
Advances in Ubiquitous Computing:

Future Paradigms and Directions

Activity-oriented Computing

João Pedro Sousa

Computer Science Dept., George Mason University, Fairfax VA

ph: 703-993-9196, fax: 703-993-1638, email: jpsousa@gmu.edu

Bradley Schmerl

Computer Science Dept., Carnegie Mellon University, Pittsburgh PA

ph: 412-268-5889, fax: 412-268-5576, email: schmerl@cs.cmu.edu

Peter Steenkiste

Computer Science Dept., Carnegie Mellon University, Pittsburgh PA

ph: 412-268-3261, fax: 412-268-5576, email: prs@cs.cmu.edu

David Garlan

Computer Science Dept., Carnegie Mellon University, Pittsburgh PA

ph: 412-268-5056, fax: 412-268-5576, email: garlan@cs.cmu.edu

This material is based upon work supported by

the National Science Foundation under Grant No. 0615305

Activity-oriented Computing

 2

Activity-oriented Computing

ABSTRACT
This chapter introduces a new way of thinking about software systems for supporting the

activities of end-users. In this approach, models of user activities are promoted to first

class entities, and software systems are assembled and configured dynamically based on

activity models. This constitutes a fundamental change of perspective over traditional

applications: activities take the main stage and may be long-lived, whereas the agents that

carry them out are plentiful and interchangeable.

The core of the chapter describes a closed-loop control design that enables activity-

oriented systems to become self-aware and self-configurable, and to adapt to dynamic

changes both in the requirements of user activities and in the environment resources. The

chapter discusses how that design addresses challenges such as user mobility, resolving

conflicts in accessing scarce resources, and robustness in the broad sense of responding

adequately to user expectations, even in unpredictable situations, such as random failures,

erroneous user input, and continuously changing resources.

The chapter further summarizes challenges and ongoing work related to managing

activities where humans and automated agents collaborate, human-computer interactions

for managing activities, and privacy and security aspects.

KEYWORDS
Agent, Agent Software, Applications Software, Activity Oriented Computing, Adaptive

Systems, Computer Support Systems, Conceptual Model, Emerging Information

technologies, End-User Computing, End-User Programming, Healthcare Systems, Home

Computing, Human Computer Systems, Human/computer interaction, Middleware,

Mobile Computing, Modeling Languages, Office Systems, Office Automation, Personal

Computing, Person/machine interaction, Pervasive Computing, Self-* Systems, Software

Architecture, Task oriented Computing, Technology Trends, User Interface, Very High-

Level Languages, Ubiquitous Computing, Utility Function Evaluation.

Activity-oriented Computing

 3

INTRODUCTION

Over the past few years, considerable effort has been put into developing networking and

middleware infrastructures for ubiquitous computing, as well as in novel human-

computer interfaces based on speech, vision, and gesture. These efforts tackle ubiquitous

computing from two different perspectives, systems research and HCI research, hoping to

converge and result in software that can support a rich variety of successful ubiquitous

computing applications. However, although examples of successful applications exist, a

good understanding of frameworks for designing ubiquitous computing applications is

still largely missing.

A key reason for the lack of a broadly applicable framework is that many research

efforts are based on an obsolete application model. This model assumes that ubiquitous

computing applications can support user activities by packaging, at design time, a set of

related functionalities within a specific domain, such as spatial navigation, finding

information on the web, or online chatting. However, user activities may require much

diverse functionality, often spanning different domains. Which functionalities are

required to support an activity can only be determined at runtime, depending on the user

needs, and may need to evolve in response to changes in those needs. Examples of user

activities targeted by ubiquitous computing are: navigating spaces such as museums,

assisting debilitated people in their daily living, activities at the office such as producing

reports, as well as activities in the home such as watching a TV show, answering the

doorbell, or enhancing house security.

This chapter introduces activity-oriented computing (AoC) as a basis for developing

more comprehensive and dynamic applications for ubiquitous computing. Activity-

oriented computing brings user activities to the foreground by promoting models of such

activities to first class primitives in computing systems.

In the remainder of this chapter, the section on background presents our vision for

activity-oriented computing and compares it with related work. Next we discuss the main

challenges of this approach to ubiquitous computing. Specifically, we discuss user

mobility (as opposed to mobile computing), conflict resolution and robustness, mixed-

initiative control, human-computer interaction, and security and privacy.

The main body of the chapter presents our work towards a solution. Specifically we

discuss software architectures for activity-oriented computing and how to address the

challenges of mobility and robustness, as well as the options to model user activities.

The chapter ends with a discussion of future directions concerning human-computer

interactions, and the tradeoff between ubiquity and security and privacy.

BACKGROUND
The vision of AoC is to make the computing environment aware of user activities so that

resources can be autonomously managed to optimally assist the user. Activities are

everyday actions that users wish to accomplish and that may be assisted in various ways

by computing resources in the environment. Done right, AoC will allow users to focus

on pursuing their activities rather than on configuring and managing the computing

environment. For example, an AoC system could reduce overhead by automatically

Activity-oriented Computing

 4

customizing the environment each time the user wishes to resume a previously

interrupted long-lived activity, such as preparing a monthly report, or organizing a party.

To help make this vision concrete, the following examples illustrate possible

applications of AoC.

Elderly care. Rather than relying on hardcoded solutions, AoC enables domain experts

such as doctors and nurses to “write prescriptions” for the activities of monitoring the

health of the elderly or outpatients. Such descriptions enable smart homes to take charge

of those activities, collaborating with humans as appropriate. For example, the heart rate

of an elderly person may be monitored by a smart home, which takes responsibility to

alert family members when alarming measurements are detected. Who gets alerted and

the media to convey the alert may depend on contextual rules, such as the seriousness of

the situation, as prescribed by the doctor; the elder’s preferences of who to contact, who

is available, who is closer to the elder’s home, is sending an SMS appropriate, etc.

Entertainment. While others have explored the vision that music, radio, or television

can follow occupants as they move through the house, activity-oriented computing

enables a more general approach. Entertainment can be defined as an activity, allowing

preferences and constraints to be specified, and underlying services to be shared, e.g.,

tracking people, identifying and using devices in various rooms. For example, the same

location services used for home security activities can be used for entertainment; the

television that can be used for entertainment can also be used for displaying images of a

visitor at the front door.

Home Security. Many homes have a security system that uses sensors to detect burglary

attempts and fires. They are standalone systems with limited capabilities, e.g., the system

is typically either on or off and control is entirely based on a secret code. If the security

system were built as an activity service, it could be an open system with richer

functionality. For example:

 Richer set of control options, e.g., based on fingerprint readers or voice recognition.

These methods may be more appropriate for children or the elderly.

 More flexibility (e.g., giving neighbors limited access to water the plants when the

homeowners are on vacation, the ability to control and interact with the system

remotely, or incorporate cameras that ignore dogs).

 Remote diagnosis, e.g., in response to an alarm, police or fire responders may be able

to quickly check for false alarms through cameras.

Doorbell. A very simple activity is responding to somebody ringing the doorbell.

Today's solution is broadcast: the doorbell is loud enough to alert everybody in the house

and then people decide independently or after coordination (through shouting!) how to

respond. In activity-oriented computing, a doorbell activity carried out by the hallway

selects a person, based on their current location, current activity, and age. If the visitor

can be identified, it might be possible to have the person who is being visited respond.

Also, the method of alerting the person can be customized, e.g., using a (local) sound,

displaying a message on the television screen, or flashing the lights. Finally, if nobody is

home, the doorbell service can take a voice message or, if needed, establish a voice or

video link to a house occupant who might be available in their office or car. Activities

such as answering the phone could be handled in a similar way, i.e., replace the broadcast

ringing by a targeted, context-aware alert.

Activity-oriented Computing

 5

What is Activity-oriented Computing

Activity-oriented computing adopts a fundamental change of perspective over traditional

applications: activities take the main stage and may be long-lived, whereas the agents

that carry them out are plentiful and interchangeable; how activities are best supported

will evolve over time, depending on the user’s needs and context. In AoC, activities are

explicitly represented and manipulated by the computing infrastructure. Broadly

speaking, this has two significant advantages.

First, it enables explicit reasoning about user activities: which activities a user may

want to carry out in a particular context, what functionality (services) is required to

support an activity, what are the user preferences relative to quality of service for each

different activity, which activities conflict, which have specific privacy or security

concerns, etc.

Second, it enables reasoning about the optimal way of supporting activities, through

the dynamic selection of services (agents) that implement specific functions relevant to

the activity. Thanks to the explicit modeling of the requirements of activities and of the

capabilities of agents, the optimality of such assignment may be addressed by

quantitative frameworks such as utility theory. Also, by raising the level of abstraction

above particular applications or implementations, activity models make it easier to target

a broad range of concrete implementations of similar services in different devices, in

contrast to solutions based on mobile code (more in the Challenges section, below).

