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Activity-oriented Computing 

 

ABSTRACT 
This chapter introduces a new way of thinking about software systems for supporting the 

activities of end-users.  In this approach, models of user activities are promoted to first 

class entities, and software systems are assembled and configured dynamically based on 

activity models.  This constitutes a fundamental change of perspective over traditional 

applications: activities take the main stage and may be long-lived, whereas the agents that 

carry them out are plentiful and interchangeable. 

The core of the chapter describes a closed-loop control design that enables activity-

oriented systems to become self-aware and self-configurable, and to adapt to dynamic 

changes both in the requirements of user activities and in the environment resources.  The 

chapter discusses how that design addresses challenges such as user mobility, resolving 

conflicts in accessing scarce resources, and robustness in the broad sense of responding 

adequately to user expectations, even in unpredictable situations, such as random failures, 

erroneous user input, and continuously changing resources. 

The chapter further summarizes challenges and ongoing work related to managing 

activities where humans and automated agents collaborate, human-computer interactions 

for managing activities, and privacy and security aspects. 
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INTRODUCTION 

Over the past few years, considerable effort has been put into developing networking and 

middleware infrastructures for ubiquitous computing, as well as in novel human-

computer interfaces based on speech, vision, and gesture.  These efforts tackle ubiquitous 

computing from two different perspectives, systems research and HCI research, hoping to 

converge and result in software that can support a rich variety of successful ubiquitous 

computing applications.  However, although examples of successful applications exist, a 

good understanding of frameworks for designing ubiquitous computing applications is 

still largely missing. 

A key reason for the lack of a broadly applicable framework is that many research 

efforts are based on an obsolete application model. This model assumes that ubiquitous 

computing applications can support user activities by packaging, at design time, a set of 

related functionalities within a specific domain, such as spatial navigation, finding 

information on the web, or online chatting.  However, user activities may require much 

diverse functionality, often spanning different domains.  Which functionalities are 

required to support an activity can only be determined at runtime, depending on the user 

needs, and may need to evolve in response to changes in those needs.  Examples of user 

activities targeted by ubiquitous computing are: navigating spaces such as museums, 

assisting debilitated people in their daily living, activities at the office such as producing 

reports, as well as activities in the home such as watching a TV show, answering the 

doorbell, or enhancing house security.   

This chapter introduces activity-oriented computing (AoC) as a basis for developing 

more comprehensive and dynamic applications for ubiquitous computing.  Activity-

oriented computing brings user activities to the foreground by promoting models of such 

activities to first class primitives in computing systems. 

In the remainder of this chapter, the section on background presents our vision for 

activity-oriented computing and compares it with related work.  Next we discuss the main 

challenges of this approach to ubiquitous computing.   Specifically, we discuss user 

mobility (as opposed to mobile computing), conflict resolution and robustness, mixed-

initiative control, human-computer interaction, and security and privacy. 

The main body of the chapter presents our work towards a solution.  Specifically we 

discuss software architectures for activity-oriented computing and how to address the 

challenges of mobility and robustness, as well as the options to model user activities.   

The chapter ends with a discussion of future directions concerning human-computer 

interactions, and the tradeoff between ubiquity and security and privacy. 

BACKGROUND 
The vision of AoC is to make the computing environment aware of user activities so that 

resources can be autonomously managed to optimally assist the user.  Activities are 

everyday actions that users wish to accomplish and that may be assisted in various ways 

by computing resources in the environment.  Done right, AoC will allow users to focus 

on pursuing their activities rather than on configuring and managing the computing 

environment.  For example, an AoC system could reduce overhead by automatically 
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customizing the environment each time the user wishes to resume a previously 

interrupted long-lived activity, such as preparing a monthly report, or organizing a party.   

To help make this vision concrete, the following examples illustrate possible 

applications of AoC. 

Elderly care.  Rather than relying on hardcoded solutions, AoC enables domain experts 

such as doctors and nurses to “write prescriptions” for the activities of monitoring the 

health of the elderly or outpatients.  Such descriptions enable smart homes to take charge 

of those activities, collaborating with humans as appropriate.  For example, the heart rate 

of an elderly person may be monitored by a smart home, which takes responsibility to 

alert family members when alarming measurements are detected.  Who gets alerted and 

the media to convey the alert may depend on contextual rules, such as the seriousness of 

the situation, as prescribed by the doctor; the elder’s preferences of who to contact, who 

is available, who is closer to the elder’s home, is sending an SMS appropriate, etc. 

Entertainment.   While others have explored the vision that music, radio, or television 

can follow occupants as they move through the house, activity-oriented computing 

enables a more general approach.  Entertainment can be defined as an activity, allowing 

preferences and constraints to be specified, and underlying services to be shared, e.g., 

tracking people, identifying and using devices in various rooms.  For example, the same 

location services used for home security activities can be used for entertainment; the 

television that can be used for entertainment can also be used for displaying images of a 

visitor at the front door. 

Home Security.  Many homes have a security system that uses sensors to detect burglary 

attempts and fires.  They are standalone systems with limited capabilities, e.g., the system 

is typically either on or off and control is entirely based on a secret code.  If the security 

system were built as an activity service, it could be an open system with richer 

functionality.  For example: 

 Richer set of control options, e.g., based on fingerprint readers or voice recognition.  

These methods may be more appropriate for children or the elderly. 

 More flexibility (e.g., giving neighbors limited access to water the plants when the 

homeowners are on vacation, the ability to control and interact with the system 

remotely, or incorporate cameras that ignore dogs). 

 Remote diagnosis, e.g., in response to an alarm, police or fire responders may be able 

to quickly check for false alarms through cameras. 

Doorbell.  A very simple activity is responding to somebody ringing the doorbell. 

Today's solution is broadcast: the doorbell is loud enough to alert everybody in the house 

and then people decide independently or after coordination (through shouting!) how to 

respond.  In activity-oriented computing, a doorbell activity carried out by the hallway 

selects a person, based on their current location, current activity, and age.  If the visitor 

can be identified, it might be possible to have the person who is being visited respond.  

Also, the method of alerting the person can be customized, e.g., using a (local) sound, 

displaying a message on the television screen, or flashing the lights.  Finally, if nobody is 

home, the doorbell service can take a voice message or, if needed, establish a voice or 

video link to a house occupant who might be available in their office or car.  Activities 

such as answering the phone could be handled in a similar way, i.e., replace the broadcast 

ringing by a targeted, context-aware alert. 
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What is Activity-oriented Computing 

Activity-oriented computing adopts a fundamental change of perspective over traditional 

applications: activities take the main stage and may be long-lived, whereas the agents 

that carry them out are plentiful and interchangeable; how activities are best supported 

will evolve over time, depending on the user’s needs and context.  In AoC, activities are 

explicitly represented and manipulated by the computing infrastructure.  Broadly 

speaking, this has two significant advantages.  

First, it enables explicit reasoning about user activities: which activities a user may 

want to carry out in a particular context, what functionality (services) is required to 

support an activity, what are the user preferences relative to quality of service for each 

different activity, which activities conflict, which have specific privacy or security 

concerns, etc. 

Second, it enables reasoning about the optimal way of supporting activities, through 

the dynamic selection of services (agents) that implement specific functions relevant to 

the activity.   Thanks to the explicit modeling of the requirements of activities and of the 

capabilities of agents, the optimality of such assignment may be addressed by 

quantitative frameworks such as utility theory.  Also, by raising the level of abstraction 

above particular applications or implementations, activity models make it easier to target 

a broad range of concrete implementations of similar services in different devices, in 

contrast to solutions based on mobile code (more in the Challenges section, below). 

Related Work 

Early work in ubiquitous computing focused on making certain applications ubiquitously 

available.  For that, it explored OS-level support that included location sensing 

components to automatically transfer user interfaces to the nearest display.  Examples of 

this are the work on teleporting X Windows desktops (Richardson, Bennet, Mapp, & 

Hopper, 1994); and Microsoft’s Easy Living project (Brumitt, Meyers, Krumm, Kern, & 

Shafer, 2000).  This idea was coupled with the idea of desktop management to treat 

users’ tasks as sets of applications independent of a particular device. Examples of 

systems that exploit this idea are the Kimura project (MacIntyre et al., 2001), which 

migrates collections of applications across displays within a smart room, and earlier work 

in Aura that targets migration of user tasks across machines at different locations (Wang 

& Garlan, 2000). Internet Suspend-Resume (ISR) requires minimal changes to the 

operating system to migrate the entire virtual memory of one machine to another machine 

(Kozuch & Satyanarayanan, 2002).  These approaches focus on making applications 

available ubiquitously, but do not have a notion of user activity that encompasses user 

needs and preferences, and therefore do not scale to environments with heterogeneous 

machines and varying levels of service. 

