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This paper focuses on the problem of optimizing system utility of Machine-Learning (ML) based systems in the
presence of ML mispredictions. This is achieved via the use of self-adaptive systems and through the execution
of adaptation tactics, such as model retraining, which operate at the level of individual ML components.

To address this problem, we propose a probabilistic modeling framework that reasons about the cost/benefit
trade-offs associated with adapting ML components. The key idea of the proposed approach is to decouple the
problems of estimating (i) the expected performance improvement after adaptation and (ii) the impact of ML
adaptation on overall system utility.

We apply the proposed framework to engineer a self-adaptive ML-based fraud-detection system, which we
evaluate using a publicly-available, real fraud detection data-set. We initially consider a scenario in which
information on model’s quality is immediately available. Next we relax this assumption by integrating (and
extending) state-of-the-art techniques for estimating model’s quality in the proposed framework. We show
that by predicting the system utility stemming from retraining a ML component, the probabilistic model
checker can generate adaptation strategies that are significantly closer to the optimal, as compared against
baselines such as periodic or reactive retraining.

CCS Concepts: • Software and its engineering→Model checking; • Computing methodologies→
Machine learning;Model development and analysis; • Computer systems organization→ Dependable
and fault-tolerant systems and networks.
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1 INTRODUCTION
The widespread use of Machine Learning (ML) models for a variety of tasks spanning multiple
domains (e.g., enterprise and cyber-physical systems) raises concerns regarding the impact of
the quality of the ML components on system performance. Indeed, the quality of a ML model in
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production is inherently affected by the training data used for its creation, and in particular by
whether the statistical relations present in the training data also hold when the model is used in
production. Further, different operational contexts may have different ML quality requirements. So
if ML quality is acceptable but the context changes, higher quality decisions may be required, thus
triggering the need for ML adaptation.
When deploying a ML model in the real world, typically under changing environments, the

actual sample distribution may differ from the one under which the model was trained. These
samples are known as out-of-distribution (OOD) samples [67] and can be caused for instance by
co-variate shift (i.e., shifts of the input features) and concept drift (i.e., shift in the relationship
between input feature and the target variable) [56]. OOD samples are thus a common cause of ML
mispredictions [20, 32] and while these problems and how to detect their occurrence have been
extensively studied by the ML literature [26, 50, 57, 69], little research has addressed the problems
of: (i) quantifying the expected impact of ML mispredictions on system utility – e.g., including
penalties due to service level agreement (SLA) violations and costs related to training a ML model
in the cloud; (ii) reasoning about what corrective actions to enact in order to maximize system
utility in the face of ML mispredictions.

Self-adaptive systems [19, 22], which are systems capable of reacting to environment changes in
order to optimize or maintain system utility at desired levels, emerge as a natural solution to cope
with ML mispredictions. In particular, the use of formal reasoning mechanisms for synthesizing
optimal adaptation strategies (i.e., sequences of adaptation tactics [48]) could ideally be applied to
ML-based systems as a mechanism to deal with possible mispredictions.

While previous work in the self-adaptive systems literature [6, 8, 49] has leveraged probabilistic
model checking techniques to synthesize optimal adaptation strategies for non-ML-based systems,
extending those frameworks to deal with ML-based systems is far from trivial. First, since proba-
bilistic model checkers verify properties of a formal model of a system, formal models of ML-based
systems need to capture the key dynamics of ML components in a compact but meaningful way.
This calls for identifying the right abstraction level to represent such components, ensuring not only
that their characteristic behaviors are modeled, but also that the formal abstraction is expressive,
general, accurate, and that the model verification is tractable for usage in online adaptation of
systems. Leveraging such an abstraction to represent ML components ideally would allow the
model checker to reason about the impacts of mispredictions on system utility.

Second, a key requirement for self-adaptive systems is the quantification of the benefits and costs
of applying different adaptation tactics. Understanding these trade-offs allows a planner to select
one tactic over another, or more generally one adaptation strategy over another. However, due
to the context- and data-dependencies of ML adaptation tactics such as model retrain, estimating
the costs and benefits of such tactics requires developing specified predictors. While a number of
solutions have been recently proposed to estimate the cost/latency of (re)training ML models on
different types of computational resources [11, 66], the problem of predicting the benefits on model
accuracy deriving from retraining the model has not been addressed by the current literature.

This paper proposes a probabilistic framework based on model checking to reason, in a principled
way, about the cost/benefit trade-offs associatedwith adaptingML components ofML-based systems.
The proposed approach is based on the insight that this is achievable by decoupling the problems of
(i) modeling the impact of an adaptation tactic on the ML model’s performance and (ii) estimating
the impact of ML (mis)predictions on system utility. We show that the former can be effectively
tackled by relying on blackbox predictors that leverage historical data of previous retraining
processes and present a general strategy for creating models that predict these benefits. The latter
problem is solved by expressing inter-component dependencies via an architectural model, which
enables automated reasoning via model checking techniques.
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Further, in some domains the environment may not provide immediate feedback regarding the
outcome of an event, thus preventing the system from gathering up-to-date ground truth labels to
evaluate the ML model’s predictive quality in real-time. To address this issue and demonstrate the
applicability of the proposed framework in scenarios in which ground truth labels are assumed to
become available only after a non-negligible time interval𝑑 , we integrate in the proposed framework
a state-of-the-art approach for estimating the predictive quality of ML models (ATC) [27]. We also
propose a novel variant, named CB-ATC, which addresses some shortcomings that we identified
while integrating ATC in our framework.

To validate the proposed framework, we apply it to a fraud detection use-case and implement a
prototype of a self-adaptive credit-card fraud detection system. Specifically, we use the proposed
framework to automate the decision of when to retrain a state-of-the-art ML model for fraud
detection [2] and evaluate it using a public data set [1], accounting for the impact of SLA violations
as well as model retrain cost and latency on system utility. We demonstrate that by leveraging
the predicted benefits of retraining an ML component, a self-adaptation manager can generate
adaptation strategies that are closer to the optimal one when compared against baselines such as
periodic or reactive retrains (triggered upon an SLA violation).

We also evaluate the impact of label delay on the efficiency of the self-adaptation strategies output
by our framework, using both ATC and CB-ATC. Our study highlights the superiority of CB-ATC
in estimating an ML model’s predictive quality with respect to ATC, a state-of-the-art approach. It
also points out that the usage of estimated (and hence inherently approximate) information about
a model’s predictive quality can have a detrimental effect on the ability to accurately predict the
impact of adapting (i.e., retraining vs not-retraining) ML components. This, in turn, can hinder
the efficiency of the self-adaptive system especially when ground truth labels are subject to large
delays. Still, our experiments show that model estimation techniques, like CB-ATC, do represent a
useful asset to enhance robustness in the presence of small label delays (1 day in our case study).

This article extends our previous paper [15] by introducing the following main contributions:

• We lifted the assumption that labels are immediately available (which allows for precisely
estimating the current predictive quality of ML components) and tested techniques to
address scenarios where ground-truth labels become available with non-negligible delays.
More in detail, we integrated in our framework ATC [27], a state-of-the-art technique for
model’s quality estimation (see Section 3.2.1) and identified relevant shortcomings that
arise when employing this technique in scenarios analogous to the one considered in our
case study. This led us to propose a novel model’s quality estimation technique, named
CB-ATC (see Section 4.5.1), which we empirically show to provide more accurate estimates
than ATC (see Section 6.5).
• We introduced architecture diagrams that detail the interaction between the Analyze and
Plan components in order to clarify the overall organization and operation of the self-
adaptation manager (see Section 4.1);
• We improved the description of the background on probabilistic model checking and clarified
key concepts, such as “system utility” (see Section 3);
• We extended the discussion on generality, applicability, and limitations of the proposed
framework (see Section 6.7).

The remainder of this article is organized as follows: Section 2 discusses related work; Section 3
presents the required background on probabilistic model checking (Section 3.1) and on methods
to estimate ML model performance in the absence of ground truth labels (Section 3.2); Section 4
introduces the proposed framework for self-adaptation of ML-based systems; Section 5 discusses
how to apply the proposed framework to a use case based on an ML-based credit card fraud
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detection system; Section 6 evaluates the usage of the framework for the use case and discusses
current. Finally, Section 7 concludes the paper with a set of directions for future work.

