
An Advanced Persistent Threat Simulation Range for Research of
Self-Adaptive Systems

Ryan Wagner
Carnegie Mellon University

Pittsburgh, PA
rrwagner@cs.cmu.edu

David Garlan
Carnegie Mellon University

Pittsburgh, PA
garlan@cs.cmu.edu

Matt Fredrikson
Carnegie Mellon University

Pittsburgh, PA
mfredrik@cs.cmu.edu

ABSTRACT
While security is important to self-adaptive systems research, it is
particularly difficult to simulate the characteristics of the most
insidious adversary, the advanced persistent threat (APT). The
research community requires an APT simulation environment that
provides the realism and depth that is necessary for a sufficient
simulation, but this should not be too complex, difficult, or
expensive to use. Additionally, a successful simulation
environment must ensure that malware does not escape into the
wild. We present a cyber range for self-adaptive systems
researchers to simulate APTs, complete with an example system
under test and attack scenario.

KEYWORDS
APT, simulation, range, testbed

ACM Reference format:

R. Wagner, D. Garlan, M. Fredrikson. 2018. SEAMS Ar<fact Paper in word
Format. In Proceedings of SEAMS conference, Gothenburg, Sweden, May
2018 (SEAMS’18), 6 pages.
DOI: 10.1145/123 4

1 INTRODUCTION
Security is important to self-adaptive systems research. It is
becoming increasing important as systems must function in a
global, interconnected world in which adversaries abound. A
failure to account for security attacks can result in serious or
devastating impacts to a business (e.g., Sony [1], Aramco, [2],
Target [3]).

Security is an especially difficult problem for adaptive systems
for several reasons. First, it requires consideration of adversarial
behavior rather than expected behavior. Instead of thinking about
concepts like mean time to failure, researchers must assume an
adversary will seek to deliberately expose and exploit weak points
in a system. Security also interacts in complex ways with other
qualities of interest like performance, usability, deployment cost,
and more. To make matters more difficult, the security terrain is
constantly changing as new vulnerabilities are discovered. All of

this combines to create high degrees of uncertainty regarding the
security of systems. It can be difficult to know whether security
events mean an attack is occurring; if so, so is carrying out the
attack; what the objectives of the attack are; which system
resources are affected; etc.

Self-adaptive systems researchers have looked at a variety of
aspects of security in the past. For example, some researchers have
explored how to respond to denial of service (DoS) attacks [4],
while others have examined malware on Android devices [5].

However, an important form of the security problem exists that
yet to be researched in depth—advanced persistent threats (APTs).
APTs require a more holistic, high-level understanding and
response than approaches that focus on mitigating a single
vulnerability or class of vulnerabilities.

The US National Institute of Standards and Technology says an
APT “possesses sophisticated levels of expertise and significant
resources which allow it to create opportunities to achieve its
objectives by using multiple attack vectors (e.g., cyber, physical,
and deception).” And “The advanced persistent threat: (i) pursues
its objectives repeatedly over an extended period of time; (ii) adapts
to defenders’ efforts to resist it; and (iii) is determined to maintain
the level of interaction needed to execute its objectives.” [6]

Many of the recent, high-profile and high-impact attacks like
those on Sony have been the result of APTs. APTs combine into
one attack scenario the aspects of timing (e.g., the sequencing of
attack steps), observability (i.e., of the attack to the defender and of
the defenses to the attacker), uncertainty of multiple plausible
attack paths, and other factors that complicate analysis. Because of
this, APTs take the security quality attribute to a greater level of
complexity.

For a researcher wishing to simulate the characteristics of an
APT, they need to develop a plausible scenario with multiple
vulnerabilities present that can be leveraged by an attacker. The
attacker must have opportunities to respond to the defender. The
attacker’s response may occur over an extended period of time, and
the attacker’s behavior may be difficult to distinguish from
ordinary behavior. Due to these complex characteristics, one of the
impediments to APT research in self-adaptive systems is the lack
of testbeds within which new approaches can be protoypted and
evaluated. Ideally such a testbed would provide (a) realism:

SEAMS’18, May 2018, Gothenburg, Sweden R. Wagner et al.