More recent work seeks to support cooperative tasks in office-like domains, for 

example ICrafter (Ponnekanti, Lee, Fox, & Hanrahan, 2001) and Gaia (Román et al., 

2002); as well as domain-specific tasks, such as healthcare (Christensen & Bardram, 

2002) and biology experiments, for example, Labscape (Arnstein, Sigurdsson, & Franza, 

2001).  This research shares with ours the goal of supporting activities for mobile users, 

where activities may involve several services in the environment, and environments may 

contain heterogeneous devices. However, much of this work is predicated on rebuilding, 
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or significantly extending, operating systems and applications to work over custom-built 

infrastructures. The work described in this chapter supports user activities with a new 

software layer on top of existing operating systems and accommodates integration of 

legacy applications. 

Focusing on being able to suspend and resume existing activities in a ubiquitous 

environment does not go all the way toward the vision of providing ubiquitous assistance 

for user activities. Such support can be divided into two categories: 1) helping to guide 

users in conducting tasks; and 2) performing tasks, or parts of tasks, on behalf of users. 

An early example of the first category the Adtranz system (Siewiorek, 1998), which 

guides technical staff through diagnosing problems in a train system.  More recent work 

concentrates on daily life, often for people with special needs, such as the elderly, or 

those with debilitated health (Abowd, Bobick, Essa, Mynatt, & Rogers, 2002; Intille, 

2002). 

Research on automated agents took assistance one step further by enabling systems to 

carry out activities on behalf of users. Examples of this are the RETSINA framework 

(Sycara, Paolucci, Velsen, & Giampapa, 2003), with applications in domains such as 

financial portfolio management, ecommerce and military logistics; and more recently the 

RADAR project (Garlan & Schmerl, 2007), which focuses on the office domain, 

automating such tasks as processing email, scheduling meetings, and updating websites. 

Consumer solutions for activities in the home are beginning to emerge, mainly from 

the increasing complexity of configuring home theater equipment. Universal remote 

controls, such as those provided by Logitech, allow users to define activities such as 

“Watch DVD”, which choose the input source for the television, output of sound through 

the home theater system, and choosing the configuration of the DVD player (Logitech). 

However, in these solutions, activities are bound to particular device and device 

configurations – the activities themselves must be redefined for different equipment, and 

it is not possible for the activities to move around different rooms in the home, or to 

allow different levels of service for the same activity. 

In this chapter, we discuss the potential and the challenges of having software systems 

using activity models at runtime.  Specifically, we focus on the benefits of using activity 

models for enabling users to access their activities ubiquitously, and for delegating 

responsibility for activities to automated agents. 

CHALLENGES 
Activity-oriented computing raises a number of challenges that must be addressed by any 

adequate supporting infrastructure and architecture. 

User mobility: As users move from one environment to another – for example, between 

rooms in a house – activities may need to migrate with the users, tracking their location 

and adapting themselves to the local situation.  A key distinction between user mobility 

in AoC and previous approaches is that no assumptions are made with respect to the users 

having to carry mobile devices, or to the availability of a particular kind of platform at 

every location.  Since different environments may have very different resources (devices, 

services, interfaces, etc.) a critical issue is how best to retarget an activity to a new 

situation.  For example, an activity that involves “watching a TV show” can be changed 

into “listening” when the user walks through a room that only offers audio support.  
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Solving this problem requires the ability to take advantage of context information 

(location, resource availability, user state, etc.) as well as knowledge of the activity 

requirements (which services are required, fidelity tradeoffs, etc.) to provide an optimal 

use of the environment in support of the activity. 

Conflict resolution: Complicating the problem of automated configuration and 

reconfiguration is the need to support multiple activities – both for a single user and 

between multiple users.  If an individual wants to carry out two activities concurrently 

that may need to use shared resources, how should these activities simultaneously be 

supported?  For example, if the user is engaged in entertainment, should the doorbell 

activity interrupt that activity?  Similar problems exist when two or more people share an 

environment.  For example, if two users enter the living room hoping to be entertained, 

but having different ideas of what kind of entertainment they want, how can those 

conflicts be reconciled?  Solving this problem requires (a) the ability to detect when there 

may be conflicts, and (b) the ability to apply conflict resolution policies, which may itself 

require user interaction. 

Mixed-initiative control: The ability to accomplish certain kinds of activities requires 

the active participation of users. For example, the door answering activity, which might 

be associated with a house, requires occupants of the house to respond to requests from 

the house to greet a visitor. Since humans exhibit considerable more autonomy and 

unpredictability than computational elements, it is not clear how one should write the 

activity control policies and mechanisms to allow for this. Standard solutions to human-

based activities (such as work-flow management systems) are likely not to be effective, 

since they assume users to adhere to predetermined plans to a much higher degree than is 

typically the case in the kinds of domains targeted by ubiquitous computing. 

Security and privacy:  Some security and privacy issues can be solved through 

traditional mechanisms for security, but others are complicated by key features of 

ubiquity: rich context information, and user mobility across public or shared spaces such 

as a car, or an airport lounge.  In a multi-user environment with rich sources of context 

information (such as a person’s location) an important issue is how to permit appropriate 

access to and sharing of that information.  Furthermore, which guaranties can be made to 

a user that wishes to access personal activities in a shared space? What mechanisms can 

back such guaranties?  Are there deeper issues than the exposure of the information that 

is accessed in a public space?  Is it possible that all of a user’s information and identity 

may be compromised as a consequence of a seemingly innocuous access at a public 

space? 

Human-computer interaction: Many of the activities that a ubiquitous computing 

environment should support will take place outside of standard computing environment 

(such as a networked office environment).  In such environments one cannot assume that 

users will have access to standard displays, keyboards, and pointing devices.  How then 

can the system communicate and interact with users effectively?  What should be the role 

of emerging technologies such as augmented reality and natural interaction modalities 

such as speech, gesture, and ambient properties such as light and smell? 

While the challenges above stem from the problem domain, we now turn to the 

challenges associated with building a solution for AoC. 
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Activity models.  The first challenge is to define what kinds of knowledge should be 

imparted in systems to make them aware of user activities.  Specifically, what should be 

the contents and form of activity models? What should be the semantic primitives to 

compose and decompose activities? At what level of sophistication should activity 

models be captured?  Presumably, the more sophisticated the models, the more a system 

can do to assist users.  For example, to help users with repairing an airplane or with 

planning a conference, a significant amount of domain knowledge needs to be captured.  

But obviously, capturing such knowledge demands more from users (or domain experts) 

than capturing simple models of activities.  Is there an optimal level of sophistication to 

capture activity models – a sweet spot that maximizes the ratio between the benefits of 

imparting knowledge to systems and the costs of eliciting such knowledge from users?  

Or is it possible to have flexible solutions that allow incremental levels of sophistication 

for representing each activity, depending on the expected benefits and on the user’s 

willingness to train the system? 

System design.   Systems that support AoC should be capable of dynamic 

reconfiguration in response to changes in the needs of user activities.  Ideally, such 

systems would also be aware of the availability of resources in the environment and 

respond to changes in those.  The questions then become: What is an appropriate 

architecture to support activity-oriented computing?  What responsibilities should be 

taken by a common infrastructure (middleware) and which should be activity- or service-

specific?  What are the relevant parameters to guide service discovery (location, quality 

of service, etc.) and how should discovery be geographically scoped and coordinated? 

Can activity models be capitalized to handle the heterogeneity of the environment, self-

awareness and dynamic adaptation?  Furthermore, what operations might be used to 

manage activities: suspend and resume, delegate, collaborate, others?  What should be the 

operational semantics of each of these operations?   

Robustness.   In AoC, robustness is taken in the broad sense of responding adequately to 

user expectations, even in unpredictable situations, such as random failures, erroneous 

user input, and continuously changing resources.  First of all, should adequacy be a 

Boolean variable – either the system is adequate or it is not – or can it be quantified and 

measured?  Specifically, are there system capabilities and configurations that are more 

adequate then others to support a user’s activity?  If so, can measures of adequacy be 

used to choose among alternatives in rich environments?  For example is the user better 

served by carrying out a video conference on a PDA over a wireless link, or on the wall 

display down the hall? 