2 RELATEDWORK

ML component retrain. ML model retrain approaches have gained relevance and are being
studied by different research fields. In the ML literature, DeltaGrad [64] proposes a method to
accelerate the retraining of ML models leveraging information saved during initial model training.
Similarly, in the self-adaptive systems literature, T. Chen [17] studies two different types of model
retrain (full retrain versus incremental retrain), comparing them in terms of quality and latency.
Work on the fraud detection domain has also researched the trade-offs of full model retrains vs
incremental retrains and at different periodicities [43]. Our work differs from these as our goal is to
reason on the cost/benefits of generic adaptation tactics targeting ML components (including model
retrains) to generate adaptation strategies that maximize an application dependent system utility
function. Further, our work can incorporate, in its repertoire of adaptation tactics, incremental
retraining techniques such as DeltaGrad. This can be achieved by exploiting the proposed approach
to construct estimators of the benefits of executing specific tactics (Section 4.4) to derive specialized
predictors capable of estimating the benefits (and costs) of this alternative training technique.
Data shift and ML misprediction detection. Recent research work that address the problem
of data shift [26, 50, 53, 57, 67, 69] as well as work that address the problem of detecting ML
mispredictions [20, 32, 39, 65] are complementary to our work and provide useful solutions that
can be employed to improve our framework, for instance triggering adaptation when shift or
mispredictions have been detected by these approaches.
ML in self-adaptive systems. Many self-adaptive systems are now using ML techniques to
improve their self-adaptation capabilities [29, 58, 63]. Researchers have also argued for the need for
a tighter relationship between self-adaptation and AI, such that they can “benefit from and improve
one another” [5]. Recent work has started to explore the area with Gheibi et al. [28] proposing a
framework for lifelong self-adaptation that allows an ML-based self-adaptation manager to react
to drifts in the data and learn new tasks. Similarly, the work of Langford et al. [42] proposes a
framework to monitor learning enabled systems and evaluate their compliance with the required
objectives. Differently from these works, our framework aims to decide whether to adapt an ML
component by reasoning about the cost-benefit trade-offs of the available adaptation tactics.

In our previous work, we have identified a set of ML adaptation tactics to deal with ML mispre-
dictions [13, 14]. Specifically, these works presented a repertoire of adaptation tactics, illustrating
under which conditions each tactic could be applied resorting to two use-cases from the enterprise
and cyber-physical systems domains. Also, a sketch of the framework presented in Section 4 has
been outlined in [12]. This paper builds on previous work and extends them in a number of ways.
First, we redefine several key aspects of the framework proposed in [12], including redesigning the
interface of the ML component, and introduce a methodology to build blackbox predictors of the
impact of adaptations targeting ML components. Further, this work validates the effectiveness of
the framework with a use-case based on a realistic data set and complex ML models.

3 BACKGROUND
This section provides a brief introduction to the areas of probabilistic model checking and real time
monitoring of ML model predictive performance.
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3.1 Probabilistic Model Checking
Probabilistic model checking is a formal technique based on methods for reasoning about and
analyzing systems that exhibit probabilistic and uncertain behavior. This approach has been
extensively explored in the self-adaptive systems literature [6, 8, 49] to synthesize optimal adaptation
strategies. To generate these strategies, it is necessary to instantiate a formal model of the system
under adaptation, and to specify an adaptation goal in the form of a property (written as a temporal
logic formula) which the model checker can verify for optimality. Additionally, these techniques
are a natural fit for planning the need for adaptation in self-adaptive systems since they support
proactive adaptation schemes such as look-ahead [49]. This consists of having the model checker,
via the formal model of the system, simulate the different possible future states to synthesize the
adaptation strategy (sequence of adaptation tactics to execute) that maximizes system utility.
This work leverages the PRISM model checker [40], which is a probabilistic model checker

commonly used in the literature [41, 49]. We define the formal models as Markov Decision Processes
(MDPs) [55], which allow to model systems’ dynamics through a set of states, whose transitions are
either probabilistic or partially controlled by an actor and which model the evolution of the state of
the system in discrete timesteps. More formally, a MDP is defined by a 4-tuple (S,A, 𝑃𝑎, 𝑅𝑎), where
S is the set of states, A is the set of actions, 𝑃𝑎 is the probability matrix that gives the probability
of transitioning to state 𝑠′ from state 𝑠 by executing action 𝑎 at time 𝑡 . 𝑅𝑎 is the reward associated
to this transition. At each timestep, a set of adaptation tactics is available for adaptation and the
model checker has to select one to execute. Not adapting is considered a possible tactic available
for adaptation that has no impact on the system and which we refer to as NOP. The choice between
adaptation tactics corresponds to a nondeterministic choice, and is guided by the optimization of
a user-defined property. This property encodes the goal of the adaptation process and generally
corresponds to optimizing system utility. The definition of system utility is domain dependent:
it can be associated for example with the cost of operating a system, the user experience, or the
energy consumption.
To specify these properties, PRISM relies on probabilistic computation-tree logic (PCTL) [31],

which is an extension of Computation-Tree Logic (CTL) [21]. CTL is a formal language for specifying
well-formed formulas (WFF) according to a pre-defined grammar. These formulas are then used by
model checkers to verify system properties, typically expressed in terms of liveness and/or safety.
Examples of temporal CTL operators are F and X, which specify that a given WFF eventually has
to hold, or has to hold at the next state, respectively. PCTL extends CTL allowing the definition
of formulas that account for probabilities associated with state transitions. By exploiting the fact
that it is possible to associate rewards with specific states or state transitions in the formal model,
and by specifying reward-based properties as a function of state-specific constraints of the system,
PRISM generates optimal strategies that comply with these constraints. To specify such properties
in PRISM using PCTL, one would leverage PRISM’s 𝑅 operator, which informs PRISM that we want
to reason about Rewards. Such properties are expressed as Rqery [reward_property].qery
can be set to any of [=?,𝑚𝑖𝑛 =?,𝑚𝑎𝑥 =?] and allows the user to specify whether PRISM should find
the exact, minimum or maximum value of the rewards for the reward property reward_property.
Finally, reward_property is defined in terms of CTL operators, such as the operators F and X
described above. For example, reward_property can be defined as

[reward_property] = [F prop] ⇔ [reward_property] = [F 𝑧 = 2].
This would lead PRISM to compute the reward accumulated along a path until the system

eventually reaches a state satisfying prop (i.e., a state where variable 𝑧 is 2).
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3.2 Real Time ML ModelQuality Monitoring
While it is fairly trivial to compute values for features such as (i) the amount of new samples
with which the ML model has not been trained and (ii) the time elapsed since the model was last
retrained, computing the model’s real time predictive performance may not be as straightforward.
This is particularly the case in contexts for which ground truth labels may take a non-negligible
time to become available. Without these labels, we only have access to a set of unlabeled samples,
model predictions, and delayed (outdated) labeled samples, thus rendering it challenging to estimate
a model’s predictive quality in real-time.

To address this challenge, the ML literature has proposed numerous approaches to estimate the
quality of models’ predictions, [16, 16, 27, 35]. Existing methods can be coarsely classified according
to the type of ML models that they target (e.g., deep neural networks vs generic ML predictors)
and to their ability to estimate aggregate quality on an entire (unlabeled) test set [30] vs identify
misclassified test inputs [27].
These approaches typically leverage the probability distribution that a model outputs1 to gain

insights into the level of uncertainty associated with each prediction. This uncertainty thus con-
stitutes a meaningful proxy to estimate model performance/error. For instance, the approach by
Jiang et al. [35] targets deep neural networks and estimates the error on unlabeled test sets by
measuring the disagreement rate of instances of the same network trained with a different run of
Stochastic Gradient Descent (SGD). Another approach is to develop self-trained ensembles of deep
networks that predict which inputs will be misclassified by the classifier based on (known) errors
in the training data-set [16]. Other works, like Average Thresholded Confidence (ATC) [27], take a
model-agnostic approach and can estimate the correctness of individual model predictions — and
then use the point-wise predicted labels to compute aggregate estimates of a model’s predictive
quality (e.g., class error rate) as well as of ground truth class probabilities.
By leveraging such techniques, our framework can be applicable to a wide range of domains,

without requiring assumptions on ground truth label availability. Leveraging such techniques
increases the framework’s applicability and generalizability. However, the framework’s accuracy
is ultimately dependent on the accuracy of both (i) the predictors for estimating the benefits of
executing each adaptation tactic and (ii) of the approaches employed for estimating the current
quality of the ML model.

