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ABSTRACT 
While security is important to self-adaptive systems research, it is 
particularly difficult to simulate the characteristics of the most 
insidious adversary, the advanced persistent threat (APT). The 
research community requires an APT simulation environment that 
provides the realism and depth that is necessary for a sufficient 
simulation, but this should not be too complex, difficult, or 
expensive to use. Additionally, a successful simulation 
environment must ensure that malware does not escape into the 
wild. We present a cyber range for self-adaptive systems 
researchers to simulate APTs, complete with an example system 
under test and attack scenario. 
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1 INTRODUCTION 
Security is important to self-adaptive systems research. It is 
becoming increasing important as systems must function in a 
global, interconnected world in which adversaries abound. A 
failure to account for security attacks can result in serious or 
devastating impacts to a business (e.g., Sony [1], Aramco, [2], 
Target [3]). 

Security is an especially difficult problem for adaptive systems 
for several reasons. First, it requires consideration of adversarial 
behavior rather than expected behavior. Instead of thinking about 
concepts like mean time to failure, researchers must assume an 
adversary will seek to deliberately expose and exploit weak points 
in a system. Security also interacts in complex ways with other 
qualities of interest like performance, usability, deployment cost, 
and more. To make matters more difficult, the security terrain is 
constantly changing as new vulnerabilities are discovered. All of 

this combines to create high degrees of uncertainty regarding the 
security of systems. It can be difficult to know whether security 
events mean an attack is occurring; if so, so is carrying out the 
attack; what the objectives of the attack are; which system 
resources are affected; etc. 

Self-adaptive systems researchers have looked at a variety of 
aspects of security in the past. For example, some researchers have 
explored how to respond to denial of service (DoS) attacks [4], 
while others have examined malware on Android devices [5].  

However, an important form of the security problem exists that 
yet to be researched in depth—advanced persistent threats (APTs). 
APTs require a more holistic, high-level understanding and 
response than approaches that focus on mitigating a single 
vulnerability or class of vulnerabilities. 

The US National Institute of Standards and Technology says an 
APT “possesses sophisticated levels of expertise and significant 
resources which allow it to create opportunities to achieve its 
objectives by using multiple attack vectors (e.g., cyber, physical, 
and deception).” And “The advanced persistent threat: (i) pursues 
its objectives repeatedly over an extended period of time; (ii) adapts 
to defenders’ efforts to resist it; and (iii) is determined to maintain 
the level of interaction needed to execute its objectives.” [6] 

Many of the recent, high-profile and high-impact attacks like 
those on Sony have been the result of APTs. APTs combine into 
one attack scenario the aspects of timing (e.g., the sequencing of 
attack steps), observability (i.e., of the attack to the defender and of 
the defenses to the attacker), uncertainty of multiple plausible 
attack paths, and other factors that complicate analysis. Because of 
this, APTs take the security quality attribute to a greater level of 
complexity.  

For a researcher wishing to simulate the characteristics of an 
APT, they need to develop a plausible scenario with multiple 
vulnerabilities present that can be leveraged by an attacker. The 
attacker must have opportunities to respond to the defender. The 
attacker’s response may occur over an extended period of time, and 
the attacker’s behavior may be difficult to distinguish from 
ordinary behavior. Due to these complex characteristics, one of the 
impediments to APT research in self-adaptive systems is the lack 
of testbeds within which new approaches can be protoypted and 
evaluated. Ideally such a testbed would provide (a) realism: 
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sufficient reality to represent realistic APT scenarios, (b) 
flexibility: the ability to tailor the testbed to new vulnerabilities, (c) 
deployability: the ability to deploy the testbed without worrying 
about compromising the infrastructure on which it is hosted or 
escaping into the wild. 

There is a delicate balance between being faithful to a large 
scale system while being lightweight enough for multiple runs of a 
simulation in a research environment. Too much fidelity is 
expensive and time-consuming both to build and run repeatedly as 
a simulation. On the other hand, insufficient fidelity will lead to 
unreliable results when evaluating approaches to APTs. For 
example, a consideration of only one type of class of vulnerabilities 
or one set of system functionality may not be rich enough to 
understand the impact of an APT or system adaptations in a 
particular type of environment. 