Related Work

Early work in ubiquitous computing focused on making certain applications ubiquitously

available. For that, it explored OS-level support that included location sensing

components to automatically transfer user interfaces to the nearest display. Examples of

this are the work on teleporting X Windows desktops (Richardson, Bennet, Mapp, &

Hopper, 1994); and Microsoft’s Easy Living project (Brumitt, Meyers, Krumm, Kern, &

Shafer, 2000). This idea was coupled with the idea of desktop management to treat

users’ tasks as sets of applications independent of a particular device. Examples of

systems that exploit this idea are the Kimura project (MacIntyre et al., 2001), which

migrates collections of applications across displays within a smart room, and earlier work

in Aura that targets migration of user tasks across machines at different locations (Wang

& Garlan, 2000). Internet Suspend-Resume (ISR) requires minimal changes to the

operating system to migrate the entire virtual memory of one machine to another machine

(Kozuch & Satyanarayanan, 2002). These approaches focus on making applications

available ubiquitously, but do not have a notion of user activity that encompasses user

needs and preferences, and therefore do not scale to environments with heterogeneous

machines and varying levels of service.

More recent work seeks to support cooperative tasks in office-like domains, for

example ICrafter (Ponnekanti, Lee, Fox, & Hanrahan, 2001) and Gaia (Román et al.,

2002); as well as domain-specific tasks, such as healthcare (Christensen & Bardram,

2002) and biology experiments, for example, Labscape (Arnstein, Sigurdsson, & Franza,

2001). This research shares with ours the goal of supporting activities for mobile users,

where activities may involve several services in the environment, and environments may

contain heterogeneous devices. However, much of this work is predicated on rebuilding,

Activity-oriented Computing

 6

or significantly extending, operating systems and applications to work over custom-built

infrastructures. The work described in this chapter supports user activities with a new

software layer on top of existing operating systems and accommodates integration of

legacy applications.

Focusing on being able to suspend and resume existing activities in a ubiquitous

environment does not go all the way toward the vision of providing ubiquitous assistance

for user activities. Such support can be divided into two categories: 1) helping to guide

users in conducting tasks; and 2) performing tasks, or parts of tasks, on behalf of users.

An early example of the first category the Adtranz system (Siewiorek, 1998), which

guides technical staff through diagnosing problems in a train system. More recent work

concentrates on daily life, often for people with special needs, such as the elderly, or

those with debilitated health (Abowd, Bobick, Essa, Mynatt, & Rogers, 2002; Intille,

2002).

Research on automated agents took assistance one step further by enabling systems to

carry out activities on behalf of users. Examples of this are the RETSINA framework

(Sycara, Paolucci, Velsen, & Giampapa, 2003), with applications in domains such as

financial portfolio management, ecommerce and military logistics; and more recently the

RADAR project (Garlan & Schmerl, 2007), which focuses on the office domain,

automating such tasks as processing email, scheduling meetings, and updating websites.

Consumer solutions for activities in the home are beginning to emerge, mainly from

the increasing complexity of configuring home theater equipment. Universal remote

controls, such as those provided by Logitech, allow users to define activities such as

“Watch DVD”, which choose the input source for the television, output of sound through

the home theater system, and choosing the configuration of the DVD player (Logitech).

However, in these solutions, activities are bound to particular device and device

configurations – the activities themselves must be redefined for different equipment, and

it is not possible for the activities to move around different rooms in the home, or to

allow different levels of service for the same activity.

In this chapter, we discuss the potential and the challenges of having software systems

using activity models at runtime. Specifically, we focus on the benefits of using activity

models for enabling users to access their activities ubiquitously, and for delegating

responsibility for activities to automated agents.

CHALLENGES
Activity-oriented computing raises a number of challenges that must be addressed by any

adequate supporting infrastructure and architecture.

User mobility: As users move from one environment to another – for example, between

rooms in a house – activities may need to migrate with the users, tracking their location

and adapting themselves to the local situation. A key distinction between user mobility

in AoC and previous approaches is that no assumptions are made with respect to the users

having to carry mobile devices, or to the availability of a particular kind of platform at

every location. Since different environments may have very different resources (devices,

services, interfaces, etc.) a critical issue is how best to retarget an activity to a new

situation. For example, an activity that involves “watching a TV show” can be changed

into “listening” when the user walks through a room that only offers audio support.

Activity-oriented Computing

 7

Solving this problem requires the ability to take advantage of context information

(location, resource availability, user state, etc.) as well as knowledge of the activity

requirements (which services are required, fidelity tradeoffs, etc.) to provide an optimal

use of the environment in support of the activity.

Conflict resolution: Complicating the problem of automated configuration and

reconfiguration is the need to support multiple activities – both for a single user and

between multiple users. If an individual wants to carry out two activities concurrently

that may need to use shared resources, how should these activities simultaneously be

supported? For example, if the user is engaged in entertainment, should the doorbell

activity interrupt that activity? Similar problems exist when two or more people share an

environment. For example, if two users enter the living room hoping to be entertained,

but having different ideas of what kind of entertainment they want, how can those

conflicts be reconciled? Solving this problem requires (a) the ability to detect when there

may be conflicts, and (b) the ability to apply conflict resolution policies, which may itself

require user interaction.

Mixed-initiative control: The ability to accomplish certain kinds of activities requires

the active participation of users. For example, the door answering activity, which might

be associated with a house, requires occupants of the house to respond to requests from

the house to greet a visitor. Since humans exhibit considerable more autonomy and

unpredictability than computational elements, it is not clear how one should write the

activity control policies and mechanisms to allow for this. Standard solutions to human-

based activities (such as work-flow management systems) are likely not to be effective,

since they assume users to adhere to predetermined plans to a much higher degree than is

typically the case in the kinds of domains targeted by ubiquitous computing.

Security and privacy: Some security and privacy issues can be solved through

traditional mechanisms for security, but others are complicated by key features of

ubiquity: rich context information, and user mobility across public or shared spaces such

as a car, or an airport lounge. In a multi-user environment with rich sources of context

information (such as a person’s location) an important issue is how to permit appropriate

access to and sharing of that information. Furthermore, which guaranties can be made to

a user that wishes to access personal activities in a shared space? What mechanisms can

back such guaranties? Are there deeper issues than the exposure of the information that

is accessed in a public space? Is it possible that all of a user’s information and identity

may be compromised as a consequence of a seemingly innocuous access at a public

space?

Human-computer interaction: Many of the activities that a ubiquitous computing

environment should support will take place outside of standard computing environment

(such as a networked office environment). In such environments one cannot assume that

users will have access to standard displays, keyboards, and pointing devices. How then

can the system communicate and interact with users effectively? What should be the role

of emerging technologies such as augmented reality and natural interaction modalities

such as speech, gesture, and ambient properties such as light and smell?

While the challenges above stem from the problem domain, we now turn to the

challenges associated with building a solution for AoC.

Activity-oriented Computing

 8

Activity models. The first challenge is to define what kinds of knowledge should be

imparted in systems to make them aware of user activities. Specifically, what should be

the contents and form of activity models? What should be the semantic primitives to

compose and decompose activities? At what level of sophistication should activity

models be captured? Presumably, the more sophisticated the models, the more a system

can do to assist users. For example, to help users with repairing an airplane or with

planning a conference, a significant amount of domain knowledge needs to be captured.

But obviously, capturing such knowledge demands more from users (or domain experts)

than capturing simple models of activities. Is there an optimal level of sophistication to

capture activity models – a sweet spot that maximizes the ratio between the benefits of

imparting knowledge to systems and the costs of eliciting such knowledge from users?

Or is it possible to have flexible solutions that allow incremental levels of sophistication

for representing each activity, depending on the expected benefits and on the user’s

willingness to train the system?

System design. Systems that support AoC should be capable of dynamic

reconfiguration in response to changes in the needs of user activities. Ideally, such

systems would also be aware of the availability of resources in the environment and

respond to changes in those. The questions then become: What is an appropriate

architecture to support activity-oriented computing? What responsibilities should be

taken by a common infrastructure (middleware) and which should be activity- or service-

specific? What are the relevant parameters to guide service discovery (location, quality

of service, etc.) and how should discovery be geographically scoped and coordinated?

Can activity models be capitalized to handle the heterogeneity of the environment, self-

awareness and dynamic adaptation? Furthermore, what operations might be used to

manage activities: suspend and resume, delegate, collaborate, others? What should be the

operational semantics of each of these operations?

Robustness. In AoC, robustness is taken in the broad sense of responding adequately to

user expectations, even in unpredictable situations, such as random failures, erroneous

user input, and continuously changing resources. First of all, should adequacy be a

Boolean variable – either the system is adequate or it is not – or can it be quantified and

measured? Specifically, are there system capabilities and configurations that are more

adequate then others to support a user’s activity? If so, can measures of adequacy be

used to choose among alternatives in rich environments? For example is the user better

served by carrying out a video conference on a PDA over a wireless link, or on the wall

display down the hall?