3.2.1 Average Thresholded Confidence (ATC). For self-containment, we provide an overview of
ATC. We start by introducing preliminary terminology. Let 𝑓 be a 𝑘-class classifier and 𝑓𝑘 (𝑥),
∀𝑘 ∈ Y, the predicted probability of an input 𝑥 belonging to class 𝑘 , according to classifier 𝑓 .
ATC requires a score function, 𝑠 : [0, 1]𝑘 → R, which takes as input the 𝑘-dimensional vector of
probabilities output by classifier 𝑓 , and outputs a real number. The score function 𝑠 captures the
confidence of classifier 𝑓 in its prediction and is used to estimate the expected mis-classification
rate. As such, the score function 𝑠 is chosen such that if the classifier predicts that the output class
for an input 𝑥 is 𝑖 ∈ Y with high probability relatively to the other classes, then 𝑠 (𝑓𝑖 (𝑥)) should be
high: 𝑓𝑖 (𝑥) >> 𝑓𝑗 (𝑥),∀𝑗 ≠ 𝑖 =⇒ 𝑠 (𝑓𝑖 (𝑥)) > 𝑠 (𝑓𝑗 (𝑥)).
Conversely, if the classifier predicts class 𝑖 for input 𝑥 with relatively low probability, then

𝑠 (𝑓𝑖 (𝑥)) should be low: 𝑓𝑖 (𝑥) ≤ 𝑓𝑗 (𝑥),∀𝑗 ≠ 𝑖 =⇒ 𝑠 (𝑓𝑖 (𝑥)) < 𝑠 (𝑓𝑗 (𝑥)).
ATC [27] considers two score functions: Maximum confidence — 𝑠 (𝑓 (𝑥)) = max𝑗∈Y 𝑓𝑗 (𝑥); and

Negative Entropy — 𝑠 (𝑓 (𝑥)) = ∑
𝑗 𝑓𝑗 (𝑥) log

(
𝑓𝑗 (𝑥)

)
. Based on its results, we use only the Negative

Entropy function in this study.

1The model predicts a probability of each class being the correct class for the sample.
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Algorithm 1 Logic employed by ATC to determine the decision threshold 𝑡
1: procedure find_threshold(𝐷val)

2: Err(Dval ) ← ∥misclassified inputs∥
∥ inputs∥ ⊲ Compute the error rate on the validation set

3: return Percentile𝐸𝑟𝑟 (D
val ) (s(f(x))) ⊲ Return the Err(Dval )-th percentile of the score distribution for the validation set

4: end procedure

ATC estimates a model’s predictive quality as follows: given a validation set Dval of labeled data
(e.g., which includes the most recent ground truth labels for the past predictions of the classifier
𝑓 ) ATC identifies a threshold 𝑡 on Dval such that the number of samples that obtain a score less
than 𝑡 match the number of errors of the classifier 𝑓 on D𝑣𝑎𝑙 . This procedure is illustrated by the
pseudo-code in Algorithm 1 and can be expressed compactly as follows:

E𝑥∼Dval [I [𝑠 (𝑓 (𝑥)) < 𝑡]] = E(𝑥,𝑦)∼Dval

[
I
[
argmax𝑗∈Y 𝑓𝑗 (𝑥) ≠ 𝑦

] ]
, (1)

where I denotes the indicator function, and 𝑦 the ground truth class for input 𝑥 . The left side of the
equation defines the ratio of samples in Dval with score below the threshold 𝑡 and the right side
specifies the error rate forDval (i.e., number of errors of the classifier 𝑓 onD𝑣𝑎𝑙 ), which we also note
as 𝐸𝑟𝑟 (Dval). Threshold 𝑡 can be easily computed as it corresponds to the 𝐸𝑟𝑟 (Dval)-percentile of
the distribution of scores for Dval. One can then estimate the correctness of individual predictions
on a target, unlabeled data-set DT based on whether each prediction’s score is above/below 𝑡 . The
error rate for DT can thus be computed as:

Err(DT (𝑠)) = E𝑥∼DT [I[𝑠 (𝑓 (𝑥)) < 𝑡]] . (2)
Note that ATC allows for estimating whether individual predictions are correct or not. In the

general multi-class scenario (𝑘 > 2), this does not allow to pinpoint which class is expected to be the
correct one, in case a classifier’s prediction is deemed as incorrect. However, since our use case is a
binary classification problem, estimating the correctness of a prediction implies also determining
which is the expected class in case the classifier’s prediction is estimated to be incorrect. This allows
us to employ ATC to estimate the whole confusion matrix as well as the fraud rate.

4 FRAMEWORK FOR ML ADAPTATION
This section describes the proposed framework for reasoning about adaptation of ML-based sys-
tems. We start by discussing the assumptions and design goals underlying the framework and its
requirements for ensuring the design goals. Then, we focus on its novel aspects, namely: (i) how
to formally model ML components in order to reason about the impacts of ML mispredictions on
system utility; (ii) how to predict the costs/benefits of different adaptation tactics; and (iii) how to
integrate these predictions with the formal model.

4.1 Design Goals and Assumptions
The proposed framework targets systems composed of ML and non-ML components and is designed
to automate the analysis of the trade-offs associated with adapting (e.g., retraining) a ML component
at a given moment with the goal of maximizing system utility. Our design aims to ensure the
following key properties: (i) generic – designed to be applicable to different types of offline
supervised ML models (e.g., neural networks, random forests); (ii) tractable – designed to be
usable by a probabilistic model checker like PRISM, which requires identifying an adequate level of
abstraction to model ML components in order to enable systematic analysis via model checking;
(iii) expressive – designed to capture the general and key dynamics of ML models; (iv) extensible
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Fig. 1. Architecture of the self-adaptation framework.

– designed to be easily extended to incorporate additional adaptation tactics (e.g., transfer learning,
unlearning), as discussed by [13], and customized to capture application specific dynamics.

Our framework makes the following assumptions:
A1 There are fluctuations of the ML model’s quality over time – ML techniques are inherently

approximate (they can mispredict even in the absence of changes); or the system may be
operating under changing environments which lead to ML mispredictions (data shift);

A2 Adaptation tactics can have non-negligible costs and latencies. Considering the case of an
adaptation tactic such as model retrain, the costs could be quantified in terms of energy
consumption or as the economical cost incurred by provisioning the virtual machines used
for retrain (in the case of cloud deployments);

A3 Time is discretized into fixed-sized intervals. At each time interval, an optimal adaptation
strategy is synthesized to be used in the following time interval(s). The most appropriate
granularity of time discretization is inherently application dependent and should be chosen
by taking into consideration that it will affect the rate at which adaptations are performed.

4.2 Self-Adaptation Manager’s Architecture
Similarly to previous work [6, 8, 49], the proposed framework leverages a self-adaptation manager
that adopts a MAPE-K [37] architecture, as illustrated in Figure 1. The following paragraphs briefly
describe each module of the architecture.
Environment. Generates events which constitute the inputs to the ML-based system, and hence to
its ML component(s). These events may cause ML mispredictions and a decrease in system utility.
ML-based system. Implements the domain specific tasks, for which it relies on at least one ML
component and may rely on several other components, both ML and non-ML. ML-based systems
include, for instance, financial fraud detection [3, 54] and machine translation systems [23, 59].
These systems normally rely on both ML and non-ML components to fulfil their objectives, namely
detecting fraudulent transactions and translating sentences, respectively. A system component that
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incorporates an ML model is considered an ML component. Such components can be adapted via
the execution of the tactic selected by the self-adaptation manager.
Self-adaptation manager. Provides the required functionalities for ML adaptation. The novelty of
the proposed framework with respect to existing self-adaptation managers lies in the operation of
the Analyze and Plan components: Analyze – contains the cost/benefit predictors (referred to as
Adaptation Impact Predictors or AIPs, introduced in Section 4.4), which leverage historical data of
previous adaptations and of their impact on the ML component’s quality (e.g., accuracy) to estimate
its future performance in case an adaptation is or is not executed; Plan – comprises the adaptation
planner, which relies on a formal model of the system being adapted and on a probabilistic model
checker to synthesize the adaptation strategy that optimizes system utility.
The self-adaptation manager triggers the execution of any of the tactics available to adapt the

system. Although the diagram in Figure 1 considers two example tactics (retraining ML components
or NOP – not performing any adaptation), as discussed in our prior work [13], the ML literature
has proposed a number of approaches that can be leveraged as adaptation tactics, such as:
• Unlearning [9, 10]: useful when data in the MLmodel’s knowledge base no longer represents
the environment or contributes to increased model quality. Removes unwanted samples
faster and more efficiently than by retraining the model without those samples;
• Transfer learning [34, 51]: helpful if ML model 𝑀1 is expected to have to deal with envi-
ronmental conditions that a different ML model 𝑀2 has dealt with. Leverages data from
𝑀2 so that 𝑀1 learns how to react/predict for the (expected) upcoming and previously
unknown/unseen scenario/context.
• Human based labelling [62]: convenient when the ML model has high uncertainty and
the decision/prediction is critical, or has high impact on the system. Offloads decision to
human operator/user, who can typically offer more assurance (especially in the case of
expert users/operators).