TOWARDS A SOLUTION 
To address the challenges identified above, we decided to start with relatively simple 

models of activities and address concrete problems where the advantages of AoC could 

be demonstrated.  This section summarizes our experience of about six years at Carnegie 

Mellon University’s Project Aura.  Initially, this research targeted the smart office 

domain, and later extended to the smart home domain (more below). 

Designing systems for AoC brings up some hard questions.  What makes those 

questions especially challenging, is that to answer them, we need to reexamine a 

significant number of assumptions that have been made about software for decades.  Not 
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surprisingly, our own understanding of how to answer those questions continues to 

evolve.  This section is organized around the set of solution-related challenges identified 

above; namely, system design, activity models, and robustness. 

System Design 

The first research problem we focused on, starting around the year 2000, was user 

mobility in the smart office domain.  Here, activities (or tasks) typically involve several 

applications and information assets.  For instance, for preparing a presentation, a user 

may edit slides, refer to a couple of papers on the topic, check previous related 

presentations, and browse the web for new developments.  An example of user mobility 

is that the user may start working on the presentation at his or her office, continue at the 

office of a collaborator, and pick the task up later at home.   

The premise adopted for user mobility is that users should not have to carry a machine 

around, just as people normally don’t carry their own chairs everywhere.  If they so 

desire, users should be able to resume their tasks, on demand, with whatever computing 

systems are available.  This premise is neither incompatible with users carrying mobile 

devices, nor with mobile code.  Ideally, the capabilities of any devices or code that travel 

with the user contribute to the richness of the environment surrounding the user, and 

therefore contribute to a better user experience.  A discussion of why solutions centered 

on mobile devices, mobile code, or remote computing (such as PC Anywhere) are not 

entirely satisfactory to address user mobility can be found in (J.P. Sousa, 2005). 

Designing a solution to support user mobility is made harder by the heterogeneity of 

devices where users may want to resume their activities, and by dynamic variations in the 

resources and devices available to the user.  Even in a fairly restricted office domain, it is 

common to find different operating systems, offering different suites of applications (e.g. 

Linux vs. PC vs. Mac.)  In a broader context, users may want to carry over their activities 

to devices with a wide range of capabilities, from handhelds to smart rooms. In addition 

to heterogeneity, mobile devices are subject to wide variations of resources, such as 

battery and bandwidth.  Ideally, software would automatically manage alternative 

Table 1 Terminology 

task An everyday activity such as preparing a presentation or writing a report. Carrying out a task may require obtaining 

several services from an environment, as well as accessing several materials. 

environment The set of suppliers, materials and resources accessible to a user at a particular location. 

service Either (a) a service type, such as printing, or (b) the occurrence of a service proper, such as printing a given 

document. For simplicity, we will let these meanings be inferred from context. 

supplier An application or device offering services – e.g. a printer. 

material An information asset such as a file or data stream. 

capabilities The set of services offered by a supplier, or by a whole environment. 

resources Are consumed by suppliers while providing services. Examples are: CPU cycles, memory, battery, bandwidth, etc. 

context Set of human-perceived attributes such as physical location, physical activity (sitting, walking…), or social activity 

(alone, giving a talk…). 

user-perceived 

state of a task 

User-observable set of properties in the environment that characterize the support for the task. Specifically, the set 

of services supporting the task, the user-level settings (preferences, options) associated with each of those services, 

the materials being worked on, user-interaction parameters (window size, cursors…), and the user’s preferences 
with respect to quality of service tradeoffs. 
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computing strategies based on user requirements and on the availability of resources.  

Moreover, in heavily networked environments, remote servers may constantly change 

their response times and even availability. Ideally, users should be shielded as much as 

possible from dealing with such dynamic variations.  

Before describing an architecture for supporting user mobility as outlined above, 

Table 1 clarifies the terminology used throughout this chapter, since although the terms 

are in common use, their interpretation is far from universal. 

Our starting point for supporting user mobility was to design an infrastructure, the 

Aura infrastructure, that exploits knowledge about a user’s tasks to automatically 

configure and reconfigure the environment on behalf of the user.  Aura is best explained 

by a layered view of its infrastructure together with an explanation of the roles of each 

layer with respect to task suspend-resume and dynamic adaptation.  

First, the infrastructure needs to know what to configure for; that is, what a user needs 

from the environment in order to carry out his or her tasks. Second, the infrastructure 

needs to know how to best configure the environment: it needs mechanisms to optimally 

match the user’s needs to the capabilities and resources in the environment. 

In our architecture, each of these two sub-problems is addressed by a distinct software 

layer: (1) the Task Management layer determines what the user needs from the 

environment at a specific time and location; and (2) the Environment Management layer 

determines how to best configure the environment to support the user’s needs. 

Table 2 summarizes the roles of the software layers in the infrastructure. The top 

layer, Task Management (TM), captures knowledge about user needs and preferences for 

each activity. Such knowledge is used to coordinate the configuration of the environment 

upon changes in the user’s task or context. For instance, when the user attempts to carry 

out a task in a new environment, TM coordinates access to all the information related to 

the user’s task, and negotiates task support with Environment Management (EM). Task 

Management also monitors explicit indications from the user and events in the physical 

context surrounding the user. Upon getting indication that the user intends to suspend the 

current task or resume some other task, TM coordinates saving the user-perceived state of 

the suspended task and recovers the state of the resumed task, as appropriate. 

Table 2 Summary of the software layers in Aura 

layer mission roles 

T
a

sk
 

M
a

n
a
g

em
e
n

t 

what does 

the user need 

- monitor the user’s task, context and preferences 

- map the user’s task to needs for 
services in the environment 

- complex tasks: decomposition, plans, 

context dependencies 

E
n

v
ir

o
n

m
e
n

t 

M
a

n
a
g

em
e
n

t 
how to best 

configure 

the 
environment 

- monitor environment capabilities and resources 

- map service needs, and user-level state of tasks 

to available suppliers 

- ongoing optimization of the utility of the 

environment relative to the user’s task 

E
n

v
. 

support the 

user’s task 

- monitor relevant resources 

- fine grain management of QoS/resource tradeoffs 
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The EM layer maintains abstract models of the environment. These models provide a 

level of indirection between the user’s needs, expressed in environment-independent 

terms, and the concrete capabilities of each environment. 

This indirection is used to address both heterogeneity and dynamic change in the 

environments. With respect to heterogeneity, when the user needs a service, such as 

speech recognition, EM will find and configure a supplier for that service among those 

available in the environment. With respect to dynamic change, the existence of explicit 

models of the capabilities in the environment enables automatic reasoning when those 

capabilities change dynamically. The Environment Management adjusts such a mapping 

automatically in response to changes in the user’s needs (adaptation initiated by TM), and 

changes in the environment’s capabilities and resources (adaptation initiated by EM).  In 

both cases adaptation is guided by the maximization of a utility function representing the 

user’s preferences (more in the section on Robustness, below). 

The Environment layer comprises the applications and devices that can be configured 

to support a user’s task. Configuration issues aside, these suppliers interact with the user 

exactly as they would without the presence of the infrastructure. The infrastructure steps 

in only to automatically configure those suppliers on behalf of the user. The specific 

capabilities of each supplier are manipulated by EM, which acts as a translator for the 

environment-independent descriptions of user needs issued by TM.  Typically, suppliers 

are developed by wrapping existing applications.  Our experience in wrapping over a 

dozen applications native to Windows and Linux has shown that it is relatively easy to 

support setting and retrieving the user-perceived state (Balan, Sousa, & Satyanarayanan, 

2003; J.P. Sousa, 2005). 

This layering offers a clean separation of concerns between what pertains user 

activities and what pertains the environment.  The knowledge about user activities is held 

by the TM and travels with the user to each environment he or she wishes to carry out 

activities.  The knowledge about the environment stays with the EM and can be used to 

address the needs of many users. 

A significant distinction of this approach to user mobility is that it does not require 

code or devices to travel with the user.  A generic piece of code, Prism, in the TM layer 

becomes an Aura for a user by loading models of user activities.  Those models are 

encoded in XML for convenience of mobility across heterogeneous devices (more in the 

section on Activity Models, below). 

Extending to the Home Environment 

Although the layered perspective played an important role in clarifying the separation of 

concerns and protocols of interaction, it captures only the case where users consume 

services, and software components provide them. 