Even more important than the utility of the results, a testbed 
must be operated in a secure manner. Malware should not be able 
to escape into the wild, or it can cause harm to others and expose 
the researcher to liability. This means that a testbed must be 
constructed to either strongly contain live malware, or it should 
focus on simulating the effects of malware while avoiding the use 
of malicious software that could escape the test environment. 

In this paper, we present a testbed for evaluating self-adaptive 
systems against. APTs. We provide a testbed environment with key 
functionality for research use. We also provide a small, 
representative enterprise network architecture for use in such an 
environment. The architecture has built-in vulnerabilities that we 
are able to exploit via injects that simulate the effects of APTs. The 
scenario is based on a real-world example APT, and our system can 
be extended or reconfigured to run other APT attacks. Our system 
can be downloaded and run from our Github site [7]. 

In Section 2, we present the primary objectives, requirements, 
and constraints of this system. In Section 3, we describe our key 
design choices. Section 4 provides an explanation of the 
architecture for the simulation environment and the system under 
test, which is evaluated in Section 5. Section 6 describes potential 
use cases for our exemplar. In Section 7, we discuss our future plans 
for the exemplar, and we conclude in Section 8. 

2 GOALS 

2.1 Primary Objectives 
The primary objective of this example is to provide a reusable, 
extensible, and realistic security testbed environment in which self-
adaptive systems researchers can evaluate their approaches to 
mitigating the threat of APTs. This environment should be able to 
provide an environment in which researchers can quickly stand up 
a demonstration system under test (SUT) and run a series of 
experiments on the SUT. Each test run might have a different initial 
state (e.g., network architecture) or different injects (e.g., different 
exploits used by an attacker or defenses applied by the defender). 
At the conclusion of each test run, logging and other state data 

should be captured, and the system should be automatically rebuilt 
to prepare it for the next test run. 

2.2 Benefit to Researchers 
There are several benefits in having an example environment 

with pre-built attack scenario. For researchers who are not security 
experts, a peer-reviewed example of a complex attack ensures that 
research into APT defenses is validated against a realistic attack 
scenario. 

Even for researchers who are familiar with security, benefits 
exist. By using a consistent test environment, researchers can 
ensure accurate comparisons of approaches. Additionally, a ready-
made environment and corpus of accepted attack scenarios saves 
precious research time, enabling researchers to focus on how to 
solve a security problem rather than creating an attack example. 

Lastly, an example attack scenario aids dialog between 
researchers and often their industry or government funding sources, 
which are bound by confidentiality agreements. An agreed-upon 
neutral scenario provides researchers the ability to reason about and 
evaluate their approaches without being bound to non-disclosure 
agreements that could limit the impact and reuse of research. 

2.2 Primary Quality Attributes 
A number of criteria guided the creation of this testbed. In 
particular, our non-functional requirements were that the testbed 
must enable APT scenarios that are realistic, of sufficient depth to 
be useful, and abstracted enough to be lightweight for multiple test 
runs. All of this contributes to a quality of being useful to 
researchers. These are described in more depth below. 
• Realism. To the extent possible, the example should draw on 
actual attacks that have occurred “in the wild.” A key assumption 
here is that attackers and defenders have finite resources, including 
time. The attack complexity should be roughly commensurate with 
actual APT attacks, both in number of exploit types and difficulty 
of attack. The defender’s environment should be a representative 
scale model of a typical network environment, with the types of 
components seen in real environments. The attack should have a 
goal (e.g., exfiltrating a specific data set) just like traditional APT 
attacks. 
• Depth. The example should be complex enough to demonstrate a 
multi-stage attack scenario. At multiple points in the scenario, the 
attacker and defender should be confronted with trade-offs (e.g., 
security versus functionality) that complicate their individual goals. 
• Abstraction. To guide researchers, this scenario should be simple 
enough to be modeled without the burden of numerous extraneous 
steps and details that might obscure the salient information relevant 
to understanding the attacker’s and defender’s current state and 
actions. 
• Utility for research. The ultimate goal of this scenario is to 
provide researchers something that clearly presents interesting 
research challenges and can be used to validate research in 
defending against sophisticated APT-style attacks. 
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2.2 Constraints 
Additionally, there are a series of constraints that any successful 
testbed must acknowledge. The two primary ones are cost and 
security. Researchers must contend with limited budgets. This 
means that any testbed must be cost effective to obtain, 
straightforward to maintain, and efficient to operate. The 
components should be inexpensive, and the testbed should be able 
to support realism and depth without breaking the budget. Security 
is even more tricky. It is non-negotiable to allow malware to escape 
into the wild. Any system must be able to guarantee that no live 
malware will escape from the test environment. In some cases, a 
public cloud environment may specifically prohibit the use of live 
malware in the cloud. 