TOWARDS A SOLUTION
To address the challenges identified above, we decided to start with relatively simple

models of activities and address concrete problems where the advantages of AoC could

be demonstrated. This section summarizes our experience of about six years at Carnegie

Mellon University’s Project Aura. Initially, this research targeted the smart office

domain, and later extended to the smart home domain (more below).

Designing systems for AoC brings up some hard questions. What makes those

questions especially challenging, is that to answer them, we need to reexamine a

significant number of assumptions that have been made about software for decades. Not

Activity-oriented Computing

 9

surprisingly, our own understanding of how to answer those questions continues to

evolve. This section is organized around the set of solution-related challenges identified

above; namely, system design, activity models, and robustness.

System Design

The first research problem we focused on, starting around the year 2000, was user

mobility in the smart office domain. Here, activities (or tasks) typically involve several

applications and information assets. For instance, for preparing a presentation, a user

may edit slides, refer to a couple of papers on the topic, check previous related

presentations, and browse the web for new developments. An example of user mobility

is that the user may start working on the presentation at his or her office, continue at the

office of a collaborator, and pick the task up later at home.

The premise adopted for user mobility is that users should not have to carry a machine

around, just as people normally don’t carry their own chairs everywhere. If they so

desire, users should be able to resume their tasks, on demand, with whatever computing

systems are available. This premise is neither incompatible with users carrying mobile

devices, nor with mobile code. Ideally, the capabilities of any devices or code that travel

with the user contribute to the richness of the environment surrounding the user, and

therefore contribute to a better user experience. A discussion of why solutions centered

on mobile devices, mobile code, or remote computing (such as PC Anywhere) are not

entirely satisfactory to address user mobility can be found in (J.P. Sousa, 2005).

Designing a solution to support user mobility is made harder by the heterogeneity of

devices where users may want to resume their activities, and by dynamic variations in the

resources and devices available to the user. Even in a fairly restricted office domain, it is

common to find different operating systems, offering different suites of applications (e.g.

Linux vs. PC vs. Mac.) In a broader context, users may want to carry over their activities

to devices with a wide range of capabilities, from handhelds to smart rooms. In addition

to heterogeneity, mobile devices are subject to wide variations of resources, such as

battery and bandwidth. Ideally, software would automatically manage alternative

Table 1 Terminology

task An everyday activity such as preparing a presentation or writing a report. Carrying out a task may require obtaining

several services from an environment, as well as accessing several materials.

environment The set of suppliers, materials and resources accessible to a user at a particular location.

service Either (a) a service type, such as printing, or (b) the occurrence of a service proper, such as printing a given

document. For simplicity, we will let these meanings be inferred from context.

supplier An application or device offering services – e.g. a printer.

material An information asset such as a file or data stream.

capabilities The set of services offered by a supplier, or by a whole environment.

resources Are consumed by suppliers while providing services. Examples are: CPU cycles, memory, battery, bandwidth, etc.

context Set of human-perceived attributes such as physical location, physical activity (sitting, walking…), or social activity

(alone, giving a talk…).

user-perceived

state of a task

User-observable set of properties in the environment that characterize the support for the task. Specifically, the set

of services supporting the task, the user-level settings (preferences, options) associated with each of those services,

the materials being worked on, user-interaction parameters (window size, cursors…), and the user’s preferences
with respect to quality of service tradeoffs.

Activity-oriented Computing

 10

computing strategies based on user requirements and on the availability of resources.

Moreover, in heavily networked environments, remote servers may constantly change

their response times and even availability. Ideally, users should be shielded as much as

possible from dealing with such dynamic variations.

Before describing an architecture for supporting user mobility as outlined above,

Table 1 clarifies the terminology used throughout this chapter, since although the terms

are in common use, their interpretation is far from universal.

Our starting point for supporting user mobility was to design an infrastructure, the

Aura infrastructure, that exploits knowledge about a user’s tasks to automatically

configure and reconfigure the environment on behalf of the user. Aura is best explained

by a layered view of its infrastructure together with an explanation of the roles of each

layer with respect to task suspend-resume and dynamic adaptation.

First, the infrastructure needs to know what to configure for; that is, what a user needs

from the environment in order to carry out his or her tasks. Second, the infrastructure

needs to know how to best configure the environment: it needs mechanisms to optimally

match the user’s needs to the capabilities and resources in the environment.

In our architecture, each of these two sub-problems is addressed by a distinct software

layer: (1) the Task Management layer determines what the user needs from the

environment at a specific time and location; and (2) the Environment Management layer

determines how to best configure the environment to support the user’s needs.

Table 2 summarizes the roles of the software layers in the infrastructure. The top

layer, Task Management (TM), captures knowledge about user needs and preferences for

each activity. Such knowledge is used to coordinate the configuration of the environment

upon changes in the user’s task or context. For instance, when the user attempts to carry

out a task in a new environment, TM coordinates access to all the information related to

the user’s task, and negotiates task support with Environment Management (EM). Task

Management also monitors explicit indications from the user and events in the physical

context surrounding the user. Upon getting indication that the user intends to suspend the

current task or resume some other task, TM coordinates saving the user-perceived state of

the suspended task and recovers the state of the resumed task, as appropriate.

Table 2 Summary of the software layers in Aura

layer mission roles

T
a

sk

M
a

n
a
g

em
e
n

t

what does

the user need

- monitor the user’s task, context and preferences

- map the user’s task to needs for
services in the environment

- complex tasks: decomposition, plans,

context dependencies

E
n

v
ir

o
n

m
e
n

t

M
a

n
a
g

em
e
n

t
how to best

configure

the
environment

- monitor environment capabilities and resources

- map service needs, and user-level state of tasks

to available suppliers

- ongoing optimization of the utility of the

environment relative to the user’s task

E
n

v
.

support the

user’s task

- monitor relevant resources

- fine grain management of QoS/resource tradeoffs

Activity-oriented Computing

 11

The EM layer maintains abstract models of the environment. These models provide a

level of indirection between the user’s needs, expressed in environment-independent

terms, and the concrete capabilities of each environment.

This indirection is used to address both heterogeneity and dynamic change in the

environments. With respect to heterogeneity, when the user needs a service, such as

speech recognition, EM will find and configure a supplier for that service among those

available in the environment. With respect to dynamic change, the existence of explicit

models of the capabilities in the environment enables automatic reasoning when those

capabilities change dynamically. The Environment Management adjusts such a mapping

automatically in response to changes in the user’s needs (adaptation initiated by TM), and

changes in the environment’s capabilities and resources (adaptation initiated by EM). In

both cases adaptation is guided by the maximization of a utility function representing the

user’s preferences (more in the section on Robustness, below).

The Environment layer comprises the applications and devices that can be configured

to support a user’s task. Configuration issues aside, these suppliers interact with the user

exactly as they would without the presence of the infrastructure. The infrastructure steps

in only to automatically configure those suppliers on behalf of the user. The specific

capabilities of each supplier are manipulated by EM, which acts as a translator for the

environment-independent descriptions of user needs issued by TM. Typically, suppliers

are developed by wrapping existing applications. Our experience in wrapping over a

dozen applications native to Windows and Linux has shown that it is relatively easy to

support setting and retrieving the user-perceived state (Balan, Sousa, & Satyanarayanan,

2003; J.P. Sousa, 2005).

This layering offers a clean separation of concerns between what pertains user

activities and what pertains the environment. The knowledge about user activities is held

by the TM and travels with the user to each environment he or she wishes to carry out

activities. The knowledge about the environment stays with the EM and can be used to

address the needs of many users.

A significant distinction of this approach to user mobility is that it does not require

code or devices to travel with the user. A generic piece of code, Prism, in the TM layer

becomes an Aura for a user by loading models of user activities. Those models are

encoded in XML for convenience of mobility across heterogeneous devices (more in the

section on Activity Models, below).

Extending to the Home Environment

Although the layered perspective played an important role in clarifying the separation of

concerns and protocols of interaction, it captures only the case where users consume

services, and software components provide them.

In the smart home domain, software could take responsibility for activities, and users

might be asked to contribute services for those activities. For example, a smart home

might take charge of the home’s security and ask a human to lock the windows when

night falls. Other examples of activities include: a user watching a TV show, a user

checking on a remote family member, the main hallway facilitating answering the door,

and the home keeping a comfortable temperature. These examples prompted us to realize

Activity-oriented Computing

 12

that any domain entity could have an Aura, and that an Aura might find itself on either

the supplying or the consuming side, or both. Specifically, Auras can be associated with:

- People: individual residents, or groups, such as a resident’s parents, or the entire

family.

- Spaces, such as the main hallway, living room or the entire home. Spaces of interest

are not necessarily disjoint.

- Appliances, such as a TV, phone, table or couch. Appliances have a well-defined

purpose and may have a range of automation levels, from fairly sophisticated (a

smart refrigerator), to not automated at all (an old couch).

- Software applications, such as a media player, a video conferencing app, or a people

locator. Applications run on general purpose devices, and which applications are

available on one such device define the purpose that the device may serve.