In the smart home domain, software could take responsibility for activities, and users 

might be asked to contribute services for those activities.  For example, a smart home 

might take charge of the home’s security and ask a human to lock the windows when 

night falls.  Other examples of activities include: a user watching a TV show, a user 

checking on a remote family member, the main hallway facilitating answering the door, 

and the home keeping a comfortable temperature. These examples prompted us to realize 
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that any domain entity could have an Aura, and that an Aura might find itself on either 

the supplying or the consuming side, or both.  Specifically, Auras can be associated with: 

- People: individual residents, or groups, such as a resident’s parents, or the entire 

family. 

- Spaces, such as the main hallway, living room or the entire home.  Spaces of interest 

are not necessarily disjoint. 

- Appliances, such as a TV, phone, table or couch.  Appliances have a well-defined 

purpose and may have a range of automation levels, from fairly sophisticated (a 

smart refrigerator), to not automated at all (an old couch). 

- Software applications, such as a media player, a video conferencing app, or a people 

locator.  Applications run on general purpose devices, and which applications are 

available on one such device define the purpose that the device may serve. 

Figure 1 shows the run-time architectural framework for an activity-oriented system.  

The boxes correspond to types of components, and the lines to possible connectors 

between instances of those types.
1
 Part (a) shows our initial understanding, based on the 

smart office domain, and part (b) the more general framework.  Contrasting the two, it is 

now clear that the TM corresponded to an Aura (of users) that consumed services but 

supplied none; and suppliers corresponded to Auras of software that supplied services, 

but consumed none. 

In the new architectural framework, when an Aura boots up, it first locates the EM 

(see the section on Service Discovery, below) and then may engage on the Service 

Announcement & Activation Protocol (SAAP) to announce any services that its entity 

provides, as well as on the Service Request Protocol (SRP) to discover services that are 

relevant to support the entity’s activities.  Once the services in other Auras are actually 

recruited by the EM, using the SAAP, the consumer Aura and the supplier Auras interact 

via the Service Use Protocol (SUP) to reconstruct the user-perceived state of the activity. 

Figure 2 shows an example of an architecture that was dynamically created to respond 

to the needs of a user, Fred, at a particular place, Fred’s home.  The boxes correspond to 

run time components (autonomous processes that may be deployed in different boxes) 

rather than denoting code packaging, and the lines correspond to connectors, that is, 

actual communication channels that are established dynamically as the components are 

created.  The diagram represents two kinds of components: Auras, with rounded corners, 
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Figure 1 Architectural framework 
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and the EM, and it visually identifies the different kinds of interaction protocols between 

the components (see Figure 1). 

The instance of architecture in the example is the result of Fred’s Aura interacting 

with the EM to recruit two suppliers: the TV and the phone’s Auras, after interpreting 

Fred’s needs for the desired activity.  This architecture may evolve to adapt to changes in 

Fred’s needs, and in the figure, Fred’s Aura is also shown as being recruited by the 

home’s Aura to get Fred to open the front door. 

Context Awareness 

An important decision is how to enable context awareness in activity-oriented computing.  

Addressing context awareness can be decomposed into three parts: sensing context, 

distributing contextual information, and reacting to context. We start by discussing the 

latter. 

Potentially, all domain entities, and therefore their Auras, might want to react to 

context.  A user’s Aura may change the requirements on an activity, or change which 

activities are being carried out depending on context such as user location, or whether the 

user is sitting alone at the office, driving a car, or having an important conversation with 

his or her boss.  Suppliers contributing services to an activity may want to change 

modalities of those services based on context.  For example, an application that shows 

confidential information may hide that information automatically if someone else is 

detected entering the room; or an application that requires text or command input may 

switch to speech recognition if the user needs to use his or her hands, say, for driving a 

vehicle.  The EM may change the allocation of suppliers to for a given activity based on 

user location.  For example, if the user is watching a TV show while moving around the 

house, different devices may be allocated: the TV in the living room, the computer 

monitor at the home office, etc.  The upshot of this is that contextual information should 

be accessible to all the boxes in the architecture. 

Initially, we thought that a dedicated part in the infrastructure would be in charge of 

gathering and distributing contextual information: there would be a Context Management 

component/layer in each environment, just like there is an Environment Management.  

However, both the contextual information and the policies for distributing such 

information are associated with each user and not really with the environment where that 

user happens to be.  Therefore, Auras are the hub of knowledge about the entities they 

represent. 

Service Announcement & Activation Protocol 

Service Request Protocol 

Service Use Protocol 
EM 

Fred’s Aura 

phone’s Aura 
TV’s Aura 

home’s Aura 

Figure 2 Snapshot of the architecture of one system 
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Whenever a component wishes to obtain contextual information about entity X, it will 

ask X’s Aura.  X’s Aura itself may use a variety of mechanisms to gather information 

about X.  For example, since physical location of a space is normally a non-varying 

property, the Aura for a home can read the home’s location from a configuration file.  In 

contrast, the Aura for an application running on a cell phone equipped with GPS might 

obtain the application’s location from the device’s GPS.  The Aura for a person P 

typically obtains P’s contextual information via Contextual Information Services (CIS). 

Unlike sensors specific to devices or spaces, CIS’s are fairly generic. Specifically, 

devices such as a thermometer attached to a wall, or a window sensor for detecting 

whether that window is open or closed, are accessed only by the Auras of the 

corresponding physical spaces. In contrast, given a training set with a person’s face, a 

generic face recognizer may be able to track that person’s location inside an office 

building by using cameras spread over rooms and halls. 

CISs are integrated into the architecture using the same protocols for discovery and 

activation as other services; which allows for gracefully handling of activity instantiation 

in both sensor-rich environments, such as a smart building, and in depleted environments, 

such as a park. 

While CIS components release information based on generic premises such as the rule 

of law (e.g. only an authenticated Aura for X or a law enforcement agent with a warrant 

can obtain information about X), the Auras themselves are responsible for knowing and 

enforcing their entity’s privacy policies regulating to whom release which information.  

As an example of distribution policy, a user may authorize only a restricted group of 

friends to obtain his or her current location. 

Service Discovery 

In the initial architectural framework (Figure 1.a,) service discovery is coordinated by the 

Environment Management layer.  When we expanded the focus of our research to the 

smart home domain, around the year 2004, we revisited the problem of service discovery.  

Among the questions that prompted this revisiting are: are there real advantages in 

brokering discovery?  What are the relevant parameters to guide service discovery 

(location, quality of service, etc.)? How can discovery be geographically scoped?  Would 

some measure of physical distance be enough for such scoping?  Can discovery be 

scoped by geographical areas that are meaningful to the user?  We elaborate on these 

below. 

This first question is what should be the strategy for discovery.  Many activities in the 

smart home domain involve entities performing services for other entities, and it is up to 

Auras to find and configure the services required by their entities.  For example, for 

watching a TV show, Fred will need some entity to play the video stream for him.  Fred’s 

Aura takes care of finding and configuring such an entity in Fred’s vicinity (for instance 

the TV in the living room,) and to change the video stream to other convenient entities 

whenever Fred moves around the home (a TV in the kitchen, a computer in the office, 

etc.) 

One candidate solution would be to have Auras broadcast service availability and/or 

service requests.  However, service discovery in ubiquitous computing involves not just 

matching service names or capabilities but, ideally, it would find optimal services in 
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terms of attributes such as desired levels of quality of service, user preferences, 

proximity, etc.  Furthermore, scoping the search would be constrained by network 

administration policies regarding broadcast (see below). Also, it is hard to establish trust 

based on broadcast mechanisms. 

Because finding the optimal entities to perform services is both a non-trivial problem 

and common across Auras, there are clear engineering advantages in factoring the 

solution to this problem out of individual Auras and into a dedicated piece of the 

infrastructure.  Specifically, the benefits of introducing Environment Managers (EMs) as 

discovery brokers include: 

- Separation of concerns.  It is up to specialized service brokers to know how to find 

the optimal entities to provide services, while each Aura retains the responsibility of 

knowing what services are required by their entity’s activities at each moment.  By 

providing a separate locus for optimal discovery in EMs, Auras can focus on the 

task-specific knowledge required to interact with other Auras, once they are 

identified. 

- Efficiency.  EMs can cash service announcements, thereby improving the latency of 

processing a service request, and reducing the network traffic required to locate a 

service, whenever one is requested. 