The self-adaptation manager should thus abide by the following key requirements:
R1 Provide the means to predict the effects of adapting and not adapting the model on its future

accuracy;
R2 Include a way to characterize in a compact but meaningful way the error of a ML component;
R3 Be able to determine the impact of ML mispredictions on overall system utility.
The following sections describe the Analyze and Plan components, explaining how these re-

quirements are met.

4.3 Formally Modeling ML Components
This section details how we formally model the ML components to capture their error in a compact
but meaningful way (realizing R2), and its impact on system utility (realizing R3).
ML component definition. Depending on the domain of operation of a system, the most appropri-
ate type of ML component varies. For instance, while in cyber-physical systems it is common to see
reinforcement learning ML components [38], in the context of fraud detection [44, 54] or medical
diagnosis systems [25] offline trained ML components (e.g., decision trees or neural networks)
are more common. We focus our analysis on offline trained ML components and specifically on
ML classifiers. (Note that it is possible to transform a regressor into a classifier by discretizing the
target domain, although this implies introducing an intrinsic prediction error due to the chosen
discretization granularity.)
ML component state. Since the goal of the proposed framework is to model ML components, and
in particular the impact of their mispredictions on system utility, we require a way to evaluate
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their classification performance. Classification models are typically evaluated based on a popular
construct known as confusion matrix [61], which provides a statistical characterization of the
model’s quality by describing the distribution of its misclassification errors. For a classification
problem with 𝑁 classes, the confusion matrix normalized by rows C (the rows represent the actual
sample class and sum to 1) contains, in each cell (𝑖, 𝑗), the ratio of samples of class 𝑖 (ground truth)
that have been classified as being of class 𝑗 (prediction). For the simpler case of binary classification
problems, the confusion matrix is reduced to a 2 × 2 matrix where each cell specifies the following:
True Positives Rate (TPR) – percentage of examples of the positive class that the model classified
as such; True Negatives Rate (TNR) – percentage of examples of the negative class that the model
classified as such; False Positives Rate (FPR) – percentage of examples of the negative class that the
model classified as positive; False Negatives Rate (FNR) – percentage of examples of the positive
class that the model classified as negative. This representation allows for extracting further error
metrics such as the model’s accuracy, and f1-score.
The row-normalized confusion matrix has the following relevant properties: (i) generic – can

be computed for different ML models (e.g., random-forest or neural network); (ii) tractable –
is compact and abstract enough to be encoded into a formal model; (iii) expressive – captures
the predictive performance of the ML model and allows for computing several error metrics; (iv)
extensible – can be used to model the impacts of executing different adaptation tactics [13] (e.g.,
retrain, nop), by updating its cells. These properties make it a natural fit to model ML components
and hence realize R2. Depending on the predictive models used by the model checker to estimate
the evolution of the confusion matrix (or the cost of executing an adaptation tactic) the state of
the ML component can be extended with additional variables, e.g., that describe the expected data
shifts on the input or output.
ML component interface. Since the framework aims to adapt offline-trained ML components, we
define the base interface as being composed of the methods query and retrain. The ML component
interface can be extended to incorporate additional adaptation tactics (e.g., transfer learning [51]
or unlearning [9, 10]), if those are indeed available for the managed system. As the name suggests,
retrain models the execution of a retrain procedure of the ML component by triggering an update
of its row-normalized confusion matrix. The techniques employed to predict how the confusion
matrix of a ML component evolves as a result of a retrain procedure are described in Section 4.4. The
query method models the process of asking the ML component for predictions for a set of inputs.
Specifically, this method should abstract over the concrete input/output values of the samples
and of the predictions, requiring only the total number of inputs for the ML component and the
expected distribution of (real) output classes O (given by the probability 𝑝𝑖 for an input to be of
class 𝑖 , for all classes 𝑖 ∈ [1, 𝑁 ]). The method returns a (non-normalized) confusion matrix C∗, that
reports in position (𝑖, 𝑗) the (absolute) number of inputs of class 𝑖 that are classified as of class 𝑗
by the model. C∗ can be simply computed by multiplying each row 𝑖 of the normalized confusion
matrix C by 𝑝𝑖 . The interface can be extended to account for more adaptation tactics which allow
to tailor the framework to specific adaptation scenarios.
Dealing with uncertainty. As shown by recent work [7, 33, 49], capturing uncertainty and
including it when reasoning about adaptation contributes to improved decision making. To capture
uncertainty, we leverage the probabilistic framework proposed by Moreno et al. [48] which allows
to account for different sources of uncertainty in the system (e.g. uncertainty on the effects of an
adaptation tactic or on the input class distribution) and which generates memoryless strategies
(strategies that depend only on the current state of the system). This framework accounts for
uncertainty by modeling the source of uncertainty as a probabilistic tree which is approximated
via the Extended Pearson-Tukey (EP-T) [36] three-point approximation. The current state of the
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source of uncertainty is represented by the root node of the probability tree and the child nodes
are its possible realizations.

4.4 Predicting the Effects of Adapting and Not Adapting
A key requirement of our framework is the ability to predict the costs and benefits of executing
adaptation tactics on the ML components (requirement R1). For this purpose, the proposed frame-
work associates with each adaptation tactic a dedicated component, which we call Adaptation
Impact Predictor (AIP). The AIP is in charge of predicting: (i) the adaptation tactic’s cost, that is
charged to the system utility; (ii) the impact of the adaptation on the future quality of the ML
component. We also include an adaptation tactic corresponding to performing no changes to the ML
component (NOP). While the AIP for tactic NOP always predicts zero costs (this tactic inherently
has no cost), its model quality predictor captures the evolution of the model’s performance if no
action is taken, e.g., the possible degradation of accuracy of the ML component due to data shifts.
Overall, this approach allows the model checker to quantify the impact of different adaptation
tactics on system utility and reason about their cost/benefits trade-offs.
We focus on the problem of how to predict the performance evolution of the ML component

and describe, in the next section, how we tackle the problem of implementing AIPs for the retrain
and NOP tactics for generic ML components. Indeed, for tactics such as retrain the problem of
estimating their costs has been investigated in the system’s community. The literature has shown
that data-driven approaches [11] based on observing previous retraining procedures, possibly
mixed with white-box methods [66], can generate accurate predictive models of the retrain cost.
Predicting future quality ofML components.Given the reliance on a row-normalized confusion
matrix C to characterize the performance ofML components, predicting their performance evolution
requires estimating how C will evolve in the future, e.g., due to shifts affecting the quality of the
current model or as a consequence of retraining the model to incorporate newly available data.
The proposed method abstracts over the specific adaptation 𝑎() by modeling it as a generic

functionM′ ← 𝑎(M,I,N) that produces a new ML modelM′, and takes as input: (i) modelM
prior to the execution of the adaptation; (ii) data I, used to generate modelM; (iii) new data, N ,
that became available since the last adaptation, e.g., by deploying the model in production and
gathering new samples and corresponding ground truth labels. We assume that both I and N
contain ground truth labels. Additionally, we assume thatM andM′ are generic supervised ML
models that are queried and returned predictions for the input samples. These two assumptions
allow to determine the confusion matrices of modelsM andM′ at any future time interval, since
their predictions can be compared with the ground truth labels.

We seek to build blackbox regressors (e.g., random forests or neural networks) that, given model
M obtained at time 0 with data-set I, and given new data N available at time 𝑡 > 0, predict
the confusion matrices of both models (M andM′) at time 𝑡 + 𝑘 , where 𝑘 > 0 is the prediction
lookahead window.
Adaptation impact data-set. In order to train such a blackbox regressor, we build an Adaptation
Impact Data-set (AID) by systematically simulating the execution of the adaptation tactic using
production data in different points in time. This allows for gathering observations characterizing
the execution of the adaption tactic in different environmental contexts, such as: (i) different sets
of data used to adapt the model; (ii) variation in the time passed since the last execution of the
tactic; (iii) different ML performance before and after adaptation

The first step of the procedure consists of monitoringmodelM0 of aML component in production
over𝑇 time intervals. During this period, given the absence of AIPs, we assume that no adaptation is
executed. Next, we deployM0 on a testing platform (so as not to affect the production environment)
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and systematically apply adaptation 𝑎() at each time interval 𝑖 > 0, i.e., 𝑎(M0,I0,N𝑖 ). This yields
a new model M𝑖 , which we evaluate at every future time interval 𝑖 < 𝑗 ≤ 𝑇 , obtaining the
corresponding confusionmatrices, noted as C𝑖 ( 𝑗). Overall, this procedures yields𝑇 models, resulting
from the adaptation ofM0 at different time intervals, and produces 𝑇 · (𝑇 − 1) measurements
of the confusion matrices at times 𝑗 > 𝑖 . This testing platform is required to support the data
pre-processing pipeline, model building, and inference stages of the ML components targeted by
the adaptation. Such testing platform is then leveraged by the framework to create and evaluate
different versions of these components, eschewing the need to reproduce the full production system,
comprising the whole set of ML and non-ML components. We expect such testing platforms to be
normally available due to the common DevOps/MLOps practice [60] of testing ML models’ quality
prior to their actual deployment in production.