Figure 1 shows the run-time architectural framework for an activity-oriented system.

The boxes correspond to types of components, and the lines to possible connectors

between instances of those types.
1
 Part (a) shows our initial understanding, based on the

smart office domain, and part (b) the more general framework. Contrasting the two, it is

now clear that the TM corresponded to an Aura (of users) that consumed services but

supplied none; and suppliers corresponded to Auras of software that supplied services,

but consumed none.

In the new architectural framework, when an Aura boots up, it first locates the EM

(see the section on Service Discovery, below) and then may engage on the Service

Announcement & Activation Protocol (SAAP) to announce any services that its entity

provides, as well as on the Service Request Protocol (SRP) to discover services that are

relevant to support the entity’s activities. Once the services in other Auras are actually

recruited by the EM, using the SAAP, the consumer Aura and the supplier Auras interact

via the Service Use Protocol (SUP) to reconstruct the user-perceived state of the activity.

Figure 2 shows an example of an architecture that was dynamically created to respond

to the needs of a user, Fred, at a particular place, Fred’s home. The boxes correspond to

run time components (autonomous processes that may be deployed in different boxes)

rather than denoting code packaging, and the lines correspond to connectors, that is,

actual communication channels that are established dynamically as the components are

created. The diagram represents two kinds of components: Auras, with rounded corners,

Service Announcement & Activation Protocol

Service Request Protocol

Service Use Protocol

TM

Suppl

ier

EM

SAAP

SUP

SRP

(a)

Aura

EM

SAAP

SUP

SRP

(b)

TM

Supplier

EM

Aura

EM

Figure 1 Architectural framework

Activity-oriented Computing

 13

and the EM, and it visually identifies the different kinds of interaction protocols between

the components (see Figure 1).

The instance of architecture in the example is the result of Fred’s Aura interacting

with the EM to recruit two suppliers: the TV and the phone’s Auras, after interpreting

Fred’s needs for the desired activity. This architecture may evolve to adapt to changes in

Fred’s needs, and in the figure, Fred’s Aura is also shown as being recruited by the

home’s Aura to get Fred to open the front door.

Context Awareness

An important decision is how to enable context awareness in activity-oriented computing.

Addressing context awareness can be decomposed into three parts: sensing context,

distributing contextual information, and reacting to context. We start by discussing the

latter.

Potentially, all domain entities, and therefore their Auras, might want to react to

context. A user’s Aura may change the requirements on an activity, or change which

activities are being carried out depending on context such as user location, or whether the

user is sitting alone at the office, driving a car, or having an important conversation with

his or her boss. Suppliers contributing services to an activity may want to change

modalities of those services based on context. For example, an application that shows

confidential information may hide that information automatically if someone else is

detected entering the room; or an application that requires text or command input may

switch to speech recognition if the user needs to use his or her hands, say, for driving a

vehicle. The EM may change the allocation of suppliers to for a given activity based on

user location. For example, if the user is watching a TV show while moving around the

house, different devices may be allocated: the TV in the living room, the computer

monitor at the home office, etc. The upshot of this is that contextual information should

be accessible to all the boxes in the architecture.

Initially, we thought that a dedicated part in the infrastructure would be in charge of

gathering and distributing contextual information: there would be a Context Management

component/layer in each environment, just like there is an Environment Management.

However, both the contextual information and the policies for distributing such

information are associated with each user and not really with the environment where that

user happens to be. Therefore, Auras are the hub of knowledge about the entities they

represent.

Service Announcement & Activation Protocol

Service Request Protocol

Service Use Protocol
EM

Fred’s Aura

phone’s Aura
TV’s Aura

home’s Aura

Figure 2 Snapshot of the architecture of one system

Activity-oriented Computing

 14

Whenever a component wishes to obtain contextual information about entity X, it will

ask X’s Aura. X’s Aura itself may use a variety of mechanisms to gather information

about X. For example, since physical location of a space is normally a non-varying

property, the Aura for a home can read the home’s location from a configuration file. In

contrast, the Aura for an application running on a cell phone equipped with GPS might

obtain the application’s location from the device’s GPS. The Aura for a person P

typically obtains P’s contextual information via Contextual Information Services (CIS).

Unlike sensors specific to devices or spaces, CIS’s are fairly generic. Specifically,

devices such as a thermometer attached to a wall, or a window sensor for detecting

whether that window is open or closed, are accessed only by the Auras of the

corresponding physical spaces. In contrast, given a training set with a person’s face, a

generic face recognizer may be able to track that person’s location inside an office

building by using cameras spread over rooms and halls.

CISs are integrated into the architecture using the same protocols for discovery and

activation as other services; which allows for gracefully handling of activity instantiation

in both sensor-rich environments, such as a smart building, and in depleted environments,

such as a park.

While CIS components release information based on generic premises such as the rule

of law (e.g. only an authenticated Aura for X or a law enforcement agent with a warrant

can obtain information about X), the Auras themselves are responsible for knowing and

enforcing their entity’s privacy policies regulating to whom release which information.

As an example of distribution policy, a user may authorize only a restricted group of

friends to obtain his or her current location.

Service Discovery

In the initial architectural framework (Figure 1.a,) service discovery is coordinated by the

Environment Management layer. When we expanded the focus of our research to the

smart home domain, around the year 2004, we revisited the problem of service discovery.

Among the questions that prompted this revisiting are: are there real advantages in

brokering discovery? What are the relevant parameters to guide service discovery

(location, quality of service, etc.)? How can discovery be geographically scoped? Would

some measure of physical distance be enough for such scoping? Can discovery be

scoped by geographical areas that are meaningful to the user? We elaborate on these

below.

This first question is what should be the strategy for discovery. Many activities in the

smart home domain involve entities performing services for other entities, and it is up to

Auras to find and configure the services required by their entities. For example, for

watching a TV show, Fred will need some entity to play the video stream for him. Fred’s

Aura takes care of finding and configuring such an entity in Fred’s vicinity (for instance

the TV in the living room,) and to change the video stream to other convenient entities

whenever Fred moves around the home (a TV in the kitchen, a computer in the office,

etc.)

One candidate solution would be to have Auras broadcast service availability and/or

service requests. However, service discovery in ubiquitous computing involves not just

matching service names or capabilities but, ideally, it would find optimal services in

Activity-oriented Computing

 15

terms of attributes such as desired levels of quality of service, user preferences,

proximity, etc. Furthermore, scoping the search would be constrained by network

administration policies regarding broadcast (see below). Also, it is hard to establish trust

based on broadcast mechanisms.

Because finding the optimal entities to perform services is both a non-trivial problem

and common across Auras, there are clear engineering advantages in factoring the

solution to this problem out of individual Auras and into a dedicated piece of the

infrastructure. Specifically, the benefits of introducing Environment Managers (EMs) as

discovery brokers include:

- Separation of concerns. It is up to specialized service brokers to know how to find

the optimal entities to provide services, while each Aura retains the responsibility of

knowing what services are required by their entity’s activities at each moment. By

providing a separate locus for optimal discovery in EMs, Auras can focus on the

task-specific knowledge required to interact with other Auras, once they are

identified.

- Efficiency. EMs can cash service announcements, thereby improving the latency of

processing a service request, and reducing the network traffic required to locate a

service, whenever one is requested.

Auras register the services offered by the entity they represent with an EM. Each

service posting includes the type of service and all attributes of the offering entity that

characterize the service. For example, Fred’s Aura announces that Fred is capable of

answering the door (service type,) along with Fred’s contextual attributes pertaining to

his current location and whether he is busy. Although Fred’s Aura might know about

Fred’s blood pressure, that wouldn’t be directly relevant for his ability to answer the

door. As another example, the Aura for a printer announces its ability to print

documents, along with the printer’s location, pages per minute and queue length

(contextual and quality of service attributes).

Auras may request an EM to find services, as needed by the activities of the entities

they represent. Service discovery is guided by optimality criteria in the form of utility

functions over the attributes of the service suppliers and of the requesting entity.

Specifically a service request is of the form:

find x : service | y max u(px, py)

This means: find a set of entities x, each capable of supplying a service, given the

requestor entity y, such that a utility function u over the properties of y and of the

elements of x is maximized. The following are examples with simple utility functions:

Track Fred’s location. Upon startup, Fred’s Aura issues:

find x1:people-locating | Fred

That is, find x1 capable of providing a people locating service for Fred.

Follow-me video. When Fred wishes to watch a soccer game while moving around the

house, his Aura issues:

find x1:video-playing | Fred min x1.location – Fred.location

That is, find a video player closest to Fred. In this case, maximizing the utility

corresponds to minimizing the physical distance between Fred and the video player.

Activity-oriented Computing

 16

Doorbell. When the doorbell is pressed by someone, the Aura for the main hallway

issues:

find x1:door-answering, x2:notifying | hallway

 x1.busy = no & min (x1.location – hallway.location

 + x1.location – x2.location)

That is, find a notifying mechanism and a door answerer that is not busy and both

closest to the hallway and to the notifying mechanism.