2

sufficient reality to represent realistic APT scenarios, (b)
flexibility: the ability to tailor the testbed to new vulnerabilities, (c)
deployability: the ability to deploy the testbed without worrying
about compromising the infrastructure on which it is hosted or
escaping into the wild.

There is a delicate balance between being faithful to a large
scale system while being lightweight enough for multiple runs of a
simulation in a research environment. Too much fidelity is
expensive and time-consuming both to build and run repeatedly as
a simulation. On the other hand, insufficient fidelity will lead to
unreliable results when evaluating approaches to APTs. For
example, a consideration of only one type of class of vulnerabilities
or one set of system functionality may not be rich enough to
understand the impact of an APT or system adaptations in a
particular type of environment.

Even more important than the utility of the results, a testbed
must be operated in a secure manner. Malware should not be able
to escape into the wild, or it can cause harm to others and expose
the researcher to liability. This means that a testbed must be
constructed to either strongly contain live malware, or it should
focus on simulating the effects of malware while avoiding the use
of malicious software that could escape the test environment.

In this paper, we present a testbed for evaluating self-adaptive
systems against. APTs. We provide a testbed environment with key
functionality for research use. We also provide a small,
representative enterprise network architecture for use in such an
environment. The architecture has built-in vulnerabilities that we
are able to exploit via injects that simulate the effects of APTs. The
scenario is based on a real-world example APT, and our system can
be extended or reconfigured to run other APT attacks. Our system
can be downloaded and run from our Github site [7].

In Section 2, we present the primary objectives, requirements,
and constraints of this system. In Section 3, we describe our key
design choices. Section 4 provides an explanation of the
architecture for the simulation environment and the system under
test, which is evaluated in Section 5. Section 6 describes potential
use cases for our exemplar. In Section 7, we discuss our future plans
for the exemplar, and we conclude in Section 8.

2 GOALS

2.1 Primary Objectives
The primary objective of this example is to provide a reusable,
extensible, and realistic security testbed environment in which self-
adaptive systems researchers can evaluate their approaches to
mitigating the threat of APTs. This environment should be able to
provide an environment in which researchers can quickly stand up
a demonstration system under test (SUT) and run a series of
experiments on the SUT. Each test run might have a different initial
state (e.g., network architecture) or different injects (e.g., different
exploits used by an attacker or defenses applied by the defender).
At the conclusion of each test run, logging and other state data

should be captured, and the system should be automatically rebuilt
to prepare it for the next test run.

2.2 Benefit to Researchers
There are several benefits in having an example environment

with pre-built attack scenario. For researchers who are not security
experts, a peer-reviewed example of a complex attack ensures that
research into APT defenses is validated against a realistic attack
scenario.

Even for researchers who are familiar with security, benefits
exist. By using a consistent test environment, researchers can
ensure accurate comparisons of approaches. Additionally, a ready-
made environment and corpus of accepted attack scenarios saves
precious research time, enabling researchers to focus on how to
solve a security problem rather than creating an attack example.

Lastly, an example attack scenario aids dialog between
researchers and often their industry or government funding sources,
which are bound by confidentiality agreements. An agreed-upon
neutral scenario provides researchers the ability to reason about and
evaluate their approaches without being bound to non-disclosure
agreements that could limit the impact and reuse of research.

2.2 Primary Quality Attributes
A number of criteria guided the creation of this testbed. In
particular, our non-functional requirements were that the testbed
must enable APT scenarios that are realistic, of sufficient depth to
be useful, and abstracted enough to be lightweight for multiple test
runs. All of this contributes to a quality of being useful to
researchers. These are described in more depth below.
• Realism. To the extent possible, the example should draw on
actual attacks that have occurred “in the wild.” A key assumption
here is that attackers and defenders have finite resources, including
time. The attack complexity should be roughly commensurate with
actual APT attacks, both in number of exploit types and difficulty
of attack. The defender’s environment should be a representative
scale model of a typical network environment, with the types of
components seen in real environments. The attack should have a
goal (e.g., exfiltrating a specific data set) just like traditional APT
attacks.
• Depth. The example should be complex enough to demonstrate a
multi-stage attack scenario. At multiple points in the scenario, the
attacker and defender should be confronted with trade-offs (e.g.,
security versus functionality) that complicate their individual goals.
• Abstraction. To guide researchers, this scenario should be simple
enough to be modeled without the burden of numerous extraneous
steps and details that might obscure the salient information relevant
to understanding the attacker’s and defender’s current state and
actions.
• Utility for research. The ultimate goal of this scenario is to
provide researchers something that clearly presents interesting
research challenges and can be used to validate research in
defending against sophisticated APT-style attacks.