For each of the aforementioned𝑇 · (𝑇 − 1) measurements, we generate an AID entry, 𝑒𝑖, 𝑗,𝑘 , which
describes the quality at time 𝑗 + 𝑘 of modelM 𝑗 obtained by executing 𝑎(M𝑖 ,I𝑖 ,N𝑗 ) at time 𝑗 on
modelM𝑖 , where I𝑖 denotes the data used at time 𝑖 to generate modelM𝑖 , and N𝑗 the new data
gathered from time 𝑖 until time 𝑗 . Each entry 𝑒𝑖, 𝑗,𝑘 has as target variables the 𝑁 2 − 𝑁 independent
entries of the confusion matrix at time 𝑗 + 𝑘 of modelM 𝑗 and stores the following features:
• Basic Features: provide basic information on (BF1) the amount of data (i.e., number of
examples) used to generate modelM𝑖 , i.e., I𝑖 , and gathered thereafter, i.e., N𝑗 ; (BF2) the
predictive quality of the model shortly after its generation and at the present time; (BF3)
the time elapsed since the last execution of the adaptation tactic, i.e., 𝑗 − 𝑖; (BF4) the ground
truth distribution of classes at the time modelM𝑖 was generated and at the present time.
• Output Characteristics Features: describe variations in the distribution of the output of models
M𝑖 andM 𝑗 . It also includes the distribution of the uncertainty of the models’ predictions.
This feature is included only when the ML model provides information regarding the
uncertainty of a prediction. This information is usually provided by commonly employed
ML models like random forests, Gaussian processes, and ensembles.
• Input Characteristics Features: aim to capture variations in the distributions of the features
of data-sets I𝑖 and N𝑗 . The current version of the framework computes, for each feature
𝑓 , the Pearson correlation coefficient between its values in I𝑖 and N𝑗 . However, other
metrics could also be used to detect shifts in the input distributions, e.g., using different
distributional distances like Jensen-Shannon divergence (JSD) [46] or Kolmogorov [45].

Overall, the AID can be seen as composed of pairs of features, where each pair describes a specific
“characteristic” of the data or model at two different points in time, e.g., amount of data available at
time 𝑖 and 𝑗 , or distribution of predicted classes at time 𝑗 + 𝑘 by modelsM𝑖 andM 𝑗 . The last step
of the process consists of extending the AID by encoding the variation of each feature as follows:
(i) for scalar features (e.g., amount of data) we encode their variation using the ratio and difference;
(ii) for features described via probability distributions (e.g., prediction’s uncertainty) we quantify
their variation using the Jensen-Shannon divergence [46] (inspired by previous work [54]), which
yields a scalar measurement of the similarity between two probability distributions. This generic
methodology can also be applied to the case of the NOP tactic. In this case, the data-set describes
how the accuracy of a model originally obtained at time 𝑖 will evolve at time 𝑗 + 𝑘 , based on the
information available at time 𝑗 .
Building the AIPs. We exploit the AID data-set to train a set of independent Adaptation Impact
Predictors (AIPs), which can be simple linear models or blackbox predictors such as random forests
or neural networks. Each AIP is trained to predict the value of a different cell of the confusion matrix.
Given an 𝑛-ary classification problem, we have 𝑛2 − 𝑛 independent values for the corresponding
confusion matrix, since each row must sum to 1. For the case of binary classification, where 𝑛 = 2,
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it is sufficient to predict the values of the two elements on the diagonal, which, being in different
rows, are not subject to any mutual constraint. For the general case of 𝑛 > 2, it is necessary to
ensure that the predictions of the AIPs targeting different cells of the same row sum to 1. This can
be achieved by using a softmax function [4] to normalize the predictions generated by the AIPs
into a probability distribution.
Integrating the AIPs in the formal model. As for the integration of the AIPs in the formal
model, which is checked via a tool such as PRISM, a key practical issue is related with the fact that
these tools do not typically allow for interacting with external processes (which could be used to
encapsulate the implementation of the AIPs) during model analysis. This would be beneficial for
cases when the model checker is used to reason on a look-ahead horizon of 𝑙 > 1 time intervals.
In such a case, up to 𝑎𝑙 possible adaptation strategies are generated, where 𝑎 is the number of
adaptation tactics available, thus requiring up to 𝑙 · 𝑎𝑙 predictions.

This problem can be circumvented by integrating directly the AIPs as part of the formal model
to be checked. This approach is reasonable if the AIPs are implemented via simple methods, such
as linear models, but is cumbersome and unpractical for the case of more complex models, such
as neural networks. An alternative approach, which is the one currently implemented in our
framework, is to precompute all the predictions that will be required during the model checking
phase and provide them as input constants to the model checker tool. This approach is viable only
when the lookahead window and the set of available adaptations are small, but allow us to use
arbitrary external predictors.

4.5 Accounting for Label Delay
In general, label delay can be thought of as a form of temporal misalignment between the data and
the labels. More formally, for a delay 𝑑 and current timestamp 𝑡 , ground truth labels are available
for transactions completed up to time instant 𝑡 −𝑑 . This means that in order to estimate the current
quality of the model, one either resorts to (i) delayed labels, hence using stale data as a proxy for the
current model’s quality, or (ii) to methods (see Section 3.2) that aim to predict the current model’s
predictive quality in the absence of labelled data.

To test the proposed framework, which requires knowledge of both the current performance of
the ML model and the distribution of the target (features BF2 and BF4, c.f. Section 4.4) in order to
estimate the impact of an adaptation, we explore three different approaches to label estimation.
The first, less realistic approach, assumes that (i) labels are immediately available. As this is not
typically the case in reality, for our second and third approaches we relax this assumption by (ii)
leveraging only delayed labels and (iii) resorting to methods for predicting model performance
under unseen data distributions. Among the approaches described in Section 3.2, we use our own
variant of the Average Thresholded Confidence (ATC) method proposed in [27], that we name
Class-Based ATC (CB-ATC). We build on ATC due to its reduced computational complexity and to
its ability to estimate the individual ground-truth labels of point-wise model predictions.

4.5.1 Class-Based-ATC (CB-ATC). While integrating ATC within our framework we identified two
relevant shortcomings, which led us to propose a new method: CB-ATC. The next paragraphs, with
the aid of Figures 2 and 3, illustrate ATC’s limitations and describe how CB-ATC circumvents them.
Limitation 1. The first limitation of ATC is related to its (implicit) assumption on the distributions
of scores for the correct/incorrect predictions of each class being “similar enough” so that by
using a single threshold, it is possible to fit the error rate on validation data accurately for both
predicted classes. However, if depending on the predicted class the scores of incorrect/correct
predictions are distributed in different regions, as illustrated by Figure 2, ATC is unable to correctly
fit the confusion matrix using a single threshold. Intuitively, CB-ATC addresses this limitation by
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Fig. 2. ATC (middle plot) is unable to correctly fit the actual confusionmatrix (left plot; ‘r’ stands for real/actual
ground truth; ‘p’ stands for predicted labels) of the validation data considered in this example via a single
threshold. This is due to the different characteristics of the distributions of scores for the samples that are
predicted as class 0 and 1 (i.e., below and above the assumed 0.5 model threshold). By using one threshold per
class, CB-ATC (right plot) accounts for the different distributions of scores in each class and fits the actual
confusion matrix precisely.