Utility functions are quantitative representations of usefulness with respect to each

property. Formally, selecting a specific value of a property, such as x1.busy = no, is

encoded as a discrete mapping, specifically:

1)(,0)(.. 11
 nouyesu busyxbusyx

For properties characterized by numeric values, such as the distance to the hallway, we

use utility functions that distinguish two intervals: one where the user considers the

quantity to be good enough for his activity, the other where the user considers the

quantity to be insufficient. Sigmoid functions, which look like smooth step functions,

characterize such intervals and provide a smooth interpolation between the limits of those

intervals. Sigmoids are easily encoded by just two points: the values corresponding to

the knees of the curve that define the limits good of the good-enough interval, and bad of

the inadequate interval. The case of “more-is-better" qualities (e.g., accuracy) are as

easily captured as “less-is-better” qualities (e.g., latency) by flipping the order of the

good and bad values (see (João P. Sousa, Poladian, Garlan, Schmerl, & Shaw, 2006) for

the formal underpinnings).

In the case studies evaluated so far, we have found this level of expressiveness for

utility functions to be sufficient.

Scoping Service Discovery

The second question is how can service discovery be scoped in a way that is meaningful

to the user. Specifically, many searches take place in the user’s immediate vicinity, such

as the user’s home.

However, neither physical distance nor network range are good parameters to scope

discovery. For example, if the user’s activity asks for a device to display a video, the TV

set in the apartment next door should probably not be considered, even though it might be

just as close as other candidates within the user’s apartment, and be within range of the

user’s wireless network as well. To be clear, once a set of devices is scoped for

discovery, then physical distance may be factored in as a parameter for optimality (see

above).

Furthermore, sometimes users may want to scope discovery across areas that are not

contiguous. For example, suppose that Fred is at a coffee shop and wants to print an

interesting document he just found while browsing the internet. Fred may be willing to

have the document printed either at the coffee shop, or at Fred’s office, since Fred is

heading there shortly. A printer at a store down the street may not be something that Fred

would consider, even though it is physically closer than Fred’s office.

Activity-oriented Computing

 17

The question about scoping service discovery can then be refined into (a) if not by

distance or network boundaries, how can the range of one environment be defined? and

(b) how to coordinate discovery across non-contiguous environments?

When an Aura directs a discovery request to an EM, by default, discovery runs across

all services registered with that EM. That is, the range of an environment is defined by

the services that registered with its EM. The question then becomes, how does an Aura

know with which EM it should register its services with? For example, how would the

Aura for the TV set in Fred’s living room know to register its services with the EM in

Fred’s apartment, and not with the neighbor’s?

Auras resolve their physical location into the network address of the appropriate EM

by using the Environment Manager Binding Protocol (EMBP).
2
 This service plays a

similar role to the Domain Naming Service in the internet, which resolves URI/URLs into

the network address of the corresponding internet server. Physical locations are encoded

as Aura Location Identifiers (ALIs), which structure and intent is similar to Universal

Resource Identifiers (URIs) in the internet. Like URIs, ALIs are a hierarchical

representation mean to be interpreted by humans and resolved automatically. For

example, ali://pittsburgh.pa.us/zip-15000/main-street/1234/apt-6 might correspond to

Fred’s apartment; and ali://aura.cmu.edu/wean-hall/floor-8/8100-corridor to a particular

corridor on the 8
th

 floor of Wean Hall at Carnegie Mellon University.

Requests for discovery across remote and/or multiple environments can be directed to

the local EM, which then coordinates discovery with other relevant EMs (more below).

The following are examples of such requests. When Fred is at home and wishes to print a

document at the office, his Aura would issue a request like

find x:printing | Fred u(…)

 @ ali://aura.cmu.edu/wean-hall/floor-8/8100-corridor

Or, if Fred wanted to consider alternatives either at home or at his office:

find x:printing | Fred u(…)

 @ ali://aura.cmu.edu/wean-hall/floor-8/8100-corridor,

 ali://pittsburgh.pa.us/zip-15000/main-street/1234/apt-6

Or, if Fred wanted to search a number of adjacent environments, such as all the

environments in his office building:

find x:printing | Fred u(…)

 @ ali://aura.cmu.edu/wean-hall

Any such requests are directed by the requestor Aura to the local EM, which then

resolves such requests in three steps:

1. Use the EMBP to identify the EMs that cover the desired region.

2. Obtain from such EMs all the service descriptions that match the requested

service types.

3. Run the service selection algorithms over the candidate set of services.

Activity Models

What to include in activity models is ultimately determined by the purpose that those

models are meant to serve. In some applications of activity models the goal is to assist

users with learning or with performing complex tasks. Examples of these are applications

Activity-oriented Computing

 18

to automated tutoring, expert systems to help engineers repair complex mechanisms, such

as trains and airplanes, and automated assistants to help manage complex activities such

as organizing a conference (Garlan & Schmerl, 2007; Siewiorek, 1998). For these kinds

of applications, models of activities may include a specification of workflow, as a

sequence of steps to be performed, and cognitive models of the user.

In the smart office domain, we experimented with enabling users to suspend their

ongoing activities and resume them at a later time and/or at another location, possibly

using a disjoint set of devices. For that purpose, the models capture user needs and

preferences to carry out each activity. Specifically, such models include of a snapshot of

the services and materials being used during the activity, as well as utility theory-based

models of user preferences (for details on the latter, see (João P. Sousa et al., 2006)).

Figure 3 shows a grammar for modeling activities, or tasks, as a set of possibly

interconnected services. This grammar follows a variant of the Backus-Naur Form (BNF,

see for instance (ISO, 1996)). To simplify reading the specification, we drop the

convention of surrounding non-terminal symbols with angle brackets, and since the task

models are built on top of XML syntax, we augment the operators of BNF with the

following:

E ::= t: A; C

defines a type E of XML elements with tag t, attributes A, and children C, where t is a

terminal symbol, A is an expression containing only terminals (the attribute names), and

C is an expression containing only non-terminals (the child XML elements). In this

restricted use of BNF, whether a symbol is a terminal or non-terminal is entirely

established by context. So, for instance the rule

Book = book: year ISBN; Title {Author}

allows the following as a valid element:

Task ::= auraTask: id;

Prefs {ServiceSnapshot | MaterialSnapshot | Config}

ServiceSnapshot ::= service: id type;

 Settings

MaterialSnapshot ::= material: id;

 State

Config ::= configuration: name weight;

 { Service | Connection }

Service ::= service: id;

 {Uses}

Uses ::= uses: materialId;

Connection ::= connection; id type;

 Attach QoSPrefs

Attach ::= attach: ;

 From To

From ::= from: serviceId port;

To ::= to: serviceId port;

Figure 3 Grammar for specifying task models.

Activity-oriented Computing

 19

<book year=”2004” ISBN=”123”>

 <title>...</title>

 <author>...</author>

 <author>...</author>

</book>

Specifically, in Figure 3, a task (model) is an XML element with tag auraTask, with

one id attribute, and with one Prefs child, followed by an arbitrary number of

ServiceSnapshot, MaterialSnapshot, and Config children. A task may be

carried out using one of several alternative service configurations of services.

<auraTask id="34">

 <preferences>

 <service template="default" id="1"/>

 <service template="default" id="2"/>

 </preferences>

 <service type="play Video" id="1">

 <settings mute="true"/>

 </service>

 <material id="11">

 <state>

 <video state="stopped" cursor="0"/>

 <position xpos="645" ypos="441"/>

 <dimension height="684" width="838"/>

 </state>

 </material>

 <service type="edit Text" id="2">

 <settings>

 <format overtype="0"/>

 <language checkLanguage="1"/>

 </settings>

 </service>

 <material id="21">

 <state>

 <cursor position="31510"/>

 <scroll horizontal="0" vertical="7"/>

 <zoom value="140"/>

 <spellchecking enabled="1" language="1033"/>

 <window height="500" xpos="20" width="600" mode="min" ypos="100"/>

 </state>

 </material>

 <configuration name="all" weight="1.0">

 <service id="2">

 <uses materialId="21"/>

 </service>

 <service id="1">

 <uses materialId="11"/>

 </service>

 </configuration>

 <configuration name="only video" weight="0.7">

 <service id="1">

 <uses materialId="11"/>

 </service>

 </configuration>

</auraTask>

Figure 4 Example task model for reviewing a video clip.

Activity-oriented Computing

 20

Services stand for concepts such as edit text, or browse the web, and materials are files

and data streams manipulated by the services. A service may manipulate zero or many

materials; for instance, text editing can be carried out on an arbitrary number of files

simultaneously. That relationship is captured by the Uses clauses within the Service

element.

The snapshot of the user-perceived state of the task is captured in the Settings and

State elements. The Settings element captures the state that is specific to a service,

and shared by all materials manipulated by that service, while the State element

captures the state that is specific to each material. A detailed discussion of this grammar

can be found in (J.P. Sousa, 2005).