Auras register the services offered by the entity they represent with an EM.  Each 

service posting includes the type of service and all attributes of the offering entity that 

characterize the service.  For example, Fred’s Aura announces that Fred is capable of 

answering the door (service type,) along with Fred’s contextual attributes pertaining to 

his current location and whether he is busy. Although Fred’s Aura might know about 

Fred’s blood pressure, that wouldn’t be directly relevant for his ability to answer the 

door.  As another example, the Aura for a printer announces its ability to print 

documents, along with the printer’s location, pages per minute and queue length 

(contextual and quality of service attributes). 

Auras may request an EM to find services, as needed by the activities of the entities 

they represent.  Service discovery is guided by optimality criteria in the form of utility 

functions over the attributes of the service suppliers and of the requesting entity.  

Specifically a service request is of the form: 

find x : service | y  max u(px, py) 

This means: find a set of entities x, each capable of supplying a service, given the 

requestor entity y, such that a utility function u over the properties of y and of the 

elements of x is maximized.  The following are examples with simple utility functions: 

Track Fred’s location.  Upon startup, Fred’s Aura issues: 

find x1:people-locating | Fred 

That is, find x1 capable of providing a people locating service for Fred. 

Follow-me video. When Fred wishes to watch a soccer game while moving around the 

house, his Aura issues: 

find x1:video-playing | Fred  min  x1.location – Fred.location  

That is, find a video player closest to Fred.  In this case, maximizing the utility 

corresponds to minimizing the physical distance between Fred and the video player. 
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Doorbell. When the doorbell is pressed by someone, the Aura for the main hallway 

issues: 

find x1:door-answering, x2:notifying | hallway 

      x1.busy = no & min (  x1.location – hallway.location  

     +  x1.location – x2.location ) 

That is, find a notifying mechanism and a door answerer that is not busy and both 

closest to the hallway and to the notifying mechanism. 

Utility functions are quantitative representations of usefulness with respect to each 

property.  Formally, selecting a specific value of a property, such as x1.busy = no, is 

encoded as a discrete mapping, specifically: 

1)(,0)( .. 11
 nouyesu busyxbusyx  

For properties characterized by numeric values, such as the distance to the hallway, we 

use utility functions that distinguish two intervals: one where the user considers the 

quantity to be good enough for his activity, the other where the user considers the 

quantity to be insufficient. Sigmoid functions, which look like smooth step functions, 

characterize such intervals and provide a smooth interpolation between the limits of those 

intervals.  Sigmoids are easily encoded by just two points: the values corresponding to 

the knees of the curve that define the limits good of the good-enough interval, and bad of 

the inadequate interval. The case of “more-is-better" qualities (e.g., accuracy) are as 

easily captured as “less-is-better” qualities (e.g., latency) by flipping the order of the 

good and bad values (see (João P. Sousa, Poladian, Garlan, Schmerl, & Shaw, 2006) for 

the formal underpinnings). 

In the case studies evaluated so far, we have found this level of expressiveness for 

utility functions to be sufficient. 

Scoping Service Discovery 

The second question is how can service discovery be scoped in a way that is meaningful 

to the user.  Specifically, many searches take place in the user’s immediate vicinity, such 

as the user’s home.  

However, neither physical distance nor network range are good parameters to scope 

discovery.  For example, if the user’s activity asks for a device to display a video, the TV 

set in the apartment next door should probably not be considered, even though it might be 

just as close as other candidates within the user’s apartment, and be within range of the 

user’s wireless network as well.  To be clear, once a set of devices is scoped for 

discovery, then physical distance may be factored in as a parameter for optimality (see 

above). 

Furthermore, sometimes users may want to scope discovery across areas that are not 

contiguous.  For example, suppose that Fred is at a coffee shop and wants to print an 

interesting document he just found while browsing the internet.  Fred may be willing to 

have the document printed either at the coffee shop, or at Fred’s office, since Fred is 

heading there shortly.  A printer at a store down the street may not be something that Fred 

would consider, even though it is physically closer than Fred’s office. 
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The question about scoping service discovery can then be refined into (a) if not by 

distance or network boundaries, how can the range of one environment be defined? and 

(b) how to coordinate discovery across non-contiguous environments?  

When an Aura directs a discovery request to an EM, by default, discovery runs across 

all services registered with that EM.  That is, the range of an environment is defined by 

the services that registered with its EM.  The question then becomes, how does an Aura 

know with which EM it should register its services with?  For example, how would the 

Aura for the TV set in Fred’s living room know to register its services with the EM in 

Fred’s apartment, and not with the neighbor’s? 

Auras resolve their physical location into the network address of the appropriate EM 

by using the Environment Manager Binding Protocol (EMBP).
2
  This service plays a 

similar role to the Domain Naming Service in the internet, which resolves URI/URLs into 

the network address of the corresponding internet server.  Physical locations are encoded 

as Aura Location Identifiers (ALIs), which structure and intent is similar to Universal 

Resource Identifiers (URIs) in the internet.  Like URIs, ALIs are a hierarchical 

representation mean to be interpreted by humans and resolved automatically.  For 

example, ali://pittsburgh.pa.us/zip-15000/main-street/1234/apt-6 might correspond to 

Fred’s apartment; and ali://aura.cmu.edu/wean-hall/floor-8/8100-corridor to a particular 

corridor on the 8
th

 floor of Wean Hall at Carnegie Mellon University. 

Requests for discovery across remote and/or multiple environments can be directed to 

the local EM, which then coordinates discovery with other relevant EMs (more below). 

The following are examples of such requests.  When Fred is at home and wishes to print a 

document at the office, his Aura would issue a request like  

find x:printing | Fred  u(…) 

 @ ali://aura.cmu.edu/wean-hall/floor-8/8100-corridor 

Or, if Fred wanted to consider alternatives either at home or at his office: 

find x:printing | Fred  u(…) 

 @ ali://aura.cmu.edu/wean-hall/floor-8/8100-corridor, 

   ali://pittsburgh.pa.us/zip-15000/main-street/1234/apt-6 

Or, if Fred wanted to search a number of adjacent environments, such as all the 

environments in his office building: 

find x:printing | Fred  u(…) 

 @ ali://aura.cmu.edu/wean-hall 

Any such requests are directed by the requestor Aura to the local EM, which then 

resolves such requests in three steps: 

1. Use the EMBP to identify the EMs that cover the desired region. 

2. Obtain from such EMs all the service descriptions that match the requested 

service types. 

3. Run the service selection algorithms over the candidate set of services. 

Activity Models 

What to include in activity models is ultimately determined by the purpose that those 

models are meant to serve.  In some applications of activity models the goal is to assist 

users with learning or with performing complex tasks. Examples of these are applications 



Activity-oriented Computing 

   18 

to automated tutoring, expert systems to help engineers repair complex mechanisms, such 

as trains and airplanes, and automated assistants to help manage complex activities such 

as organizing a conference (Garlan & Schmerl, 2007; Siewiorek, 1998).  For these kinds 

of applications, models of activities may include a specification of workflow, as a 

sequence of steps to be performed, and cognitive models of the user. 

In the smart office domain, we experimented with enabling users to suspend their 

ongoing activities and resume them at a later time and/or at another location, possibly 

using a disjoint set of devices.  For that purpose, the models capture user needs and 

preferences to carry out each activity.  Specifically, such models include of a snapshot of 

the services and materials being used during the activity, as well as utility theory-based 

models of user preferences (for details on the latter, see (João P. Sousa et al., 2006)). 