An Advanced Persistent Threat Simulation Range for
Research of Self-Adaptive Systems SEAMS’18, May 2018, Gothenburg, Sweden

 3

2.2 Constraints
Additionally, there are a series of constraints that any successful
testbed must acknowledge. The two primary ones are cost and
security. Researchers must contend with limited budgets. This
means that any testbed must be cost effective to obtain,
straightforward to maintain, and efficient to operate. The
components should be inexpensive, and the testbed should be able
to support realism and depth without breaking the budget. Security
is even more tricky. It is non-negotiable to allow malware to escape
into the wild. Any system must be able to guarantee that no live
malware will escape from the test environment. In some cases, a
public cloud environment may specifically prohibit the use of live
malware in the cloud.

3 KEY DESIGN CHOICES
To describe our design, we must first divide it into two distinct
views: there is an outer architecture that is the simulation
environment (sometimes called a range), and there is an inner
architecture that is the system under test (SUT). This separates
concerns between the orchestration of the testing and the subject of
the test. It promotes our functional requirement to be able to easily
change the initial state or injects without needing to modify the
simulation environment’s own architecture. The division of these
two views was our first, and most far-reaching, design decision.

Second, we decided to focus on the use of commonly-used open
source software for both the range and SUT. First and foremost,
this kept our costs manageable. Proprietary software can be
expensive, and if one needed to buy licenses to operate tens of
instances of proprietary software in a SUT, costs would grow
extraordinarily quickly.

We believe our choice of open source software also promotes
realism because it does allow for scaling quickly to larger, richer
environments than we would otherwise be able to afford. Similarly,
open source minimizes licensing concerns, enabling us to share the
product of our work with other researchers. We recognize a
tradeoff in some fidelity with the environments we are trying to
simulate. We also may have suboptimal performance in cases in
which the open source software we chose is not as fast as
proprietary software. However, we determined these were
reasonable tradeoffs for the cost reduction, scalability, and ability
to share within the research community.

Our third design choice was to run in a public cloud
environment. This further enhances scalability by allowing
arbitrarily large SUTs. On the other hand, this inhibits realism by
forcing us to run our range and SUT software in virtualized
environments. It also does increase cost for those who already have
sufficient hardware already available to them. However, we suspect
many researchers will prefer a cloud environment due to the ability
to rapidly scale, and also for the ability to only pay for hardware as
it is used.

Our fourth design decision was intended to deal squarely with
our security concerns. We were concerned about the ability for live
malware to escape our environment, and we were also concerned
about whether or not we could trust malware to only have the
claimed functionality. For example, we did not want to install what
we thought was fully-functional keylogger only to find that there
was a non-documented “feature” that sent keylog data back to an
untrusted third party. For this reason, we chose to simulate malware
by focusing on producing similar observables (e.g., having a
particular file name, creating a file with specific contents, etc.)
rather than running live malware.

4 ARCHITECTURE DESCRIPTION
This exemplar consists of a system within a system. The outermost
system is the simulation range. This range is a test harness
responsible for providing an operating environment for the system
under test, supplying injects, and logging events for the researchers.
The system under test (SUT) is the inner system and simulates a
network environment in which researchers can test approaches to
self-adaptation.

4.1 Outer Architecture: The Range
The simulation range was constructed on Amazon Web Services
(AWS) [8] and leverages well-known open source tools to
accomplish its functions. These tools were chosen because they
could automate much of the range at minimal cost while relying on
tools and techniques that are common in today’s industrial
environments. This promotes the realism and allows researchers to
automate environments with a greater level of depth.

