistent with a
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TABLE II
TIME TO GENERATE EVOLUTION PATH

Time to Generate Time to Discover
Initial Solution Optimal Solution

Min Median Max Min Median Max
Minimizing cost

LPG-td 3.6 3.8 3.9 40.6 126.2 278.4
OPTIC 6.6 6.6 7.9 7.6 7.6 9.3

Minimizing time
LPG-td 3.7 3.7 4.1 49.8 90.5 287.4
OPTIC 6.6 6.6 7.8 15.3 15.4 17.4

All figures are in seconds and are calculated over ten runs.

path-oriented view of architecture evolution; the correspondence
between evolution operators and PDDL actions, for example, is
satisfyingly direct.

We did have to contend with some limitations of PDDL. Most
significantly, PDDL’s simplistic model of time makes it difficult
to specify constraints based on calendar time or clock time.
Modeling constraints about which actions could occur on which
days of the week, for example, posed significant challenges.

There has, incidentally, been considerable research on im-
proved methods for expressing temporality in planning problems
[18], [19], and languages have been developed that increase the
temporal expressivity of PDDL [20], [21]. However, PDDL is
far more widely supported than any other planning language.

Automated planners can effectively and efficiently generate
evolution paths. Both automated planners we tried were able
to quickly generate high-quality solutions to a moderately
complex architecture evolution problem. This kind of automated
path generation has the potential to ameliorate one of the
most significant burdens of a path-based approach to software
architecture evolution: the need for the architect to manually
specify the evolution graph in full detail before beginning
analysis. By taking advantage of automated planners, we are
able to capitalize on decades of research in artificial intelligence,
which allows paths to be generated quickly and intelligently.

Of course, we should be cautious about overgeneralizing
based on a single experience. Some architecture evolution
problems may be more amenable to solution by automated
planners than others. More work is needed to evaluate the
scalability and applicability of this approach.

Current off-the-shelf planners have limited feature sets.
Although PDDL provides a powerful array of features for
specifying complex and intricate planning problems, few (if
any) existing planners support the language fully. In Section IV,
we mentioned numerous instances where we had to adapt our
specification to accommodate the limitations of planners. In
most cases, we were able to circumvent these limitations. That
is, in many cases, planner limitations do not reduce the practical
expressivity of the specification language, but they do make
specifications more verbose and awkward. For example, poor
support for negative and existential conditions forced us to clutter
our specification with many otherwise unnecessary declarations.

This somewhat compromises PDDL’s effectiveness as a lingua
franca. Ideally, we should be able to write a PDDL specification
once and use any PDDL-based planner to analyze it. In practice,

planners’ limitations are so idiosyncratic and poorly documented
that adapting a specification to work with a particular planner is
a frustrating and time-consuming process.

Debugging planning specifications is difficult. PDDL specifi-
cations are inherently difficult to debug. If a specification author
forgets, for example, to specify a necessary initial condition in
the problem description, causing the problem to be unsolvable,
the planner will simply say that it is unable to generate a plan.
There is no good way to track down the cause of the problem.

The experimental nature of available off-the-shelf planners
exacerbates this problem. Even the most stable planners are fairly
buggy and have limited documentation. We chose LPG-td and
OPTIC for their relative maturity and stability, but while using
them, we encountered many bugs and undocumented limitations.
Error messages were often unhelpful, and it can be difficult
to tell whether a problem is caused by a specification error, a
limitation of the planner, or an outright bug. When a planner
encounters something its designers did not anticipate, it is as
likely to crash with a segmentation fault as it is to display any
useful explanation of the problem.

VI. RELATED WORK

A. Software Architecture Evolution

In this paper, we have described how automated planning
techniques can be used in support of the approach we developed
in our previous research. However, ours is not the only approach
to software architecture evolution. In recent years, a number of
software architecture researchers have turned their attention to
evolution. (For a general survey of this body of work, see recent
literature reviews [22], [23] or our journal paper [2].)

Many of these approaches bear fundamental similarities to our
own work. For example, Le Goaer [5] frames the architecture
evolution problem in terms of a directed graph over architectural
configurations that is very similar in substance to our evolution
graph. Grunske [7], in his work on architectural refactorings,
and Wermelinger & Fiadeiro [24], in their work on architecture
reconfiguration, do not have anything like an evolution graph,
but they do have means of describing composable architectural
transformations that capture steps in an architectural evolution—
very much like our evolution operators. And Brown et al.
[6], although they do not focus on capturing architectural
transformations, speak of architecture evolution in terms of
“development paths” that are essentially the same concept as our
evolution paths. Thus, the general ideas we have presented in
this paper are more broadly applicable beyond our own research;
the approach we have described here could be easily adapted to
these other methods for reasoning about architecture evolution.