3 KEY DESIGN CHOICES 
To describe our design, we must first divide it into two distinct 
views: there is an outer architecture that is the simulation 
environment (sometimes called a range), and there is an inner 
architecture that is the system under test (SUT). This separates 
concerns between the orchestration of the testing and the subject of 
the test. It promotes our functional requirement to be able to easily 
change the initial state or injects without needing to modify the 
simulation environment’s own architecture. The division of these 
two views was our first, and most far-reaching, design decision. 

Second, we decided to focus on the use of commonly-used open 
source software for both the range and SUT. First and foremost, 
this kept our costs manageable. Proprietary software can be 
expensive, and if one needed to buy licenses to operate tens of 
instances of proprietary software in a SUT, costs would grow 
extraordinarily quickly. 

We believe our choice of open source software also promotes 
realism because it does allow for scaling quickly to larger, richer 
environments than we would otherwise be able to afford. Similarly, 
open source minimizes licensing concerns, enabling us to share the 
product of our work with other researchers.  We recognize a 
tradeoff in some fidelity with the environments we are trying to 
simulate. We also may have suboptimal performance in cases in 
which the open source software we chose is not as fast as 
proprietary software. However, we determined these were 
reasonable tradeoffs for the cost reduction, scalability, and ability 
to share within the research community. 

Our third design choice was to run in a public cloud 
environment. This further enhances scalability by allowing 
arbitrarily large SUTs. On the other hand, this inhibits realism by 
forcing us to run our range and SUT software in virtualized 
environments. It also does increase cost for those who already have 
sufficient hardware already available to them. However, we suspect 
many researchers will prefer a cloud environment due to the ability 
to rapidly scale, and also for the ability to only pay for hardware as 
it is used. 

Our fourth design decision was intended to deal squarely with 
our security concerns. We were concerned about the ability for live 
malware to escape our environment, and we were also concerned 
about whether or not we could trust malware to only have the 
claimed functionality. For example, we did not want to install what 
we thought was fully-functional keylogger only to find that there 
was a non-documented “feature” that sent keylog data back to an 
untrusted third party. For this reason, we chose to simulate malware 
by focusing on producing similar observables (e.g., having a 
particular file name, creating a file with specific contents, etc.) 
rather than running live malware. 

4 ARCHITECTURE DESCRIPTION 
This exemplar consists of a system within a system. The outermost 
system is the simulation range. This range is a test harness 
responsible for providing an operating environment for the system 
under test, supplying injects, and logging events for the researchers. 
The system under test (SUT) is the inner system and simulates a 
network environment in which researchers can test approaches to 
self-adaptation.  

4.1 Outer Architecture: The Range 
The simulation range was constructed on Amazon Web Services 
(AWS) [8] and leverages well-known open source tools to 
accomplish its functions. These tools were chosen because they 
could automate much of the range at minimal cost while relying on 
tools and techniques that are common in today’s industrial 
environments. This promotes the realism and allows researchers to 
automate environments with a greater level of depth. 

These tools include: 
• Packer for creating and configuring virtual machine 

images [9] 
• Terraform for managing and orchestrating the 

deployment of virtual machines on AWS [10] 
• Ansible for applying the injects to the SUT [11] 
• The ELK stack (Elasticsearch, Logstash, and Kibana) for 

searching, storing, and visualizing SUT log data [12] 
Together, these tools form the harness for automating the build, 

deployment, manipulation, and logging of the system under test. 
They are remotely accessed by a researcher as depicted in Figure 1. 