These tools include:
• Packer for creating and configuring virtual machine

images [9]
• Terraform for managing and orchestrating the

deployment of virtual machines on AWS [10]
• Ansible for applying the injects to the SUT [11]
• The ELK stack (Elasticsearch, Logstash, and Kibana) for

searching, storing, and visualizing SUT log data [12]
Together, these tools form the harness for automating the build,

deployment, manipulation, and logging of the system under test.
They are remotely accessed by a researcher as depicted in Figure 1.

A limitation of the current logging structure is that we do not
currently have a simple way to detect log manipulation by an
adversary. Ideally, we could have two logs—one would be the
omniscient log with the ground truth, and the other would be an
alterable log as the defender might see it. The architecture can be
extended to support such logging, and this is under consideration
for future work.

SEAMS’18, May 2018, Gothenburg, Sweden R. Wagner et al.

4

Figure 1: High level allocation view, showing relationship of
researcher, public cloud, range, and SUT

4.2 Inner Architecture: The Exemplar System
Under Test

The system under test is intended to have many of the same
properties of an actual advanced persistent threat attack. In 2013,
the retailer Target was the subject of a sophisticated attack that
resulted in the loss of information, including credit card
information for up to 110 million individuals [13]. The attack was
caused, in part, by the theft of a third party contractor’s login
credentials for a Target-operated system used by Target’s suppliers
[3]. The attacker used these credentials to gain access to Target’s
internal network. From there, the attackers were able to leverage
vulnerabilities and misconfigurations within Target’s corporate
network to ultimately compromise Point of Sale (PoS) terminals.
The compromised PoS terminals collected sensitive payment
information and exfiltrated it to servers operated by the attackers
[14]. While the exact details of the attack are not public, this
exemplar follows the outline of that attack instantiated over a small
enterprise network that is sufficiently complex to be representative
of a similar style of attack. The exemplar also draws from other
published examples of cyber attacks [15] [16].

To model an attack, we construct a notional architecture with
properties analogous to prior known attacks. With the exception of
scale, this architecture should have properties in common with
typical enterprise architectures.

A variety of hosts can exist within the network; some of them
may contribute to only one specific function, but many hosts are
necessary for the delivery of a variety of functions.. These hosts are
likely to have a variety of vulnerabilities; some might be known,
but many are not. These vulnerabilities fall into a variety of
categories like software bugs (e.g., buffer overflows),
misconfigurations, etc.

The exemplar SUT architecture includes a client machine to
simulate the contractor, a web service to simulate the vendor web
portal, a payment logging service, and a point of sale simulator that
generates sample payment transactions. In addition to simulating

the enterprise, the attacker has a host from which to launch attacks,
and she has an FTP server for receiving exfiltrated data.

Figure 2: Overview of attack steps and major SUT components

4.3 Interaction: Injects and Observables
Of course, the architecture alone is just part of an attack; the attack
must be set in motion through a sequence of events. These are
injects into the SUT that modify the state of the SUT. The
modifications lead to observables that can include, among other
observables, the motion of data through the network or the
existence of data or a process on a host.

Like the architecture described above, the attack should also
have many properties in common with attacks seen in the wild. For
example, the attacker should possess the attributes of an advanced
persistent threat described by NIST, including “using multiple
attack vectors,” a willingness to operate over a long period of time,
adaptability based on defenses, and a strong incentive to carry out
a particular mission. Attacks consist of various stages that include
reconnaissance, exploitation of a vulnerability to gain or escalate
privileges, installation of software to maintain persistence, lateral
movement, and continued command and control through the attack
[17]. It is common for attacks to begin with phishing [18]. To make
the attack coordination easier, some APTs leverage a malware
toolkit like Poison Ivy to provide a turnkey malware solution [19].

The architecture at the outset of the attack is depicted in Figure
2. The attacker has an established presence on a host system outside
the enterprise network. The attacker coordinates the attacks from
this host and also operates a File Transfer Protocol (FTP) server
elsewhere on the internet. Also, a third party contractor to the
enterprise has a host that is located outside the enterprise network;
the contractor logs in from this host to an enterprise web portal for
the enterprise’s vendors.

The web portal leverages a SQL Server for database services.
The SQL contains a vulnerability that is leveraged during the

An Advanced Persistent Threat Simulation Range for
Research of Self-Adaptive Systems SEAMS’18, May 2018, Gothenburg, Sweden

 5

attack. The web portal and database server are both within the
enterprise network boundary.