Figure 3 shows a grammar for modeling activities, or tasks, as a set of possibly 

interconnected services.  This grammar follows a variant of the Backus-Naur Form (BNF, 

see for instance (ISO, 1996)).  To simplify reading the specification, we drop the 

convention of surrounding non-terminal symbols with angle brackets, and since the task 

models are built on top of XML syntax, we augment the operators of BNF with the 

following:  

E ::= t: A; C 

defines a type E of XML elements with tag t, attributes A, and children C, where t is a 

terminal symbol, A is an expression containing only terminals (the attribute names), and 

C is an expression containing only non-terminals (the child XML elements).  In this 

restricted use of BNF, whether a symbol is a terminal or non-terminal is entirely 

established by context.  So, for instance the rule 

Book = book: year ISBN; Title {Author} 

allows the following as a valid element: 

Task ::= auraTask: id; 

Prefs {ServiceSnapshot | MaterialSnapshot | Config} 

 

ServiceSnapshot ::= service: id type; 

 Settings 

MaterialSnapshot ::= material: id; 

 State 

 

Config ::= configuration: name weight; 

 { Service | Connection } 

 

Service ::= service: id; 

 {Uses} 

Uses  ::= uses: materialId; 

 

Connection ::= connection; id type; 

 Attach QoSPrefs 

Attach ::= attach: ; 

 From To 

From ::= from: serviceId port; 

To ::= to: serviceId port; 

Figure 3 Grammar for specifying task models. 
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<book year=”2004” ISBN=”123”> 

  <title>...</title> 

  <author>...</author> 

  <author>...</author> 

</book> 

Specifically, in Figure 3, a task (model) is an XML element with tag auraTask, with 

one id attribute, and with one Prefs child, followed by an arbitrary number of 

ServiceSnapshot, MaterialSnapshot, and Config children.  A task may be 

carried out using one of several alternative service configurations of services. 

<auraTask id="34"> 

  <preferences> 

    <service template="default" id="1"/> 

    <service template="default" id="2"/> 

  </preferences> 

  <service type="play Video" id="1"> 

    <settings mute="true"/> 

  </service> 

  <material id="11"> 

    <state> 

      <video state="stopped" cursor="0"/> 

      <position xpos="645" ypos="441"/> 

      <dimension height="684" width="838"/> 

    </state> 

  </material> 

  <service type="edit Text" id="2"> 

    <settings> 

      <format overtype="0"/> 

      <language checkLanguage="1"/> 

    </settings> 

  </service> 

  <material id="21"> 

    <state> 

      <cursor position="31510"/> 

      <scroll horizontal="0" vertical="7"/> 

      <zoom value="140"/> 

      <spellchecking enabled="1" language="1033"/> 

      <window height="500" xpos="20" width="600" mode="min" ypos="100"/> 

    </state> 

  </material> 

  <configuration name="all" weight="1.0"> 

    <service id="2"> 

      <uses materialId="21"/> 

    </service> 

    <service id="1"> 

      <uses materialId="11"/> 

    </service> 

  </configuration> 

  <configuration name="only video" weight="0.7"> 

    <service id="1"> 

      <uses materialId="11"/> 

    </service> 

  </configuration> 

</auraTask> 

Figure 4 Example task model for reviewing a video clip. 
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Services stand for concepts such as edit text, or browse the web, and materials are files 

and data streams manipulated by the services.  A service may manipulate zero or many 

materials; for instance, text editing can be carried out on an arbitrary number of files 

simultaneously.  That relationship is captured by the Uses clauses within the Service 

element. 

The snapshot of the user-perceived state of the task is captured in the Settings and 

State elements.  The Settings element captures the state that is specific to a service, 

and shared by all materials manipulated by that service, while the State element 

captures the state that is specific to each material.  A detailed discussion of this grammar 

can be found in (J.P. Sousa, 2005). 

Figure 4 shows one example of a task model for reviewing a video clip, which 

formally is a sentence allowed, or generated, by the grammar in Figure 3.  This example 

was captured while running the infrastructure described in the section on System Design.  

The user defined two alternative configurations for this task: one including both playing 

the video and taking notes, the other, playing the video alone.  Both services use a single 

material: play video uses a video file, with material id 11, and edit text uses a text file, 

with material id 21.  The user-perceived state of the task is represented as the current 

service settings, under each service, and the current state of each material.  For instance, 

the state of the video includes the fact that the video is stopped at the beginning (the 

cursor is set to 0 time elapsed), and it indicates the position and dimensions of the 

window showing the video. 

Extending to the Home Environment 

In the smart home domain, in addition to supporting suspend/resume of activities, we 

wanted to enable users to delegate responsibility for some activities to Auras.  Examples 

of the latter activities include managing intrusion detection for the home, finding a person 

to answer the door for a visitor, or assisting with monitoring elder family members. 

The research questions then become: is the services and materials view of activities 

adequate in the smart home domain?  For enabling Auras to take responsibility for 

activities, which concepts should activity models capture? 

The usefulness of capturing the services needed for an activity seems to carry well into 

the smart home domain.  For example, in the case of the doorbell scenario, the activity of 

answering the door requires finding services such as notification, can be supplied by 

devices such as a telephone, a TV, a buzzer, etc., and door answerer, which can be 

supplied by a qualified person (e.g., not a toddler).  Selecting the suppliers for such 

services is guided by the home owner’s preferences encoded in the activity model; which 

may include things such as: the door needs to be answered within a certain time, and that 

the notification service should be in close proximity to the candidate door answerer. 

A prototype of this case study has shown that these models can handle sophisticated 

policies of configuration (e.g., excluding children from answering the door, or specifying 

criteria for proximity) and that they trivially accommodate the dynamic addition of new 

notification devices. 

This prototype also highlighted two fundamental differences between the kinds of 

activities supported in the smart-office domain and the ones we target in the smart-home 

domain.  The first difference is that, while in the office domain services were only 
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provided by automated agents (software), now people may also be asked to provide 

services.  This has implications on how Auras control service supply, since people are 

much more likely than software to do something totally different than what they are being 

asked.  In the example, after being notified to answer the door, a person may get 

sidetracked and forget about it.  It is up to the responsible Aura to monitor whether or not 

the service is being delivered, and react to a “fault” in a similar way as it would in the 

case of faulty software: by seeking a replacement (more in the section on Robustness). 

The second difference is that, in the smart home domain, Auras may take the 

responsibility for activities: and this is related to the question above of which concepts to 

capture in activity models to enable that to happen.  In the smart office domain, when a 

fault cannot be handled, for example, if a suitable replacement cannot be found for a 

faulty supplier, the problem is passed up to the entity responsible for the activity, i.e. the 

user.  If an Aura is to be truly responsible for an activity, it must be take charge of such 

situations as well.  

One way of addressing a hurdle in one activity, is to carry out another activity that 

circumvents the hurdle.  In the example, if the hallway Aura cannot find a person to 

answer the door, it may take a message from the visitor, or initiate a phone call to the 

person being visited. 

A simple enhancement of activity models to allow this is to support the specification 

of conditions to automatically resume or suspend activities.  Such conditions are 

expressed as Boolean formulas over observation of contextual information.  For example, 

if everyone left the house, resume the intrusion detection activity. 

For these models to cover situations as the one where a person could not be found to 

answer the door, contextual information needs to be rich enough to include semantic 

observations, such as “the door could not be open for a visitor.” 

Another scenario where we tested this approach is the elder care scenario.  The Aura 

for Susan, Fred’s grandmother, runs a perpetual task that recruits a heart monitor service 

for her.  Susan defined under which conditions her Aura should trigger the task of 

alerting the family.  When defining such conditions, Susan takes into consideration her 

physician’s recommendations, but also conditions under which she may desire privacy.   

Fred’s Aura runs a perpetual task of monitoring contextual postings by Susan’s Aura.  It 

is up to John to (a) define that posting such a notification should trigger the task of 

alerting him, and (b) define the means employed by his Aura to carry out such a task.  For 

example, if Fred is at the office, his Aura sends an instant message to Fred’s computer 

screen; otherwise, it sends a text message to Fred’s cell phone. 

While these are simple scenarios, they illustrate the ability to chain activities, and to 

direct the exact behavior of activities, by capturing conditions on contextual information 

in the models of activities.  Such conditions are associated to the operations of either 

resuming or suspending activities, and can be monitored by Auras to automatically 

initiate the corresponding operation. 

Formally, condition-action primitives can be used to express the same space of 

solutions than other more sophisticated approaches, such as models of activities based on 

workflow notations, or on hierarchical decomposition of activities.  Which approach 

would be more suitable for end-users to express and understand such models is an open 

research problem. 
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Robustness 

The term robustness in activity-oriented computing is interpreted very broadly: is the 

system’s behavior consistent with the users’ expectations, even under unanticipated 

circumstances.  In this section, we first use the examples in the Background section to 

identify key robustness requirements.  We then look at the challenges associated with 

supporting robust operation, distinguishing between general challenges and challenges 

that are specific to the home environment.  Finally, we summarize some results showing 

how we support robust tasks in an office environment and discuss how these results can 

be extended to support activities in the home. 

Properties 

In daily use, the system should correctly identify the users’ intent and should support a 

wide variety of activities in a way that is consistent with their preferences and policies.  If 

users observe unexpected behavior, the system should be able to explain its behavior.  