Fig. 3. ATC (middle) fails to correctly fit the actual confusion matrix (left) in a scenario in which the model
threshold is set to a value different from 0.5 (to control the trade-off between recall and precision). In the
same scenario, CB-ATC (right) can correctly fit the actual confusion matrix by: i) fitting the error rate of
each class via a different threshold; ii) employing a Modified Negative Entropy score function, which ensures
that P(f(x)=1) monotonically decreases as it approaches the ML model’s threshold (i.e., as a prediction’s
uncertainty increases).

computing a threshold per predicted class, as illustrated in Figure 2 (right). This is set to match the
error rate for the prediction of that specific class. More formally, in CB-ATC each class threshold,
denoted as 𝑡𝑖 , where 𝑖 ∈ Y and Y is the set of output classes, is computed as follows:

E𝑥∼Dval [I [pred(𝑓 (𝑥)) = 𝑖 ∧ 𝑠 (𝑓 (𝑥)) < 𝑡𝑖 ]] = E(𝑥,𝑦)∼Dval [I [pred(𝑓 (𝑥)) = 𝑖 ∧ 𝑦 ≠ 𝑖]] , (3)

where pred(𝑓 (𝑥)) denotes the class predicted by classifier 𝑓 for input 𝑥 . The use of a per class
threshold provides CB-ATC with additional flexibility with respect to ATC and, as illustrated in
Figure 2, it allows CB-ATC to fit precisely the classifier’s confusion matrix.
Limitation 2. The second limitation that is inherent to ATC’s design is related to the fact that in
many real world applications (including ML-based financial fraud detection systems), the predicted
class does not necessarily coincide with the one having higher probability according to the classifier.
Focusing on the binary classification case, this means that the threshold used to decide the class
to which a prediction belongs (based on the model’s output probabilities and referred to as “ML
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model threshold" in Figures 2 and 3) is often not 0.5. Indeed, this is precisely the case for our target
study, where, after training classifier 𝑓 , the model threshold is configured to ensure that classifier 𝑓
achieves the SLA-defined false positive rate. This scenario is illustrated in Figure 3, which considers
the case in which the ML model’s threshold is set by design above 0.5.
This example demonstrates that ATC fails to correctly fit the confusion matrix and we argue

that this is due to two main causes: i) the use of a single threshold to fit the global error rate rather
than a per class error rate (as already discussed); ii) the use of a scoring function (like negative
entropy), which is symmetric around 0.5, fails to capture a key desirable property whenever the
model’s threshold is not 0.5: as the model predicted probability gets closer to the model’s threshold
(from any given direction, i.e., above or below in Figures 2 and 3), the scoring function should also
decrease (uncertainty grows as we approach the model’s threshold). In order to tackle the latter
issue, CB-ATC uses a modified version of the Negative Entropy function, which we call Modified
Negative Entropy (𝑀𝑁𝐸) and define as follows:

𝑀𝑁𝐸 (𝑓 (𝑥), pred(𝑓 (𝑥))) =
{
𝑁𝐸 (𝑓 (𝑥)), if pred(𝑓 (𝑥)) = argmax𝑗∈Y (𝑓𝑗 (𝑥))
−𝑁𝐸 (𝑓 (𝑥)) − 2, otherwise

(4)

where 𝑁𝐸 () stands for the Negative Entropy function. Analyzing Figure 3, it is possible to see that
𝑀𝑁𝐸 () ensures, by design, that the two misclassified samples for which class 0 was predicted get a
lower score than any other predicted class-0 sample in the validation set (samples e and f are the
closest to the ML model’s threshold and correspond, as such, to more uncertain predictions).

5 SELF-ADAPTIVE FRAUD DETECTION SYSTEM
To demonstrate the proposed framework, we instantiate an online adaptation manager for a ML-
based credit card fraud detection system. Typically, fraud detection systems rely on supervised
binary classifiers to classify incoming (credit/debit card) transactions as either legitimate or fraudu-
lent and have banks and merchants as their clients. In this domain, quality attributes of interest
are for example the overall cost of service level agreement (SLA) violations. Hence, we consider
that our system has SLAs on the target: (i) TPR (or recall) – percentage of fraudulent transactions
actually caught – and (ii) FPR – percentage of fraudulent transactions not caught – which should
be kept within pre-defined thresholds:

system(recall) ≥ recall_threshold;
system(FPR) ≤ FPR_threshold;

SLA violations can occur when the ML component misclassifies a substantial amount of samples,
such that either the TPR (recall) decreases below the threshold, the FPR becomes higher than
acceptable, or both. These misclassifications are typically caused by environmental changes through
data shifts, i.e., the input to the ML component changes such that it is no longer capable of correctly
classifying those samples. This occurs for example, when the amount of fraud in a given period
increases, or when fraudsters change their strategies [13, 44].

Whenever these SLAs are violated, the system incurs non-negligible costs, which we assume are
fixed. We further assume that the fraud-detection system is deployed in production and that new
data is gathered continuously. However, we make no assumptions regarding label availability, i.e.,
ground truth labels for transactions can have delays and hence be available only 𝑑 time units after
the transaction has been processed. Section 4.5 details how we address this challenge.

Periodically, the self-adaptation manager can decide to either do nothing (NOP), i.e., not to adapt
the model, or to retrain the model, leveraging the newly collected data and labels. We consider
fixed retrain costs since the problem of estimating these costs has already been addressed in
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the literature [11, 66]. We also capture retrain latency by having it weigh in the system utility.
Specifically, retrain latency is first translated into a percentage of the time period. For this percentage
of time, system utility is computed based on the confusion matrix of the ML component that
represented the state prior to the retrain. For the remainder of the time interval, system utility
is computed based on the confusion matrix of the retrained model. Since the distribution of
environment generated events may not be uniform, system utility is further weighted by the
percentage of events in each period (during adaptation and after). Finally, driven by the desire
to keep the problem tractable (eschewing the need to estimate several future states of the ML
component as described in Section 4.4) and since we consider retrain latency to be less than one
time interval, we fix the lookahead horizon to one time interval.
The framework solves the problem of deciding when to retrain such that the global cost given

by the sum of SLA and retrain costs is minimized. System utility (sysU ) is thus defined as:
sysU = total cost =
= cost(TPR SLA violation) + cost(FPR SLA violation) + cost(adaptation tactic), (5)

where total_cost is the global cost the system is expected to incur in the next time interval;
cost(TPR SLA violation) and cost(FPR SLA violation) are the costs of violating the recall and FPR
SLAs, respectively, established for the system. The system is charged either of these costs when the
monitored recall is below the pre-defined recall threshold and/or when the FPR is above the FPR
threshold. Finally, cost(adaptation tactic) encodes the cost of executing a given adaptation tactic.
This cost is set to zero when the adaptation tactic selected is NOP. System utility could be expressed
as a maximization problem by subtracting the costs (and possibly adding rewards). We had to
formulate it as an equivalent minization problem only because PRISM does not currently support
negative rewards. Finally, although the definition of system utility is application-dependent, it is
expected that the cost (monetary and/or latency) of adaptation should often need to be accounted
for, hence making this term of the equation general to other applications.

Next, we describe the formal model of the system, illustrating some of its components resorting
to PRISM syntax, and the process of creating the adaptation impact predictors (AIPs).

5.1 Formal Model of the Fraud Detection System
The formal model of the system requires modules for each of the different moving parts that have
an impact on the system. Thus, we model: (i) the environment under which the system is operating;
(ii) the actual system, to analyze how mispredictions affect system utility, to simulate the execution
of the tactics, and to understand their impact on system utility; and (iii) the adaptation tactics,
which in our case consist of either retraining the model or sticking with the current one.

Since we assume that the two tactics (NOP and retrain) cannot be executed simultaneously,
we further consider an adaptation manager module that prevents this from happening and non
deterministically selects which tactic to execute. As shown in Listing 1, whenever there is a new
event generated by the environment (line 5) – for the fraud detection system an event consists
of a batch of transactions – the adaptation manager enters the selectTactic state and can select
to execute one tactic among the available ones2. For example, while tactic nop (do nothing) can
always be executed (line 8), tactic retrain can only be executed when there is newData with which
to train the ML component (line 9). Finally, since our approach assumes that time is divided into
2In PRISM commands are encoded as probabilistic state transitions following the format [action] guard→ prob1:update1 +
... + prob𝑛 :update𝑛 , where guard is a predicate over all variables in the model (including variables from other modules).
When guard is true, update1 is applied with probability prob1 (called transition probability). Transition probabilities of a
command must sum to 1. action allows to specify a name for the command or to synchronize commands between modules.
Thus, commands with the same action are only triggered when all the guard of all commands is true.
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Feature group Basic Features Output Features

Feature name

BF1.1: |N𝑗 |, # transactions never used for training

scores-JSD

BF1.2: |I𝑖 |, # transactions used for training
BF1.3: total data = |I𝑖 | + |N𝑗 |
BF1.4: ratio new-old data = |N𝑗 |/|I𝑖 |
BF2.1: current TPR
BF2.2: current TNR
BF3.1: time elapsed since the last retrain
BF4.1: current fraud rate

Table 1. Features used by the AIPs to predict the benefits of retraining and not adapting.