Payments are processed by PoS terminals located within each
store. A redacted log of payment information is sent from the PoS
terminal on the store network to a payment server on the enterprise
network. The payment server in this case also stores copies of
firmware for download by the PoS terminals.

4.4 Observables and Abstraction
Indicators of compromise can include things like file hashes and
URLs. Observations can include data like time(s) of observation(s)
and numbers of observations within a timeframe. Our approach is
to model malware through a focus on observables only. Take as an
example a keystroke logger. Observables can include network logs
like the URL, hash of the downloaded file (if not encrypted), IP
address of the remote host, and filetype of the download (if not
encrypted). The host observables can include process information
and extracted file information (e.g., file names and types, contents,
hashes).

We do not use live malware to model a keylogger. Instead, our
approach uses a benign Python script in lieu of malware. This file
is downloaded from a remote host in the simulation environment.
When executed, the script creates a file on the host that can contain
predefined strings like the word “password,” but—importantly—it
does not capture actual keystrokes. The script can then send the file
to a remote host in the simulation environment. For our purposes,
the primary difference between the functionality of the simulated
keylogger and its real world equivalent is the fact that the simulated
keylogger is not capturing actual keystrokes.

We require that a relevant observable in the simulation
environment must be present if the corresponding observable
would be seen in the live environment. Not all observables must be
represented in the simulation environment.

We determine if an observable in the live environment should
have a corresponding observable in the simulation environment by
determining if the observable contributes to a behavior or effect of
interest. A registry edit to ensure malware persistence is a relevant
observable if our simulation must span reboots (e.g., if rebooting a
machine is a tactic the defender may choose to evict the malware).
However, if the simulation does not need to span reboots, it may
not be necessary for the registry edit to recreate the behavior of
starting an executable on boot.

5 EXEMPLAR EVALUATION

5.1 Realism
This scenario is composed of realistic components–both from an
attack and a defense perspective. The scenario is originally
constructed loosely from the details of the breach of Target in 2013
[3] [14][17]. In this breach, the exploitation began with a phishing
email sent to a third-party contractor for Target. The contractor had
access to service running on a host within Target’s internal

network. Apparently, this host utilized a privileged service with a
default username; this service ran with the same credentials across
the network. Due to lack of sufficient isolation of internal
subnetworks, the attacker was able to move laterally through the
internal network to a point from which they could install malware
on the Point of Sale systems. The malware exfiltrated credit card
data to the attackers.

The exemplar in this paper begins with that scenario, but it
simplifies the network, which could have a large number of hosts
and network devices. Further, the exemplar incorporates
assumptions about how an attacker might execute such an attack
using a combination of common attack methods. These methods
include buffer overflow, SQL injection, and abuse of a
misconfiguration. By incorporating a variety of vulnerabilities in
the scenario, researchers can examine the impacts of exploits that
occur with varying levels of visibility to the defender and are
mitigated using different tactics.

For example, the exemplar assumes SQL injection is possible
on the vendor web portal, the web application where the contractor
can submit invoices to the enterprise. Additionally, the exemplar
assumes a misconfiguration of the SQL server; in this example, the
SQL server is a Microsoft SQL server running with administrator
privileges and has PowerShell enabled, allowing for command line
interaction with the server. The SQL injection will have a different
level of observability and different set of defense tactics than
network reconnaissance. This enables researchers to explore
strategies such as focusing defensive tactics on increasing attack
observability.

5.2 Depth
In our analyses to date, this exemplar has proven to have sufficient
complexity. It has hosts that are both within and also not within the
defender’s control. There are multiple potential paths to
exploitation. Some hosts provide just one overall function (e.g.,
vendor servicing or payment processing), while other hosts
contribute to multiple functions. The number of classes of exploits
is sufficient to warrant a variety of defense tactics.

On the other hand, the scenario is not too complex to cause
modeling problems like state explosion. The number of hosts and
vulnerabilities is relatively small when compared to a full scale
enterprise network environment.

5.3 Abstraction
For our current analyses, we found the level of abstraction in this
particular scenario to be appropriate. Without understanding the
categories of weakness being exploited (e.g., buffer overflow, SQL
injection, misconfiguration), we cannot make assumptions about
exploit observability to the defender, effective defense tactics,
mitigation observability to the attacker, etc.