Figure 4 shows one example of a task model for reviewing a video clip, which

formally is a sentence allowed, or generated, by the grammar in Figure 3. This example

was captured while running the infrastructure described in the section on System Design.

The user defined two alternative configurations for this task: one including both playing

the video and taking notes, the other, playing the video alone. Both services use a single

material: play video uses a video file, with material id 11, and edit text uses a text file,

with material id 21. The user-perceived state of the task is represented as the current

service settings, under each service, and the current state of each material. For instance,

the state of the video includes the fact that the video is stopped at the beginning (the

cursor is set to 0 time elapsed), and it indicates the position and dimensions of the

window showing the video.

Extending to the Home Environment

In the smart home domain, in addition to supporting suspend/resume of activities, we

wanted to enable users to delegate responsibility for some activities to Auras. Examples

of the latter activities include managing intrusion detection for the home, finding a person

to answer the door for a visitor, or assisting with monitoring elder family members.

The research questions then become: is the services and materials view of activities

adequate in the smart home domain? For enabling Auras to take responsibility for

activities, which concepts should activity models capture?

The usefulness of capturing the services needed for an activity seems to carry well into

the smart home domain. For example, in the case of the doorbell scenario, the activity of

answering the door requires finding services such as notification, can be supplied by

devices such as a telephone, a TV, a buzzer, etc., and door answerer, which can be

supplied by a qualified person (e.g., not a toddler). Selecting the suppliers for such

services is guided by the home owner’s preferences encoded in the activity model; which

may include things such as: the door needs to be answered within a certain time, and that

the notification service should be in close proximity to the candidate door answerer.

A prototype of this case study has shown that these models can handle sophisticated

policies of configuration (e.g., excluding children from answering the door, or specifying

criteria for proximity) and that they trivially accommodate the dynamic addition of new

notification devices.

This prototype also highlighted two fundamental differences between the kinds of

activities supported in the smart-office domain and the ones we target in the smart-home

domain. The first difference is that, while in the office domain services were only

Activity-oriented Computing

 21

provided by automated agents (software), now people may also be asked to provide

services. This has implications on how Auras control service supply, since people are

much more likely than software to do something totally different than what they are being

asked. In the example, after being notified to answer the door, a person may get

sidetracked and forget about it. It is up to the responsible Aura to monitor whether or not

the service is being delivered, and react to a “fault” in a similar way as it would in the

case of faulty software: by seeking a replacement (more in the section on Robustness).

The second difference is that, in the smart home domain, Auras may take the

responsibility for activities: and this is related to the question above of which concepts to

capture in activity models to enable that to happen. In the smart office domain, when a

fault cannot be handled, for example, if a suitable replacement cannot be found for a

faulty supplier, the problem is passed up to the entity responsible for the activity, i.e. the

user. If an Aura is to be truly responsible for an activity, it must be take charge of such

situations as well.

One way of addressing a hurdle in one activity, is to carry out another activity that

circumvents the hurdle. In the example, if the hallway Aura cannot find a person to

answer the door, it may take a message from the visitor, or initiate a phone call to the

person being visited.

A simple enhancement of activity models to allow this is to support the specification

of conditions to automatically resume or suspend activities. Such conditions are

expressed as Boolean formulas over observation of contextual information. For example,

if everyone left the house, resume the intrusion detection activity.

For these models to cover situations as the one where a person could not be found to

answer the door, contextual information needs to be rich enough to include semantic

observations, such as “the door could not be open for a visitor.”

Another scenario where we tested this approach is the elder care scenario. The Aura

for Susan, Fred’s grandmother, runs a perpetual task that recruits a heart monitor service

for her. Susan defined under which conditions her Aura should trigger the task of

alerting the family. When defining such conditions, Susan takes into consideration her

physician’s recommendations, but also conditions under which she may desire privacy.

Fred’s Aura runs a perpetual task of monitoring contextual postings by Susan’s Aura. It

is up to John to (a) define that posting such a notification should trigger the task of

alerting him, and (b) define the means employed by his Aura to carry out such a task. For

example, if Fred is at the office, his Aura sends an instant message to Fred’s computer

screen; otherwise, it sends a text message to Fred’s cell phone.

While these are simple scenarios, they illustrate the ability to chain activities, and to

direct the exact behavior of activities, by capturing conditions on contextual information

in the models of activities. Such conditions are associated to the operations of either

resuming or suspending activities, and can be monitored by Auras to automatically

initiate the corresponding operation.

Formally, condition-action primitives can be used to express the same space of

solutions than other more sophisticated approaches, such as models of activities based on

workflow notations, or on hierarchical decomposition of activities. Which approach

would be more suitable for end-users to express and understand such models is an open

research problem.

Activity-oriented Computing

 22

Robustness

The term robustness in activity-oriented computing is interpreted very broadly: is the

system’s behavior consistent with the users’ expectations, even under unanticipated

circumstances. In this section, we first use the examples in the Background section to

identify key robustness requirements. We then look at the challenges associated with

supporting robust operation, distinguishing between general challenges and challenges

that are specific to the home environment. Finally, we summarize some results showing

how we support robust tasks in an office environment and discuss how these results can

be extended to support activities in the home.

Properties

In daily use, the system should correctly identify the users’ intent and should support a

wide variety of activities in a way that is consistent with their preferences and policies. If

users observe unexpected behavior, the system should be able to explain its behavior.

This will increase the users’ confidence in the system and will allow the system to

improve over time. For example, by adjusting preferences and policies, either manually

by the user or automatically by the system (case-base reasoning) the system’s future

behavior can be made to better match user intent. Similarly, the system should be able to

engage users if input is confusing or unexpected. Ideally, the system would be able to

recognize undesirable or unsafe actions, e.g. a child opening the door for a stranger.

The above properties must also be maintained as the system evolves and under failure

conditions. For example, when new services or devices are added (e.g. camera and face

recognition software is added to support the doorbell scenario) or become unavailable

(e.g. the license for the face recognition software expired), the system should

automatically adapt to the available services.

Challenges

When we looked at how to support user activities and tasks in different environments

(e.g., work in an office, daily activities in the home, or guiding visitors in a museum) we

found that several key challenges are shared across these environments. These generic

challenges include capturing and representing user intent, discovering and managing

services and devices (suppliers), and optimizing resources allocation to maximize overall

system utility. All these functions should be adaptive, i.e. automatically adapt to changes

in the computational and physical environment and to changes in the goals and

preferences of users.

Each environment also adds its own challenges. For example, activities in homes are

device-centric (e.g., displays, sound) or include physical actions that involve people (e.g.,

opening doors). Managing and allocating such “resources” is very different from an

office environment, where tasks are computer-centric and are supported by executing

applications that use a variable amount of resources (network bandwidth, CPU, battery

power). Similarly, the interactions with users are very different in the home (discreet

interface for non-experts) and the office (keyboard/mouse/display used by computer

knowledgeable users).

Activity-oriented Computing

 23

Robustness in an Office Environment

In order to achieve robustness in a smart-office environment, we have designed,

implemented and evaluated an infrastructure that uses utility theory to dynamically select

the best achievable configuration of services, even in the face of failures and coming

online of better alternatives (João P. Sousa et al., 2006).

Robustness is achieved through self-adaptation in response to events ranging from

faults, to positive changes in the environment, to changes in the user’s task. Self-

adaptation is realized through a closed-loop control system design that senses, actuates,

and controls the runtime state of the environment based on input from the user. Each

layer reacts to changes in user tasks and in the environment at a different granularity and

time-scale. Task Management acts at a human perceived time-scale (minutes), evaluating

the adequacy of sets of services to support the user’s task. Environment Management acts

at a time-scale of seconds, evaluating the adequacy of the mapping between the requested

services and specific suppliers. Adaptive applications (fidelity-aware and context-aware)

choose appropriate computation tactics at a time-scale of milliseconds.

Let us illustrate the behavior of the system using the following scenario. Fred is

engaged in a conversation that requires real-time speech-to-speech translation. For that

task, assume the Aura infrastructure has assembled three services: speech recognition,

language translation, and speech synthesis. Initially both speech recognition and synthesis

are running on Fred’s handheld. To save resources on Fred’s handheld, and since

language translation is computationally intensive, but has very low demand on data-flow

(the text representation of each utterance), the translation service is configured to run on a

remote server. We now discuss how the system adapts in response to faults, variability in

resource and service availability, and changes in the user’s task requirements.

Fault tolerance. Suppose now that there is loss of connectivity to the remote server, or

equivalently, that there is a software crash that renders it unavailable. Live monitoring at

the EM level detects that the supplier for language translation is lost. The EM looks for

an alternative supplier for that service, e.g., translation software on Fred’s handheld,

activates it, and automatically reconfigures the service assembly.