fixed-sized intervals, we further model a clock whose purpose is to keep track of the passing of
each time interval. The clock module is implemented as in [48].
Synthesizing optimal adaptation policies. As can be seen in Listing 1, each tick of the clock
triggers the accrual of a reward3. For this specific use-case, the rewards (lines 18-22) consist of the
total costs incurred by the system during that time period due to the tactics executed and possible
SLA violations. We account for the latency of executing the adaptation tactic by considering that
there is a percentage of transactions that is classified resorting to the previous, non-adapted model,
while the remaining transactions are classified resorting to the adapted model. Specifically, the
tactic is assumed to take a given percentage of the time interval to execute. This percentage is
given by tacticLatency. During this period, the system is receiving and classifying transactions. The
percentage of transactions classified during this period is encoded in percentTxs. Thus, if the non-
adapted model violates any threshold, the cost the system incurs is proportional to tacticLatency ×
percentTxs × sum of costs of SLA violations. For the remainder of the time instant, i.e., 1 - tacticLatency,
the remaining transactions 1 - percentTxs are classified with the adapted model, hence leading the
system to possibly incur a different cost due to variations in the system’s TPR and FPR.
To generate optimal adaptation policies, PRISM requires the specification of a property. Since

for this use-case system utility is defined as the total costs incurred by the system (Equation (5))
and since the goal is to minimize these costs, the property that leads to the optimal adaptation
policy corresponds to minimizing system utility, which is defined in PCTL (reward-based property
specification logic, c.f. Section 3.1) as RsystemUtility

min=? [F ‘end’], which means “minimum system utility
when time ‘end’ is reached”, and where R and F are the operators described in Section 3.1, min=?
is the qery, and systemUtility specifies the reward structure to use as target. ‘end’ defines the
simulation horizon, i.e., how many future time intervals we want the formal model to simulate.
Extending the tactic’s repertoire. To reason about self-adaptation considering a broader set
of adaptation tactics, the formal model needs to be changed only through the addition of the
corresponding tactics’ modules such that the adaptation manager can consider them as available
when making its nondeterministic choice. This can be achieved by adding these tactics to Listing 1,
in addition to nop and retrain.

3The basic building blocks of PRISM’s syntax are modules and rewards structures, and formulas. Each module is composed
of a set of variables and commands, which affect the variables belonging to the module. The state of the MDP is given
by the composition of all variables of all modules. The actions and transitions that the MDP can execute and take at a
particular state are given by the commands that are enabled at a specific moment in time, by the different variables. Finally,
the rewards that the MDP collects are specified with the rewards structure.
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Listing 1. Adaptation manager and System rewards4

1 module adaptation_manager

2 selectTactic : bool init false;

3 currTactic : [none .. retrain] init none;

4
5 [newEvent] !selectTactic -> (selectTactic '=true)&( currTactic '=none);

6
7 // non-deterministic choice between adaptation tactics

8 [nop] (selectTactic=true) -> 1:( currTactic '=nop)&( selectTactic '=false);

9 [retrain] (selectTactic=true)&( newData > 0) -> 1:( currTactic '=retrain)&( selectTactic '=false);

10
11 [tick] (currTactic != none) -> 1:( currTactic ' = none);

12 endmodule

13
14 formula tactic_cost = (currTactic = retrain) ? retrainCost : 0;

15 formula fpr_violation_cost = (fpr > FPR_THRESHOLD) ? FPR_COST : 0;

16 formula tpr_violation_cost = (tpr < TPR_THRESHOLD) ? TPR_COST : 0;

17
18 rewards "systemUtility"

19 [tick] true & (time >0) : (tacticLatency * percentTxs * (

20 (( INIT_FPR > FPR_THRESHOLD) ? FPR_COST : 0) + (( INIT_TPR < TPR_THRESHOLD) ? TPR_COST : 0)

21 ) + (1 - tacticLatency) * (1 - percentTxs) * (tacticCost + fpr_violation_cost + tpr_violation_cost));

22 endrewards

5.2 AIPs for the Fraud Detection System
As discussed in Section 4.4, the framework instantiates an AIP for each adaptation tactic, trained
using the features presented in Table 1. In this case, since there are two adaptation tactics (retrain
and nop), the framework instantiates one AIP for each which is composed of two predictors: one
for predicting the increase/decrease in the True Positive Rate (TPR) and a second one to predict
the True Negative Rate (TNR). Thanks to the properties of the confusion matrix, by predicting
the future TPR and TNR, we can fully characterize the ML component’s confusion matrix in the
following time interval. These predictions are then provided as inputs to the formal model and
leveraged by the probabilistic model checker to synthesize an optimal adaptation strategy.

6 EVALUATION
We use the self-adaptive credit card fraud detection system described in Section 5 to evaluate the
performance of our framework. Namely, we address the following research questions:
RQ1 Can the benefits of a model retrain be predicted with acceptable accuracy?
RQ2 Does the proposed approach allow to improve system utility when compared against

baselines such as periodic retrains, or reactive policies that retrain the model whenever
there is an SLA violation?

RQ3 How are the gains achievable with this approach affected by alternative execution contexts?
RQ4 Is the time complexity of the approach acceptable for a real-time system deployment?
RQ5 What is the impact of label delay when estimating model performance?

Experimental Settings. We leverage Kaggle’s IEEE-CIS Fraud Detection data-set [1] and the
winning solution of the challenge [2] as basis for our implementation. This approach relies on
an XGBBoost model [18] that exploits 216 features, including both features originally present in
the IEEE-CIS Fraud Detection data-set as well as additionally engineered features. We utilize this
winning solution to implement the data cleaning, and feature selection tasks. The data splits for
training, validation, and test, the self-adaptation mechanisms, and the generation of the retrain
benefits data-set are then implemented on top of that base solution. Further, for the purpose of our
use-case we leverage only the train data-set of the Kaggle competition for which labels are available
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(the test data-set does not have labels of the transactions). The presence of labels is required to
assess the performance of the system and the benefits of retraining.

Also, we always ensure the transactions of the data-set are given to the models respecting their
original time-stamps, as we do not wish to give any advantage to the models by providing them
with future information. As such, we use the first 1/3 of the original Kaggle train data-set to train
(70%) and validate (30%) the initial fraud detection model. The remaining 2/3 are divided as follows:
70% are used for training and validation of the AIPs (80% and 20%, respectively), and the remaining
30% for testing the framework.
Throughout the evaluation, the cost of an SLA violation is fixed to 10 and we vary the retrain

cost. This approach is justified as the costs/benefits of adaptation are, in practice, determined by the
relative values of these costs, rather than by their absolute values. Thus, by fixing the SLA violation
cost and varying the retrain cost we can conduct a sensitivity analysis to evaluate the effectiveness
of the proposed framework in a broad range of scenarios (including different retrain latencies).
In this study, the AIPs are random-forest predictors of the sklearn package [52] with default

parameter values except for the number of trees which we set to 12, similarly to the fraud detection
model. The time interval corresponds to 10 hours and the horizon to one future time interval. Our
implementation is available at https://github.com/cmu-able/ACSOS22-ML-Adaptation-Framework.
Baselines. We consider the following baselines:

• No-retrain: the fraud detection model is trained once, at the beginning of the testing period;
• Periodic: the model is retrained at every time interval;
• Reactive: the fraud detection model is retrained whenever there is an SLA violation;
• Random: at each time step, there is a 50-50 choice that the model will be retrained;
• Optimum: this is the optimal solution which is computed by looking at the actual future
results of both retraining and not retraining the model.

When studying the impact of label delay, we assume the following variants of our framework:

• AIP: base implementation of the framework which assumes that labels are immediately
available (zero delay);
• AIP_del: version that estimates current model performance based on the delayed metrics;
• AIP_atc: version that leverages ATC to estimate model performance;
• AIP_cbatc: version that leverages CB-ATC to estimate model performance;

6.1 Utility Improvement due to Retrain
Figure 4 compares the proposed framework (represented by line AIP) against the baselines. To
evaluate whether the use of the framework allows to improve system utility over baselines that do
not explicitly estimate the benefits of retrain, we define the SLA thresholds as RECALL ≥ 70% [3]
and FPR ≤ 1% [68], fix the retrain latency to 0 and the retrain cost to 8. These SLA threshold values
were set based on values typically employed by related works in this domain [3, 68]. As Figure 4a
shows, by leveraging the proposed framework it is possible to have the fraud detection system
minimize its total costs and be closer to the optimal possible cost. This answers RQ2 and shows that
the framework does improve system utility over simpler, model-free baselines due to its ability to
estimate the benefits of executing the retrain tactic. As for the number of SLA violations, as shown
in Figure 4b, the AIP violates slightly more SLAs than all other baselines except No-retrain (which,
as expected, is by far the approach that violates the most SLAs). However, as seen previously, this
does not translate into higher incurred costs, which is the quality attribute under optimization.
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(a) Cumulative cost incurred by each baseline. (b) Cumulative SLA Violations incurred by each baseline.

Fig. 4. Utility improvements achievable through the use of the proposed framework. The execution context for
this experiment is: fpr threshold = 1, recall threshold = 70, retrain cost = 8, retrain latency = 0. The number of
retrains executed by each approach is shown in the legend of each plot, between brackets after the approach’s
name. The retrains are also represented by the squares in each line.