5.4 Utility for Research

SEAMS’18, May 2018, Gothenburg, Sweden R. Wagner et al.

6

This attack scenario is useful to researchers with a variety of
security objectives. As examples, this scenario can be used to
model timing, observability, and graceful degradation. These are
described in more detail in the next section.

6 POTENTIAL USE CASES
We envision a number of potential use cases in which the testbed
can be useful. These use cases demonstrate the system’s ability to
replicate the steps of an APT, the observables produced in an attack,
and the impact to a realistic system. These use cases include:

Timing of Attacker Eviction: For researchers interested in the
impact of timing on defenses, the scenario includes exploits with a
range of timing requirements from phishing (involving luck, but
potentially fast) to password cracking, which could take days or
longer. Similarly, defense tactics can range in timing. A password
change can occur nearly instantaneously, but the instantiation of a
large honeynet or rebuilding a compromised server from scratch
might take longer. This range of timing for both attack and defense
tactics enables researchers to explore the impact of timing on their
models. As an example, we are exploring the tradeoff between
attempting to evict an attacker based on the current level of
knowledge held by the defender, or continuing to observe to gather
more knowledge while increasing the likelihood of a successful
attacker eviction.

Observability: Observability is an attribute that appears across
the scenario. Some steps in the exploit might not raise the attacker’s
observability, while others do. For example, when the attacker uses
stolen credentials to log in to the vendor web portal, this might look
indistinguishable from a login by the legitimate user. Observability
of defense tactics is also captured in the scenario. Changing a
password would be detected by an attacker. The decision to deploy
a honeynet in response to an attack is observable; however, if the
honeynet were deployed prior to an attack, similar information
would be gathered without tipping off the attacker that her presence
was detected. In the first case, the attacker might note the addition
of numerous decoy hosts on the network; in the second case, there
is no detectable change in the enterprise infrastructure in response
to an attack.

Graceful Degradation: Each of the enterprise’s components
has an associated function or group of functions, and these
functions can be associated with a utility. For example, the vendor
web portal’s web server only supports the function of vendor
invoicing. The Point of Sale devices contribute to the function of
payment processing. However, a directory server could provide an
identity function that is integral to both the vendor invoicing and
payment processing functions. If a defender were exploring options
for graceful degradation, there are a number of potential outcomes
for loss of functionality. We are exploring how knowledge of an
attacker’s presence, combined with knowledge of the network
topology, can be used to determine strategies for self-adaptive
graceful degradation while under attack. The multiple overlapping
functions provide a testbed for researchers who wish to explore

how systems can maximize utility while managing risk in the face
of an ongoing or predicted attack.

7 FUTURE PLANS
As we plan to use this testbed in our own research, we plan to
maintain and expand upon the current system. This includes
continued maintenance and the consideration of extensions as they
prove useful to the community and our needs. A number of
extensions are under consideration.

Our current logging system does not have the ability to display
definitively when an attacker has modified logs. We are
considering an approach that would have two logging systems. One
would have the ground truth, showing all log data, with annotations
to show where logs have been altered or deleted by the attacker.
The second system would display the logs as a defender would see
them—in their altered state. We are also evaluating recent APT
attacks to understand if we should add other types of injects to our
system. As attackers come up with new ways of attacking or modify
old ones, our system should keep pace and reflect these changes.
To make the system easier to integrate with self-adaptive software
systems, we are considering the creation of an API to allow for
interaction with the simulation environment and SUT. This would
allow researchers’ software to integrate directly, applying injects
and monitoring log data. Last, we are considering the ability to
simulate arbitrary times. For example, if a researcher wishes to
apply an inject and then wait five hours in the SUT before applying
the next inject, that should not translate into five hours of waiting
in the real world. We would like to be able to essentially fast-
forward the clock, marking when the injects are applied, and
simulating the passage of time without researchers having to
experience undue amounts of it in the real world.