B. Automatic Generation of Evolution Paths

The only previous effort to tackle the problem of automatic
generation of candidate architecture evolution paths is a recent
paper by Ciraci et al. [25]. They confront the same problem as
we do, and their conception of architecture evolution is explicitly
based on our previous work [1]. However, their approach is based
on graph transformation rather than automated planning.
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The most significant difference between our approach and
theirs is that in their approach, evolution paths are generated by
beginning with the initial architecture, then applying (blindly,
without a goal) any evolutionary transformations that are appli-
cable to the current architecture. The tool continues to apply
transformations until there are no more that can be applied. This
stable state is then deemed to be a final architecture. This process
is repeated to generate other paths (whose final architectures
may be different). Finally, the various alternatives are scored to
see which of the final architectures match the desired structural
characteristics and which paths have the desired properties.

Our approach is much more goal-directed. Instead of begin-
ning with the initial architecture and blindly applying operators
in the hope of attaining a suitable path with a suitable end
state, we begin by defining both the initial architecture and
the target architecture. Then, we use a planner to generate a
path by which the initial architecture can be evolved into the
target architecture. This requires more sophisticated reasoning,
but automated planners are excellent at exactly this type of
reasoning. Because our approach is based on an intelligent, goal-
directed search, we expect it to be more scalable than brute-force
generation of all possible evolution paths. However, further work
is needed to evaluate the performance of different approaches.

Nonetheless, this highlights what we view as a key advantage
of our approach to evolution path generation, namely that it
draws on decades of research on creating efficient, intelligent
planners. This allows us to solve the challenging problem of
composing elementary operations together to reach a predefined
goal state that may be quite different from the initial state.

C. Other Applications of Automated Planning

Although this is the first attempt to apply automated planning
techniques to software architecture evolution, there have been
applications of automated planning to other topics related to
software architecture and software reconfiguration, such as
planning dynamic reconfigurations of software architectures
[26], computing workflows that effect autonomic changes to
the configuration of a computing system [27], and composing
services in a service-oriented architecture [28]. Although the
techniques that support these approaches are analogous to ours,
this previous work does not address the problem of assisting an
architect in planning long-term software evolution.

VII. CONCLUSION

We have presented an approach for automated generation of
evolution paths that draws on research on automated planning
to conduct an intelligent, goal-directed, optimizing search. We
demonstrated this approach on a scenario based on a real-world
example and showed that existing off-the-shelf planners can be
employed to generate evolution paths effectively and efficiently.
While this is an encouraging first step, many questions remain
unanswered, and we believe this area is ripe for future work.
Topics of particular interest include:

Modeling uncertainty. Architecture evolution often involves
uncertainty—about the architecture of the system, about the
effects of the evolution effort, about exogenous events such as

technological changes. There are various ways that uncertainty
could be incorporated into the evolution model, from risk
analyses to contingency planning. There has been a tremendous
amount of work on uncertainty in automated planning, but it is
an open question how to apply this to architecture evolution.

Modeling transitions comprising multiple evolution oper-
ators. Evolution operators capture fairly fine-grained archi-
tectural changes—installing an adapter, migrating a database,
upgrading a message bus. In conceptualizing an evolution path,
it is often helpful to think of evolution transitions as being
somewhat coarser, with each transition potentially comprising
multiple operators. This streamlines the evolution graph, making
it more comprehensible to architects and simplifying analysis.
Here, we have treated evolution operators as synonymous
with the evolution graph transitions, but in principle a planner
could aggregate operators into larger transitions by identifying
particularly significant points within the evolution to serve as
the nodes of the evolution path. However, it is not immediately
clear on what basis it should select these significant points.

Generating multiple candidate paths. In this work, we have
delegated to the planner not only the task of generating candidate
paths, but also that of selecting an optimal path. However, it
might be desirable to keep the architect in the loop. Rather than
present a single, supposedly optimal path to the architect, it
might be better to present multiple candidate paths, allowing
the architect’s experience and judgment to play a role in path
selection. However, it is not clear how we might best generate
multiple paths. One option might be to run the planner multiple
times, each time optimizing a different metric.

In addition to these theoretical challenges, there are practical
issues that must be addressed to make this kind of approach
useful to practitioners, including not only the issues we have
identified with existing planning technologies, but also questions
on how planners can be integrated into the architecture planning
process and adapted to be usable by practicing architects. One
significant challenge in that vein is automating the translation of
architecture evolution problems into PDDL specifications. An-
other is facilitating reuse of portions of planning specifications
within domains of evolution, perhaps based on the concept of
evolution styles that we have described previously [1], [2].

Finally, automated planning is only one possible approach to
evolution path generation. Other approaches, such as constraint
satisfaction or techniques from operations research, might well
be fruitful avenues for exploration.
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