A limitation of the current logging structure is that we do not 
currently have a simple way to detect log manipulation by an 
adversary. Ideally, we could have two logs—one would be the 
omniscient log with the ground truth, and the other would be an 
alterable log as the defender might see it. The architecture can be 
extended to support such logging, and this is under consideration 
for future work. 
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Figure 1: High level allocation view, showing relationship of 
researcher, public cloud, range, and SUT 

4.2 Inner Architecture: The Exemplar System 
Under Test 

The system under test is intended to have many of the same 
properties of an actual advanced persistent threat attack. In 2013, 
the retailer Target was the subject of a sophisticated attack that 
resulted in the loss of information, including credit card 
information for up to 110 million individuals [13]. The attack was 
caused, in part, by the theft of a third party contractor’s login 
credentials for a Target-operated system used by Target’s suppliers 
[3]. The attacker used these credentials to gain access to Target’s 
internal network. From there, the attackers were able to leverage 
vulnerabilities and misconfigurations within Target’s corporate 
network to ultimately compromise Point of Sale (PoS) terminals. 
The compromised PoS terminals collected sensitive payment 
information and exfiltrated it to servers operated by the attackers 
[14]. While the exact details of the attack are not public, this 
exemplar follows the outline of that attack instantiated over a small 
enterprise network that is sufficiently complex to be representative 
of a similar style of attack. The exemplar also draws from other 
published examples of cyber attacks [15] [16]. 

To model an attack, we construct a notional architecture with 
properties analogous to prior known attacks. With the exception of 
scale, this architecture should have properties in common with 
typical enterprise architectures.  

A variety of hosts can exist within the network; some of them 
may contribute to only one specific function, but many hosts are 
necessary for the delivery of a variety of functions.. These hosts are 
likely to have a variety of vulnerabilities; some might be known, 
but many are not. These vulnerabilities fall into a variety of 
categories like software bugs (e.g., buffer overflows), 
misconfigurations, etc. 

The exemplar SUT architecture includes a client machine to 
simulate the contractor, a web service to simulate the vendor web 
portal, a payment logging service, and a point of sale simulator that 
generates sample payment transactions. In addition to simulating 

the enterprise, the attacker has a host from which to launch attacks, 
and she has an FTP server for receiving exfiltrated data. 

 

Figure 2: Overview of attack steps and major SUT components 

4.3 Interaction: Injects and Observables 
Of course, the architecture alone is just part of an attack; the attack 
must be set in motion through a sequence of events. These are 
injects into the SUT that modify the state of the SUT. The 
modifications lead to observables that can include, among other 
observables, the motion of data through the network or the 
existence of data or a process on a host.  

Like the architecture described above, the attack should also 
have many properties in common with attacks seen in the wild. For 
example, the attacker should possess the attributes of an advanced 
persistent threat described by NIST, including “using multiple 
attack vectors,” a willingness to operate over a long period of time, 
adaptability based on defenses, and a strong incentive to carry out 
a particular mission. Attacks consist of various stages that include 
reconnaissance, exploitation of a vulnerability to gain or escalate 
privileges, installation of software to maintain persistence, lateral 
movement, and continued command and control through the attack 
[17]. It is common for attacks to begin with phishing [18]. To make 
the attack coordination easier, some APTs leverage a malware 
toolkit like Poison Ivy to provide a turnkey malware solution [19]. 

The architecture at the outset of the attack is depicted in Figure 
2. The attacker has an established presence on a host system outside 
the enterprise network. The attacker coordinates the attacks from 
this host and also operates a File Transfer Protocol (FTP) server 
elsewhere on the internet. Also, a third party contractor to the 
enterprise has a host that is located outside the enterprise network; 
the contractor logs in from this host to an enterprise web portal for 
the enterprise’s vendors. 

The web portal leverages a SQL Server for database services. 
The SQL contains a vulnerability that is leveraged during the 
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attack. The web portal and database server are both within the 
enterprise network boundary. 

Payments are processed by PoS terminals located within each 
store. A redacted log of payment information is sent from the PoS 
terminal on the store network to a payment server on the enterprise 
network. The payment server in this case also stores copies of 
firmware for download by the PoS terminals. 