8 CONCLUSIONS
In summary, our simulation range provides researchers with a
framework for testing their approaches to self-adaptive defense
against APTs. This framework provides realism, depth, and the
appropriate level of abstraction to enable a number of research uses.
Within the range, we provide an example proof of concept APT
example modeled on a real attack. This demonstrates the capability
of the range while providing a realistic example for consideration.

ACKNOWLEDGMENTS
This material is based upon work funded and supported by the
Department of Homeland Security under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of
Defense, and the National Security Agency.

REFERENCES

An Advanced Persistent Threat Simulation Range for
Research of Self-Adaptive Systems SEAMS’18, May 2018, Gothenburg, Sweden

 7

[1] Andrea Peterson. 2014. The Sony Pictures hack, explained. The Washington
Post. Retrieved from https://www.washingtonpost.com/news/the-
switch/wp/2014/12/18/the-sony-pictures-hack-explained/.

[2] Dehlawi, Zakariya, and Norah Abokhodair. 2013. Saudi Arabia's response to
cyber conflict: A case study of the Shamoon malware incident. In
Intelligence and Security Informatics (ISI). IEEE, New York, NY, 73-75.

[3] Brian Krebs. 2014. Target Hackers Broke in via HVAC Company. Retrieved
from https://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-
hvac-company/.

[4] Bradley Schmerl, Javier Cámara, Jeffrey Gennari, David Garlan, Paulo
Casanova, Gabriel A. Moreno, Thomas J. Glazier, and Jeffrey M. Barnes.
2014. Architecture-based self-protection: composing and reasoning about
denial-of-service mitigations. In Proceedings of the 2014 Symposium and
Bootcamp on the Science of Security. ACM Press, New York, NY, 2.

[5] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam
Malek, and Angelos Stavrou. 2012. A whitebox approach for automated
security testing of Android applications on the cloud. In Automation of
Software Test (AST), 2012 7th International Workshop on. IEEE, New York,
NY, 22-28.

[6] Richard Kissel (Ed.). 2013. Glossary of Key Information Security Terms.
NIST. DOI: https://dx.doi.org/10.60208/NIST.IR.7298r2.pdf.

[7] APT Cyber Range. 2017. Retrieved from https://github.com/cmu-
apt/aptcyberrange.

[8] Amazon.com. Amazon Web Services. Retrieved from
https://aws.amazon.com/.

[9] HashiCorp. Packer. Retrieved from https://www.packer.io/.
[10] HashiCorp. Terraform. Retrieved from https://www.terraform.io/.
[11] Red Hat, Inc. Ansible. Retrieved from https://www.ansible.com/.
[12] Elastic. ELK Stack: Elasticsearch, Logstash, Kibana. Retrieved from

https://www.elastic.co/elk-stack.
[13] Elizabeth A. Harris, Nicole Perlroth. 2014. For Target, the breach numbers

grow. The New York Times. Retrieved from
https://www.nytimes.com/2014/01/11/business/target-breach-affected-70-
million-customers.html.

[14] Brian Krebs. 2014. A first look at the Target intrusion, malware. Retrieved
from https://krebsonsecurity.com/2014/01/a-first-look-at-the-target-
intrusion-malware/.

[15] Munk Centre for International Studies. 2009. Tracking Ghostnet:
investigating a cyber espionage network. Information Warfare Monitor.
Retrieved from https://issuu.com/citizenlab/docs/iwm-ghostnet.

[16] Mandiant. 2013. APT1: exposing one of China’s cyber espionage units.
Retrieved from https://www.fireeye.com/content/dam/fireeye-
www/services/pdfs/mandiant-apt1-report.pdf.

[17] Eric M. Hutchins, Michael J. Cloppert, Rohan M. Amin. 2011. Intelligence-
driven computer network defense informed by analysis of adversary
campaigns and intrusion kill chains. Leading Issues in Information Warfare
& Security Research 1, 1 (2011), 80.

[18] Verizon Business. 2016. Verizon Business 2016 data breach investigations
report. Retrieved from
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Repor
t_en_xg.pdf.

[19] Jamie Butler, Kris Kendall. 2008. Blackout: what really happened. Black Hat
USA 2007. Retrieved from https://www.blackhat.com/presentations/bh-usa-
07/Butler_and_Kendall/Presentation/bh-usa-07-butler_and_kendall.pdf.