Resource and fidelity-awareness. Computational resources in Fred’s handheld are

allocated by the EM among the services supporting Fred’s task. For computing optimal

resource allocation, the EM uses each supplier’s spec sheet (relating fidelity levels with

resource consumption), live monitoring of the available resources, and the user’s

preferences with respect to fidelity levels. Resource allocation is adjusted over time. For

example, suppose that during the social part of the conversation, Fred is fine with a less

accurate translation, but response times should be snappy. The speech recognizer, as the

main driver of the overall response time, gets proportionally more resources and uses

faster, if less accurate, recognition algorithms (Balan et al., 2003).

Adaptation is also needed to deal with changes in resource availability. Each supplier

issues periodic reports on the Quality of Service (QoS) actually being provided – in this

example, response time and estimated accuracy of recognition/translation. Suppose that at

some point during the conversation, Fred brings up his calendar to check his availability

for a meeting. The suppliers for the speech-to-speech translation task, already stretched

for resources, reduce their QoS below what Fred’s preferences state as acceptable. The

EM detects this “soft fault”, and replaces the speech recognizer by a lightweight

Activity-oriented Computing

 24

component, that although unable to provide as high a QoS as the full-fledged version,

performs better under sub-optimal resource availability. Alternatively, suppose that at

some point, the language translation supplier running on the remote server (which failed

earlier) becomes available again. The EM detects the availability of a new candidate to

supply a service required by Fred’s task, and compares the estimated utility of the

candidate solution against the current one. If there is a clear benefit, the EM

automatically reconfigures the service assembly. In calculating the benefit, the EM

factors in a cost of change. This mechanism introduces hysteresis in the reconfiguration

behavior, thus avoiding oscillation between closely competing solutions.

Task requirements change. Suppose that at some point Fred’s conversation enters a

technical core for which translation accuracy becomes more important than fast response

times. The TM provides the mechanisms to allow Fred to quickly indicate his new

preferences; for instance, by choosing among a set of preference templates. The new

preferences are distributed by the TM to the EM and all the suppliers supporting Fred’s

task. Given a new set of constraints, the EM evaluates the current solution against other

candidates, reconfigures, if necessary, and determines the new optimal resource

allocation. The suppliers that remain in the configuration, upon receiving the new

preferences, change their computation strategies dynamically; e.g., by changing to

algorithms that offer better accuracy at the expense of response time.

Suppose that after the conversation, Fred wants to resume writing one of his research

papers. Again, the TM provides the mechanisms to detect, or for Fred to quickly indicate,

his change of task. Once the TM is aware that the conversation is over it coordinates with

the suppliers for capturing the user-level state of the current task, if any, and with the EM

to deactivate (and release the resources for) the current suppliers. The TM then analyses

the description it saved the last time Fred worked on writing the paper, recognizes which

services Fred was using and requests those from the EM. After the EM identifies the

optimal supplier assignment, the TM interacts with those suppliers to automatically

recover the user-level state where Fred left off. See (J. P. Sousa & Garlan, 2003) for a

formal specification of such interactions.

Extending to the Home Environment

We are currently enhancing this solution to provide robust support for activities in the

home. While the key challenges are the same (e.g. optimizing utility, adapting to

changes...) extensions are needed in a number of areas.

First, activities in the home are very different from tasks in the office. For example,

since some activities in the home involve physical actions, people must be involved (e.g.,

open a door), i.e. people become suppliers of services. Moreover, some tasks are not

associated with individuals, but with the home itself (e.g., responding to the doorbell or a

phone call). This change in roles means that it is even more critical to make appropriate

allocations since the cost of mistakes is much higher, e.g., people will be much less

willing to overlook being personally inconvenienced by a wrong decision, than when a

suboptimal application is invoked on their computer.

Second, many activities in the home involve the use of devices that are shared by

many people, or involve deciding who should perform a certain action. This means that

the Task Manager will typically need to balance the preferences and goals of multiple

users. An extreme example is conflicts, e.g., when multiple users would like to use the

Activity-oriented Computing

 25

same device. In contrast, tasks in the office typically involve only personal resources

(e.g., a handheld) or resources with simple sharing rules (e.g., a server).

Third, the methods for interaction with the system will be much different in the home.

Even on a handheld, Fred had access to pull down menus a keyboard to reliably

communicate with the system. For the home environment, we are exploring natural

modalities of interaction, which are less intrusive, but more ambiguous (more in the

section on Future Research).

Finally, uncertainty will play a more significant role in the home, e.g. because of

unpredictably behavior when people are asked to perform services, or due to ambiguity

caused by primitive I/O devices. Work in progress is extending the utility optimization

components to explicitly consider uncertainty.

FUTURE RESEARCH
Some of the challenges identified in this chapter are the topic of undergoing and future

work, such as research on the kinds of knowledge to capture in activity models so to

support mixed-initiative control, including delegation and collaboration among human

and automated agents. Below we summarize our current work on human-computer

interaction and on security and privacy for AoC systems.

User Interfaces for Managing Activities

Human-computer interaction in the office domain currently uses one de-facto standard

modality, based on keyboards, pointing devices, and windows-based displays. In a more

general ubiquitous computing setting, natural modalities such as speech and gesture may

be highly desirable, but they also may lead to ambiguity and misunderstanding. For

example, if Fred points at a TV where a soccer game is playing and leaves the room, does

that mean that Fred wants to keep watching the game while moving around the house,

that the TV should pause the game until Fred returns, or that the TV should be turned off?

Rather than trying to pick a privileged modality of interaction, we take the approach

that interactions between humans and Auras may have many channels that complement

and serve as alternatives to each other. For example, users might indicate their intention

to suspend an activity verbally, but might sometimes prefer a graphical interface to

express a sophisticated set of contextual conditions for when an activity should be

automatically resumed. The research questions then become: what are appropriate

modalities for each kind of interaction? Is there a role for explicit interactions, as well as

for implicit interactions based on sensing and inference? Can different modalities be

coordinated, contributing to disambiguate user intentions? What mechanisms can be used

to detect and recover from misunderstandings? What are specific technologies that can

be harnessed in the home?

To support explicit interactions, we started exploring technologies such as Everywhere

Displays and RFID. The Everywhere Displays technology uses a digital camera to track

down the location of a user, and then uses a projector to project an image of the interface

onto a surface near the user (Kjeldsen, Levas, & Pinhanez, 2004). The feedback loop

through the camera allows the image to be adjusted for certain characteristics of the

surface, such as color and tilt. The user interacts with this image by performing hand

motions over the image, which are then recognized via the camera. This technology

Activity-oriented Computing

 26

supports a metaphor similar to the point-and-click metaphor, although fewer icons seem

to be feasible relative to a computer screen, and a rich set of command primitives, such as

double clicking or selecting a group of objects, seems harder to achieve.

RFID technology supports a simple form of tangible interfaces (Greenberg & Boyle,

2002). For example, RFID tags can be used to create tangible widgets for activities. In

the example where Fred is watching the game on TV, Fred may bind an activity widget

with the show playing on the TV by swiping the widget near the TV. That activity may

be activated in other rooms by swiping the activity widget by a reader in the room, or

deactivated it by swapping the widget again, once activated (see demo video at (J.P.

Sousa, Poladian, & Schmerl, 2005)).

Tradeoff between Ubiquity and Security

The big question to be answered is: can ubiquity be reconciled with goals of security and

privacy? There seems to be tradeoff between the openness of ubiquitous computing and

security assurances. The very meaning of ubiquity implies that users should be enabled

to use the services offered by devices embedded in many different places. But how

confident can users be that those devices, or the environment where they run, will not

take advantage of the access to the user’s information to initiate malicious actions?

Rather that taking an absolute view of security and privacy, we argue that there are

different requirements for different activities. For example, the computing environment

at a coffee shop could be deemed unsafe to carry out online financial transactions, but

acceptable for sharing online vacation photos with a friend.

In essence, this is a problem of controlling access: ideally, a ubiquitous computing

environment would gain access only to the information pertaining to the activities that a

user is willing to carry out in that environment, and none other.

Unfortunately, existing solutions for controlling access are not a good fit to this

problem because they make a direct association between identity and access.

Specifically, once a user authenticates, he gains access to all the information and

resources he is entitled to, and so does the computing environment where the user

authenticated.

A candidate solution would be to associate access control to the cross-product of users

and environments: in the example, user Fred at the coffee shop would get access to a

limited set of activities, but user Fred at his office would get access to a wide range

(possibly all) of Fred’s activities. A serious problem with this solution is that it would

require the pre-encoding of all the types of environments where the user might want to

access his or her activities.

Another candidate solution would be for users to have multiple identities: Fred at the

coffee shop would use an identity that has access to the vacation photos, but not to online

banking. This solution has two obvious problems: first, separating the activities and

associated information for the different identities may not be clear cut, and may quickly

become cumbersome for moderately high numbers of activities. Second, if users are to

be given the freedom to define new identities and the corresponding access control, does

that mean that every user should be given security administration privileges?

We are currently investigating an access control model centered on the notion of

persona. A user is given one identity and may define multiple personae associated with

Activity-oriented Computing

 27

that identity. The user may freely associate activities with personae in a many-to-many

fashion, and may also define which credentials are required to activate each persona.