4.4 Observables and Abstraction 
Indicators of compromise can include things like file hashes and 
URLs. Observations can include data like time(s) of observation(s) 
and numbers of observations within a timeframe. Our approach is 
to model malware through a focus on observables only. Take as an 
example a keystroke logger. Observables can include network logs 
like the URL, hash of the downloaded file (if not encrypted), IP 
address of the remote host, and filetype of the download (if not 
encrypted). The host observables can include process information 
and extracted file information (e.g., file names and types, contents, 
hashes). 

We do not use live malware to model a keylogger. Instead, our 
approach uses a benign Python script in lieu of malware. This file 
is downloaded from a remote host in the simulation environment. 
When executed, the script creates a file on the host that can contain 
predefined strings like the word “password,” but—importantly—it 
does not capture actual keystrokes. The script can then send the file 
to a remote host in the simulation environment. For our purposes, 
the primary difference between the functionality of the simulated 
keylogger and its real world equivalent is the fact that the simulated 
keylogger is not capturing actual keystrokes.  

We require that a relevant observable in the simulation 
environment must be present if the corresponding observable 
would be seen in the live environment. Not all observables must be 
represented in the simulation environment. 

We determine if an observable in the live environment should 
have a corresponding observable in the simulation environment by 
determining if the observable contributes to a behavior or effect of 
interest. A registry edit to ensure malware persistence is a relevant 
observable if our simulation must span reboots (e.g., if rebooting a 
machine is a tactic the defender may choose to evict the malware). 
However, if the simulation does not need to span reboots, it may 
not be necessary for the registry edit to recreate the behavior of 
starting an executable on boot. 

5 EXEMPLAR EVALUATION 

5.1 Realism 
This scenario is composed of realistic components–both from an 
attack and a defense perspective. The scenario is originally 
constructed loosely from the details of the breach of Target in 2013 
[3] [14][17]. In this breach, the exploitation began with a phishing 
email sent to a third-party contractor for Target. The contractor had 
access to service running on a host within Target’s internal 

network. Apparently, this host utilized a privileged service with a 
default username; this service ran with the same credentials across 
the network. Due to lack of sufficient isolation of internal 
subnetworks, the attacker was able to move laterally through the 
internal network to a point from which they could install malware 
on the Point of Sale systems. The malware exfiltrated credit card 
data to the attackers. 

The exemplar in this paper begins with that scenario, but it 
simplifies the network, which could have a large number of hosts 
and network devices. Further, the exemplar incorporates 
assumptions about how an attacker might execute such an attack 
using a combination of common attack methods. These methods 
include buffer overflow, SQL injection, and abuse of a 
misconfiguration. By incorporating a variety of vulnerabilities in 
the scenario, researchers can examine the impacts of exploits that 
occur with varying levels of visibility to the defender and are 
mitigated using different tactics. 

For example, the exemplar assumes SQL injection is possible 
on the vendor web portal, the web application where the contractor 
can submit invoices to the enterprise. Additionally, the exemplar 
assumes a misconfiguration of the SQL server; in this example, the 
SQL server is a Microsoft SQL server running with administrator 
privileges and has PowerShell enabled, allowing for command line 
interaction with the server. The SQL injection will have a different 
level of observability and different set of defense tactics than 
network reconnaissance. This enables researchers to explore 
strategies such as focusing defensive tactics on increasing attack 
observability. 

5.2 Depth 
In our analyses to date, this exemplar has proven to have sufficient 
complexity. It has hosts that are both within and also not within the 
defender’s control. There are multiple potential paths to 
exploitation. Some hosts provide just one overall function (e.g., 
vendor servicing or payment processing), while other hosts 
contribute to multiple functions. The number of classes of exploits 
is sufficient to warrant a variety of defense tactics. 

On the other hand, the scenario is not too complex to cause 
modeling problems like state explosion. The number of hosts and 
vulnerabilities is relatively small when compared to a full scale 
enterprise network environment. 

5.3  Abstraction 
For our current analyses, we found the level of abstraction in this 
particular scenario to be appropriate. Without understanding the 
categories of weakness being exploited (e.g., buffer overflow, SQL 
injection, misconfiguration), we cannot make assumptions about 
exploit observability to the defender, effective defense tactics, 
mitigation observability to the attacker, etc. 

5.4 Utility for Research 
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This attack scenario is useful to researchers with a variety of 
security objectives. As examples, this scenario can be used to 
model timing, observability, and graceful degradation. These are 
described in more detail in the next section. 