This will increase the users’ confidence in the system and will allow the system to 

improve over time.  For example, by adjusting preferences and policies, either manually 

by the user or automatically by the system (case-base reasoning) the system’s future 

behavior can be made to better match user intent.  Similarly, the system should be able to 

engage users if input is confusing or unexpected.  Ideally, the system would be able to 

recognize undesirable or unsafe actions, e.g. a child opening the door for a stranger. 

The above properties must also be maintained as the system evolves and under failure 

conditions.  For example, when new services or devices are added (e.g. camera and face 

recognition software is added to support the doorbell scenario) or become unavailable 

(e.g. the license for the face recognition software expired), the system should 

automatically adapt to the available services. 

Challenges 

When we looked at how to support user activities and tasks in different environments 

(e.g., work in an office, daily activities in the home, or guiding visitors in a museum) we 

found that several key challenges are shared across these environments.  These generic 

challenges include capturing and representing user intent, discovering and managing 

services and devices (suppliers), and optimizing resources allocation to maximize overall 

system utility.  All these functions should be adaptive, i.e. automatically adapt to changes 

in the computational and physical environment and to changes in the goals and 

preferences of users. 

Each environment also adds its own challenges.  For example, activities in homes are 

device-centric (e.g., displays, sound) or include physical actions that involve people (e.g., 

opening doors).  Managing and allocating such “resources” is very different from an 

office environment, where tasks are computer-centric and are supported by executing 

applications that use a variable amount of resources (network bandwidth, CPU, battery 

power).  Similarly, the interactions with users are very different in the home (discreet 

interface for non-experts) and the office (keyboard/mouse/display used by computer 

knowledgeable users). 
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Robustness in an Office Environment 

In order to achieve robustness in a smart-office environment, we have designed, 

implemented and evaluated an infrastructure that uses utility theory to dynamically select 

the best achievable configuration of services, even in the face of failures and coming 

online of better alternatives (João P. Sousa et al., 2006).   

Robustness is achieved through self-adaptation in response to events ranging from 

faults, to positive changes in the environment, to changes in the user’s task.  Self-

adaptation is realized through a closed-loop control system design that senses, actuates, 

and controls the runtime state of the environment based on input from the user.  Each 

layer reacts to changes in user tasks and in the environment at a different granularity and 

time-scale. Task Management acts at a human perceived time-scale (minutes), evaluating 

the adequacy of sets of services to support the user’s task. Environment Management acts 

at a time-scale of seconds, evaluating the adequacy of the mapping between the requested 

services and specific suppliers. Adaptive applications (fidelity-aware and context-aware) 

choose appropriate computation tactics at a time-scale of milliseconds. 

Let us illustrate the behavior of the system using the following scenario.  Fred is 

engaged in a conversation that requires real-time speech-to-speech translation. For that 

task, assume the Aura infrastructure has assembled three services: speech recognition, 

language translation, and speech synthesis. Initially both speech recognition and synthesis 

are running on Fred’s handheld. To save resources on Fred’s handheld, and since 

language translation is computationally intensive, but has very low demand on data-flow 

(the text representation of each utterance), the translation service is configured to run on a 

remote server.  We now discuss how the system adapts in response to faults, variability in 

resource and service availability, and changes in the user’s task requirements. 

Fault tolerance. Suppose now that there is loss of connectivity to the remote server, or 

equivalently, that there is a software crash that renders it unavailable. Live monitoring at 

the EM level detects that the supplier for language translation is lost. The EM looks for 

an alternative supplier for that service, e.g., translation software on Fred’s handheld, 

activates it, and automatically reconfigures the service assembly. 

Resource and fidelity-awareness. Computational resources in Fred’s handheld are 

allocated by the EM among the services supporting Fred’s task. For computing optimal 

resource allocation, the EM uses each supplier’s spec sheet (relating fidelity levels with 

resource consumption), live monitoring of the available resources, and the user’s 

preferences with respect to fidelity levels. Resource allocation is adjusted over time.  For 

example, suppose that during the social part of the conversation, Fred is fine with a less 

accurate translation, but response times should be snappy. The speech recognizer, as the 

main driver of the overall response time, gets proportionally more resources and uses 

faster, if less accurate, recognition algorithms (Balan et al., 2003).  

Adaptation is also needed to deal with changes in resource availability.  Each supplier 

issues periodic reports on the Quality of Service (QoS) actually being provided – in this 

example, response time and estimated accuracy of recognition/translation. Suppose that at 

some point during the conversation, Fred brings up his calendar to check his availability 

for a meeting. The suppliers for the speech-to-speech translation task, already stretched 

for resources, reduce their QoS below what Fred’s preferences state as acceptable. The 

EM detects this “soft fault”, and replaces the speech recognizer by a lightweight 
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component, that although unable to provide as high a QoS as the full-fledged version, 

performs better under sub-optimal resource availability.  Alternatively, suppose that at 

some point, the language translation supplier running on the remote server (which failed 

earlier) becomes available again. The EM detects the availability of a new candidate to 

supply a service required by Fred’s task, and compares the estimated utility of the 

candidate solution against the current one. If there is a clear benefit, the EM 

automatically reconfigures the service assembly. In calculating the benefit, the EM 

factors in a cost of change.  This mechanism introduces hysteresis in the reconfiguration 

behavior, thus avoiding oscillation between closely competing solutions. 

Task requirements change. Suppose that at some point Fred’s conversation enters a 

technical core for which translation accuracy becomes more important than fast response 

times. The TM provides the mechanisms to allow Fred to quickly indicate his new 

preferences; for instance, by choosing among a set of preference templates. The new 

preferences are distributed by the TM to the EM and all the suppliers supporting Fred’s 

task. Given a new set of constraints, the EM evaluates the current solution against other 

candidates, reconfigures, if necessary, and determines the new optimal resource 

allocation. The suppliers that remain in the configuration, upon receiving the new 

preferences, change their computation strategies dynamically; e.g., by changing to 

algorithms that offer better accuracy at the expense of response time. 

Suppose that after the conversation, Fred wants to resume writing one of his research 

papers. Again, the TM provides the mechanisms to detect, or for Fred to quickly indicate, 

his change of task. Once the TM is aware that the conversation is over it coordinates with 

the suppliers for capturing the user-level state of the current task, if any, and with the EM 

to deactivate (and release the resources for) the current suppliers. The TM then analyses 

the description it saved the last time Fred worked on writing the paper, recognizes which 

services Fred was using and requests those from the EM. After the EM identifies the 

optimal supplier assignment, the TM interacts with those suppliers to automatically 

recover the user-level state where Fred left off.  See (J. P.  Sousa & Garlan, 2003) for a 

formal specification of such interactions. 

Extending to the Home Environment 

We are currently enhancing this solution to provide robust support for activities in the 

home.  While the key challenges are the same (e.g. optimizing utility, adapting to 

changes...) extensions are needed in a number of areas. 

First, activities in the home are very different from tasks in the office.  For example, 

since some activities in the home involve physical actions, people must be involved (e.g., 

open a door), i.e. people become suppliers of services.  Moreover, some tasks are not 

associated with individuals, but with the home itself (e.g., responding to the doorbell or a 

phone call).  This change in roles means that it is even more critical to make appropriate 

allocations since the cost of mistakes is much higher, e.g., people will be much less 

willing to overlook being personally inconvenienced by a wrong decision, than when a 

suboptimal application is invoked on their computer. 

Second, many activities in the home involve the use of devices that are shared by 

many people, or involve deciding who should perform a certain action. This means that 

the Task Manager will typically need to balance the preferences and goals of multiple 

users.  An extreme example is conflicts, e.g., when multiple users would like to use the 
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same device.  In contrast, tasks in the office typically involve only personal resources 

(e.g., a handheld) or resources with simple sharing rules (e.g., a server). 

Third, the methods for interaction with the system will be much different in the home. 

Even on a handheld, Fred had access to pull down menus a keyboard to reliably 

communicate with the system.  For the home environment, we are exploring natural 

modalities of interaction, which are less intrusive, but more ambiguous (more in the 

section on Future Research).  

Finally, uncertainty will play a more significant role in the home, e.g. because of 

unpredictably behavior when people are asked to perform services, or due to ambiguity 

caused by primitive I/O devices.  Work in progress is extending the utility optimization 

components to explicitly consider uncertainty. 