This model has a number of benefits, as follows.

First, it allows users to manage which activities are seen by an arbitrary environment

(by authenticating specific personae) while drawing a clear boundary on the

administrative privileges of each user.

Second, users may draw on rich forms of authentication to make the overhead of

authentication proportionate to the security requirements. For example, for activating

Fred’s financial persona, Fred may require two forms of id to be presented, such as

entering a password and scanning an id card, while for his social persona, a weak form of

authentication, such as face or voice recognition, will suffice.

Third, the model offers users a coherent view of the personal workspace centered on

their identity, while enabling users to expand the set of accessible activities at will, by

providing the credentials required to activate the desired personae.

CONCLUSION
The key idea of Activity-oriented Computing (AoC) is to capture models of user

activities and have systems interpret those models at run time. By becoming aware of

what user activities entail, systems can do a better job at supporting those activities, either

by facilitating access to the activities while relieving users from overhead such as

configuring devices and software, or by taking responsibility for parts or whole activities.

This chapter described the authors’ work on building systems to support AoC. It

discussed how those systems may address challenges inherent to the problem domain,

such as user mobility and conflict resolution, as well as challenges that are entailed by

building the systems themselves. Specifically, (a) defining what to capture in activity

models (b) designing systems that do a good job at supporting user activities while

addressing the challenges in the problem domain, and (c) making those systems robust,

self-aware, self-configurable, and self-adaptable. The chapter dissected those challenges,

identified specific research questions, and described how the authors answered these

questions for the past six years, as their understanding of the issues improved.

The main contributions of this work are as follows:

 Pragmatic models of user activities that enable mobile users to instantiate activities in

different environments, taking advantage of diverse local capabilities without

requiring the use of mobile devices, and retaining the ability to reconstitute the user-

perceived state of those activities.

 Mechanisms that enable scoping service discovery over geographical boundaries that

are meaningful to users, and which can be specific to each activity and be freely

defined.

 A utility-theoretic framework for service discovery that enables optimization of

sophisticated, service-specific models of QoS and context properties.

 A robustness framework, based on the same utility-theoretic framework, that departs

from the traditional binary notion of fault and uniformly treats as an optimization

problem faults, “soft faults” (unresponsiveness to QoS requirements,) and conflicts in

accessing scarce resources.

Activity-oriented Computing

 28

 Closed-loop control that enables systems to become self-aware and self-configurable,

and to adapt to dynamic changes in both user/activity requirements and environment

resources.

 A software architecture that harmoniously integrates all the features above,

additionally (a) integrating context sensing according to the capabilities of each

environment, and (b) coordinating adaptation policies with applications that may

contain their own fine-grain mechanisms for adaptation to resource variations.

This chapter also summarized ongoing and future work towards addressing other

challenges, namely, supporting activities where human and automated agents collaborate

(mixed-initiative activities), exploring human-computer interaction modalities for AoC in

ubiquitous computing environments, and investigating models for security and privacy.

REFERENCES
Abowd, G., Bobick, A., Essa, I., Mynatt, E., & Rogers, W. (2002). The Aware Home:

Developing Technologies for Successful Aging. Paper presented at the AAAI

Workshop on Automation as a Care Giver, Alberta, Canada.

Arnstein, L., Sigurdsson, S., & Franza, R. (2001). Ubiquitous Computing in the Biology

Laboratory. Journal of Lab Automation (JALA), 6(1), 66-70.

Balan, R. K., Sousa, J. P., & Satyanarayanan, M. (2003). Meeting the Software

Engineering Challenges of Adaptive Mobile Applications (Tech. Report No.

CMU-CS-03-111). Pittsburgh, PA: Carnegie Mellon University.

Brumitt, B., Meyers, B., Krumm, J., Kern, A., & Shafer, S. (2000). EasyLiving:

Technologies for intelligent environments. In Gellersen, Thomas (Eds) 2nd Int’l

Symposium on Handheld and Ubiquitous Computing (HUC2000), LNCS 1927,

pp. 12-29, Bristol, UK: Springer-Verlag.

Christensen, H., & Bardram, J. (2002, September). Supporting Human Activities –

Exploring Activity-Centered Computing. In Borriello and Holmquist (Eds.) 4th

International Conference on Ubiquitous Computing (UbiComp 2002), LNCS

2498, pp. 107-116, Göteborg, Sweden: Springer-Verlag.

Garlan, D., & Schmerl, B. (2007). The RADAR Architecture for Personal Cognitive

Assistance. International Journal of Software Engineering and Knowledge

Engineering, 17(2), in press.

Greenberg, S., & Boyle, M. (2002). Customizable physical interfaces for interacting with

conventional applications. In 15th Annual ACM Symposium on User Interface

Software and Technology (UIST 2002), pp. 31-40, ACM Press.

Intille, S. (2002). Designing a home of the future. IEEE Pervasive Computing, 1(2), 76-

82.

ISO. (1996). Extended Backus-Naur Form (No. ISO/IEC 14977:1996(E)). www.iso.org:

International Standards Organization.

Kjeldsen, R., Levas, A., & Pinhanez, C. (2004). Dynamically Reconfigurable Vision-

Based User Interfaces. Journal of Machine Vision and Applications, 16(1), 6-12.

Kozuch, M., & Satyanarayanan, M. (2002). Internet Suspend/Resume. Paper presented at

the 4th IEEE Workshop on Mobile Computing Systems and Applications,

available as Intel Research Report IRP-TR-02-01.

Activity-oriented Computing

 29

Logitech, I. Logitech Harmony Remote Controls. from http://www.logitech.com

MacIntyre, B., Mynatt, E., Voida, S., Hansen, K., Tullio, J., & Corso, G. (2001). Support

for Multitasking and Background Awareness Using Interactive Peripheral

Displays. In ACM User Interface Software and Technology (UIST’01), pp. 41-50,

Orlando, FL.

Ponnekanti, S., Lee, B., Fox, A., & Hanrahan, P. (2001). ICrafter: A Service Framework

for Ubiquitous Computing Environments. In Abowd, Brumitt, Shafer (Eds) 3rd

Int’l Conference on Ubiquitous Computing (UbiComp 2001), LNCS 2201, pp. 56-

75. Atlanta, GA: Springer-Verlag.

Richardson, T., Bennet, F., Mapp, G., & Hopper, A. (1994). A ubiquitous, personalized

computing environment for all: Teleporting in an X Windows System

Environment. IEEE Personal Communications Magazine, 1(3), 6-12.

Rochester, U. The Smart Medical Home at the University of Rochester. from

http://www.futurehealth.rochester.edu/smart_home

Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R., & Narhstedt, K.

(2002). Gaia: A Middleware Infrastructure for Active Spaces. IEEE Pervasive

Computing, 1(4), 74-83.

Siewiorek, D. (1998). Adtranz: A Mobile Computing System for Maintenance and

Collaboration. In 2nd IEEE Int’l Symposium on Wearable Computers, pp. 25-32:

IEEE Computer Society.

Sousa, J. P. (2005). Scaling Task Management in Space and Time: Reducing User

Overhead in Ubiquitous-Computing Environments (Tech. Report No. CMU-CS-

05-123). Pittsburgh, PA: Carnegie Mellon University.

Sousa, J. P., & Garlan, D. (2003). The Aura Software Architecture: an Infrastructure for

Ubiquitous Computing (Tech. Report No. CMU-CS-03-183). Pittsburgh, PA:

Carnegie Mellon University.

Sousa, J. P., Poladian, V., Garlan, D., Schmerl, B., & Shaw, M. (2006). Task-based

Adaptation for Ubiquitous Computing. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, Special Issue on Engineering

Autonomic Systems, 36(3), 328-340.

Sousa, J. P., Poladian, V., & Schmerl, B. (2005). Project Aura demo video of the follow

me scenario. from http://www.cs.cmu.edu/~jpsousa/research/aura/followme.wmv

Sycara, K., Paolucci, M., Velsen, M. v., & Giampapa, J. (2003). The RETSINA MAS

Infrastructure. Joint issue of Autonomous Agents and MAS, Springer Netherlands,

7(1-2), 29-48.

Wang, Z., & Garlan, D. (2000). Task Driven Computing (Tech. Report No. CMU-CS-00-

154). Pittsburgh, PA: Carnegie Mellon University.

1
 For generality, the protocols of interaction were renamed from previous architecture documentation

(e.g. [Error! Reference source not found.,Error! Reference source not found.]). For instance, the EM

– Supplier protocol is now the Service Announcement and Activation Protocol (SAAP). Since these

Activity-oriented Computing

 30

protocols were already based on peer-to-peer asynchronous communication, no changes were implied by

the transition to the new perspective of the architectural framework.
2
 As discussed in the subsection on context awareness, there is a variety of mechanisms for Auras to

obtain their physical location, or more precisely, the location of their corresponding entities.