6 POTENTIAL USE CASES 
We envision a number of potential use cases in which the testbed 
can be useful. These use cases demonstrate the system’s ability to 
replicate the steps of an APT, the observables produced in an attack, 
and the impact to a realistic system. These use cases include: 

Timing of Attacker Eviction: For researchers interested in the 
impact of timing on defenses, the scenario includes exploits with a 
range of timing requirements from phishing (involving luck, but 
potentially fast) to password cracking, which could take days or 
longer. Similarly, defense tactics can range in timing. A password 
change can occur nearly instantaneously, but the instantiation of a 
large honeynet or rebuilding a compromised server from scratch 
might take longer. This range of timing for both attack and defense 
tactics enables researchers to explore the impact of timing on their 
models. As an example, we are exploring the tradeoff between 
attempting to evict an attacker based on the current level of 
knowledge held by the defender, or continuing to observe to gather 
more knowledge while increasing the likelihood of a successful 
attacker eviction. 

Observability: Observability is an attribute that appears across 
the scenario. Some steps in the exploit might not raise the attacker’s 
observability, while others do. For example, when the attacker uses 
stolen credentials to log in to the vendor web portal, this might look 
indistinguishable from a login by the legitimate user. Observability 
of defense tactics is also captured in the scenario. Changing a 
password would be detected by an attacker. The decision to deploy 
a honeynet in response to an attack is observable; however, if the 
honeynet were deployed prior to an attack, similar information 
would be gathered without tipping off the attacker that her presence 
was detected. In the first case, the attacker might note the addition 
of numerous decoy hosts on the network; in the second case, there 
is no detectable change in the enterprise infrastructure in response 
to an attack.  

Graceful Degradation: Each of the enterprise’s components 
has an associated function or group of functions, and these 
functions can be associated with a utility. For example, the vendor 
web portal’s web server only supports the function of vendor 
invoicing. The Point of Sale devices contribute to the function of 
payment processing. However, a directory server could provide an 
identity function that is integral to both the vendor invoicing and 
payment processing functions. If a defender were exploring options 
for graceful degradation, there are a number of potential outcomes 
for loss of functionality. We are exploring how knowledge of an 
attacker’s presence, combined with knowledge of the network 
topology, can be used to determine strategies for self-adaptive 
graceful degradation while under attack. The multiple overlapping 
functions provide a testbed for researchers who wish to explore 

how systems can maximize utility while managing risk in the face 
of an ongoing or predicted attack. 

7 FUTURE PLANS 
As we plan to use this testbed in our own research, we plan to 
maintain and expand upon the current system. This includes 
continued maintenance and the consideration of extensions as they 
prove useful to the community and our needs. A number of 
extensions are under consideration. 

Our current logging system does not have the ability to display 
definitively when an attacker has modified logs. We are 
considering an approach that would have two logging systems. One 
would have the ground truth, showing all log data, with annotations 
to show where logs have been altered or deleted by the attacker. 
The second system would display the logs as a defender would see 
them—in their altered state. We are also evaluating recent APT 
attacks to understand if we should add other types of injects to our 
system. As attackers come up with new ways of attacking or modify 
old ones, our system should keep pace and reflect these changes. 
To make the system easier to integrate with self-adaptive software 
systems, we are considering the creation of an API to allow for 
interaction with the simulation environment and SUT. This would 
allow researchers’ software to integrate directly, applying injects 
and monitoring log data. Last, we are considering the ability to 
simulate arbitrary times. For example, if a researcher wishes to 
apply an inject and then wait five hours in the SUT before applying 
the next inject, that should not translate into five hours of waiting 
in the real world. We would like to be able to essentially fast-
forward the clock, marking when the injects are applied, and 
simulating the passage of time without researchers having to 
experience undue amounts of it in the real world. 

8 CONCLUSIONS 
In summary, our simulation range provides researchers with a 
framework for testing their approaches to self-adaptive defense 
against APTs. This framework provides realism, depth, and the 
appropriate level of abstraction to enable a number of research uses. 
Within the range, we provide an example proof of concept APT 
example modeled on a real attack. This demonstrates the capability 
of the range while providing a realistic example for consideration. 
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