FUTURE RESEARCH 
Some of the challenges identified in this chapter are the topic of undergoing and future 

work, such as research on the kinds of knowledge to capture in activity models so to 

support mixed-initiative control, including delegation and collaboration among human 

and automated agents.  Below we summarize our current work on human-computer 

interaction and on security and privacy for AoC systems. 

User Interfaces for Managing Activities 

Human-computer interaction in the office domain currently uses one de-facto standard 

modality, based on keyboards, pointing devices, and windows-based displays.  In a more 

general ubiquitous computing setting, natural modalities such as speech and gesture may 

be highly desirable, but they also may lead to ambiguity and misunderstanding.  For 

example, if Fred points at a TV where a soccer game is playing and leaves the room, does 

that mean that Fred wants to keep watching the game while moving around the house,  

that the TV should pause the game until Fred returns, or that the TV should be turned off?   

Rather than trying to pick a privileged modality of interaction, we take the approach 

that interactions between humans and Auras may have many channels that complement 

and serve as alternatives to each other.  For example, users might indicate their intention 

to suspend an activity verbally, but might sometimes prefer a graphical interface to 

express a sophisticated set of contextual conditions for when an activity should be 

automatically resumed.  The research questions then become: what are appropriate 

modalities for each kind of interaction?  Is there a role for explicit interactions, as well as 

for implicit interactions based on sensing and inference?  Can different modalities be 

coordinated, contributing to disambiguate user intentions? What mechanisms can be used 

to detect and recover from misunderstandings?  What are specific technologies that can 

be harnessed in the home? 

To support explicit interactions, we started exploring technologies such as Everywhere 

Displays and RFID.  The Everywhere Displays technology uses a digital camera to track 

down the location of a user, and then uses a projector to project an image of the interface 

onto a surface near the user (Kjeldsen, Levas, & Pinhanez, 2004).  The feedback loop 

through the camera allows the image to be adjusted for certain characteristics of the 

surface, such as color and tilt.  The user interacts with this image by performing hand 

motions over the image, which are then recognized via the camera.  This technology 
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supports a metaphor similar to the point-and-click metaphor, although fewer icons seem 

to be feasible relative to a computer screen, and a rich set of command primitives, such as 

double clicking or selecting a group of objects, seems harder to achieve. 

RFID technology supports a simple form of tangible interfaces (Greenberg & Boyle, 

2002).  For example, RFID tags can be used to create tangible widgets for activities.  In 

the example where Fred is watching the game on TV, Fred may bind an activity widget 

with the show playing on the TV by swiping the widget near the TV.  That activity may 

be activated in other rooms by swiping the activity widget by a reader in the room, or 

deactivated it by swapping the widget again, once activated (see demo video at (J.P. 

Sousa, Poladian, & Schmerl, 2005)). 

Tradeoff between Ubiquity and Security 

The big question to be answered is: can ubiquity be reconciled with goals of security and 

privacy?  There seems to be tradeoff between the openness of ubiquitous computing and 

security assurances.  The very meaning of ubiquity implies that users should be enabled 

to use the services offered by devices embedded in many different places.  But how 

confident can users be that those devices, or the environment where they run, will not 

take advantage of the access to the user’s information to initiate malicious actions? 

Rather that taking an absolute view of security and privacy, we argue that there are 

different requirements for different activities.  For example, the computing environment 

at a coffee shop could be deemed unsafe to carry out online financial transactions, but 

acceptable for sharing online vacation photos with a friend. 

In essence, this is a problem of controlling access: ideally, a ubiquitous computing 

environment would gain access only to the information pertaining to the activities that a 

user is willing to carry out in that environment, and none other. 

Unfortunately, existing solutions for controlling access are not a good fit to this 

problem because they make a direct association between identity and access.  

Specifically, once a user authenticates, he gains access to all the information and 

resources he is entitled to, and so does the computing environment where the user 

authenticated.  

A candidate solution would be to associate access control to the cross-product of users 

and environments: in the example, user Fred at the coffee shop would get access to a 

limited set of activities, but user Fred at his office would get access to a wide range 

(possibly all) of Fred’s activities.  A serious problem with this solution is that it would 

require the pre-encoding of all the types of environments where the user might want to 

access his or her activities.  

Another candidate solution would be for users to have multiple identities: Fred at the 

coffee shop would use an identity that has access to the vacation photos, but not to online 

banking.  This solution has two obvious problems: first, separating the activities and 

associated information for the different identities may not be clear cut, and may quickly 

become cumbersome for moderately high numbers of activities.  Second, if users are to 

be given the freedom to define new identities and the corresponding access control, does 

that mean that every user should be given security administration privileges? 

We are currently investigating an access control model centered on the notion of 

persona.  A user is given one identity and may define multiple personae associated with 
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that identity.  The user may freely associate activities with personae in a many-to-many 

fashion, and may also define which credentials are required to activate each persona.  

This model has a number of benefits, as follows. 

First, it allows users to manage which activities are seen by an arbitrary environment 

(by authenticating specific personae) while drawing a clear boundary on the 

administrative privileges of each user.  

Second, users may draw on rich forms of authentication to make the overhead of 

authentication proportionate to the security requirements.   For example, for activating 

Fred’s financial persona, Fred may require two forms of id to be presented, such as 

entering a password and scanning an id card, while for his social persona, a weak form of 

authentication, such as face or voice recognition, will suffice. 

Third, the model offers users a coherent view of the personal workspace centered on 

their identity, while enabling users to expand the set of accessible activities at will, by 

providing the credentials required to activate the desired personae. 

CONCLUSION 
The key idea of Activity-oriented Computing (AoC) is to capture models of user 

activities and have systems interpret those models at run time.  By becoming aware of 

what user activities entail, systems can do a better job at supporting those activities, either 

by facilitating access to the activities while relieving users from overhead such as 

configuring devices and software, or by taking responsibility for parts or whole activities. 

This chapter described the authors’ work on building systems to support AoC.  It 

discussed how those systems may address challenges inherent to the problem domain, 

such as user mobility and conflict resolution, as well as challenges that are entailed by 

building the systems themselves.  Specifically, (a) defining what to capture in activity 

models (b) designing systems that do a good job at supporting user activities while 

addressing the challenges in the problem domain, and (c) making those systems robust, 

self-aware, self-configurable, and self-adaptable.  The chapter dissected those challenges, 

identified specific research questions, and described how the authors answered these 

questions for the past six years, as their understanding of the issues improved. 

The main contributions of this work are as follows: 

 Pragmatic models of user activities that enable mobile users to instantiate activities in 

different environments, taking advantage of diverse local capabilities without 

requiring the use of mobile devices, and retaining the ability to reconstitute the user-

perceived state of those activities. 

 Mechanisms that enable scoping service discovery over geographical boundaries that 

are meaningful to users, and which can be specific to each activity and be freely 

defined. 

 A utility-theoretic framework for service discovery that enables optimization of 

sophisticated, service-specific models of QoS and context properties. 

 A robustness framework, based on the same utility-theoretic framework, that departs 

from the traditional binary notion of fault and uniformly treats as an optimization 

problem faults, “soft faults” (unresponsiveness to QoS requirements,) and conflicts in 

accessing scarce resources. 
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 Closed-loop control that enables systems to become self-aware and self-configurable, 

and to adapt to dynamic changes in both user/activity requirements and environment 

resources. 

 A software architecture that harmoniously integrates all the features above, 

additionally (a) integrating context sensing according to the capabilities of each 

environment, and (b) coordinating adaptation policies with applications that may 

contain their own fine-grain mechanisms for adaptation to resource variations. 

This chapter also summarized ongoing and future work towards addressing other 

challenges, namely, supporting activities where human and automated agents collaborate 

(mixed-initiative activities), exploring human-computer interaction modalities for AoC in 

ubiquitous computing environments, and investigating models for security and privacy. 
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1
 For generality, the protocols of interaction were renamed from previous architecture documentation 

(e.g. [Error! Reference source not found.,Error! Reference source not found.]).  For instance, the EM 

– Supplier protocol is now the Service Announcement and Activation Protocol (SAAP). Since these 



Activity-oriented Computing 

   30 

                                                                                                                                                 

protocols were already based on peer-to-peer asynchronous communication, no changes were implied by 

the transition to the new perspective of the architectural framework. 
2
 As discussed in the subsection on context awareness, there is a variety of mechanisms for Auras to 

obtain their physical location, or more precisely, the location of their corresponding entities. 