(a) Variation of Recall SLA (b) Variation of retrain cost (c) Variation of retrain latency

Fig. 5. Impact of execution context on the total cost incurred.

Recall Retrain Retrain
threshold cost latency

[50, 60, 70, 80, 90] [1, 5, 8, 10, 15] [0, 1, 5]
Table 2. Values tested for different execution contexts.

6.2 Impact of Execution Context
In order to evaluate how different execution contexts impact the need for retrain and answer RQ3,
we ran experiments for different SLA thresholds, retrain costs, and retrain latencies. Specifically,
we tested the values shown in Table 2 for each dimension, fixing the remaining two dimensions to
the values of the base scenario (recall threshold = 70, retrain cost = 8, retrain latency = 0). Figure 5
displays these results.
Regarding the recall threshold (Figure 5a) the results show that, as expected, the cost incurred

by the approaches increases as the recall threshold increases. This is justified by the fact that an
increase in the recall threshold yields a more difficult problem – the system tolerates less incorrect
classifications of fraud transactions. This is translated into an increase of the SLA violations, thus
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Model type Retrain S Retrain M Retrain L NOP S NOP M NOP L

TPR MAE 0.1141 0.1158 0.1162 0.1343 0.1254 0.1276

PCC 0.6811 0.6727 0.6731 0.6165 0.5793 0.5737

TNR MAE 0.0055 0.0060 0.0059 0.0066 0.0068 0.0068

PCC 0.7436 0.7086 0.7121 0.6142 0.6008 0.5943
Table 3. Performance of the AIPs on different sets of features (S, M, L) and evaluated resorting to the mean
absolute error (MAE) and to the Pearson correlation coefficient (PCC). NOP represents the AIPs that estimate
the future TPR and TNR when the model is not retrained.

increasing the cost. The optimum and AIP approaches also suffer a cost increase since retraining
does not prevent them from violating the thresholds.
Focusing now on the retrain cost (Figure 5b) we see that if the cost is very low, the decision of

whether to retrain is fairly trivial and so all approaches that retrain the ML component are close
to the optimum. However, as the retrain cost increases, we start to notice how being careful in
selecting when to retrain, accounting for the costs and benefits of the tactic, does pay off, as AIP
is closer to the optimum than the other approaches. As expected, the No-retrain approach is not
affected by this dimension.

Finally, regarding the retrain latency dimension, the tested values correspond to percentages of
the time interval that are occupied with the process of retrain. That is, retrain latency = 0: retrain is
assumed instantaneous; retrain latency = 1: during the first 10% hours of the time interval the model
is being retrained and as such transactions are classified using the existing (non-retrained) model.
The same rationale applies to retrain latency = 5. The results (Figure 5c) show that this dimension
has relatively little impact on the cost of any approach, although as expected the total cost of the
optimum solution increases slightly as the retrain latency grows. In fact, even if this baseline can
always determine correctly whether it is worth retraining the model at any time 𝑡 , if the retrain
latency grows, a fraction of the transactions in input for the 𝑡-th interval will be classified using an
old model, thus suffering from an increase in misclassifications and SLA violations.

6.3 Accuracy of the AIPs
This section answersRQ1 by evaluating the performance of the AIPs resorting to the mean absolute
error (MAE) and to the Pearson correlation coefficient (corr-coef), and considering different sets
of features employed by each predictor. Specifically, we consider three different feature sets: S –
minimal set with only the basic features (c.f. Section 4.4); M – medium set, which includes the basic
features and output characteristics; L – encompasses the features of the previous sets and the input
characteristics. Table 3 displays these results. Interestingly, we see that an increase in the size and
complexity of the feature set does not yield better AIPs. Additionally, the results also show that the
models responsible for predicting the future TPR and TNR when the model is retrained achieve a
higher accuracy (lower MAE and higher correlation) than their NOP counterparts (which predict
the future TPR and TNR when the model is not retrained). Overall, on the one hand, the accuracy of
the AIPs proposed in this work is, as shown in Fig. 5, good enough to allow implementing effective
adaptation strategies. On the other hand, the absolute accuracy metrics reported in Table 3 confirm
that predicting the future performance of ML models is far from trivial and that the proposed
predictive methodology has still significant margins of improvement (e.g., by identifying different
features, blackbox predictors or possibly combining white-box methods [24]).
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Total Total PRISM PRISM
(mean) (stdev) (mean) (stdev)
3.459 0.070 3.113 0.061

Table 4. Time overhead (secs) of the process of generating the adaptation strategy. The columns named
‘PRISM’ encompass only the time overhead due to verifying the formal model. The remaining columns display
the total time overhead due to the AIPs and to the probabilistic model checking.

6.4 Time Complexity
Since the purpose of the framework is to enable run-time adaptation of ML components in order to
improve system utility, we evaluate the time complexity of the process of generating the adaptation
strategy. This process corresponds to querying the AIPs and having PRISM verify the property of
interest for the formal model of the system. Table 4 shows the average and standard deviation of
the time overhead due to the whole process and also of the formal model verification alone. These
values correspond to the execution context defined in Section 6.1 and were obtained by running
the experiments on a machine with an AMD EPYC 7282 CPU@2.8GHz, with 16 cores and 128GB
RAM. As can be seen, the process of generating the adaptation strategy takes around 3.5 seconds,
which is perfectly affordable considering that retraining ML components has a much higher time
overhead. This answers RQ4 and shows that it is feasible to employ the proposed framework on
an online scenario.

6.5 Impact of Label Delay
We now evaluate the impact of label delay when estimating model performance and how the
accrued estimation error affects the performance. We structure this study in two parts.
We start by analyzing the effectiveness of ATC and CB-ATC (see Section 4.5) in predicting the

current confusion matrix of the fraud-detection classifier, as well as the fraud-rate. Recall that this
information constitutes some of the input features to the AIP predictors, which are then used to
predict the expected variation of the confusion matrix in the following time window, depending on
whether the model is retrained or not.

Next, we evaluate to what extent using ATC and CB-ATC to predict the input features for the
AIPs impacts the effectiveness of the self-adaptative framework to optimize system utility.
Estimation of Confusion Matrix and Fraud Rate. Figures 6 and 7 evaluate the performance of
both ATC and CB-ATC when used to estimate the current (i.e., before adaptation is enacted) TPR,
TNR and fraud rate of the fraud detection model. Specifically, we report the mean absolute error
(MAE) (Figure 6) and the Pearson correlation coefficient (PCC) (Figure 7) for each approach, and
for each value of label delay tested. Regarding the mean absolute error, we observe that CB-ATC
substantially reduces the estimation error for all metrics (TPR – Figure 6a; TNR – Figure 6b; fraud
rate – Figure 6c) when compared against the delayed labels baseline. ATC however is actually
outperformed by the delayed labels baseline. This is due to the fact that ATC was developed to
estimate the accuracy of the classifier and not the performance of individual classes, which is the
current case. Regardless, and particularly for the TNR and the fraud rate (Figures 6b and 6c) all
approaches have a low estimation error.
In terms of the Pearson correlation coefficient (Figure 7) both ATC and CB-ATC present much

higher correlations than the delayed approach, for all metrics evaluated. In this setting, high
correlation means that the estimations obtained by both ATC and CB-ATC provide meaningful
insights into the actual real values of the metrics. Since among the three approaches CB-ATC is the
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(a) True Positive Rate (TPR) MAE (b) True Negative Rate (TNR) MAE (c) Fraud rate MAE

Fig. 6. Mean Average Error (MAE) of the delayed, ATC and CB-ATC baselines.

(a) True Positive Rate PCC (b) True Negative Rate PCC (c) Fraud rate PCC

Fig. 7. Pearson Correlation Coefficient (PCC) of the delayed, ATC and CB-ATC baselines.

one that overall presents the best trade-off between the error (low) and the correlation (high), we
expect it to yield better performance when leveraged by the framework.

These experimental results corroborate our hypothesis on ATC’s limitations (Section 4.5.1) and
that CB-ATC can effectively solve these issues, leading to lower estimation error.
Impact on system utility. Next we evaluate the impact that using these three approaches has on
system utility (i.e., total cost) when dealing with different values of delay. Specifically, we consider
delay intervals ranging from 2 to 34, which correspond to, approximately, 1 and 14 days, respectively
(recall that a delay interval corresponds to 10 hours). Figure 8 reports the total cost incurred by
each baseline for the same environmental settings of Figure 4. These results confirm the superiority
of CB-ATC, which globally appears to be the most competitive solution across the considered delay
values up to delay 12 (corresponding to 5 days). More precisely, the average of the total cost in the
range of delay values [2, 12] for the approaches CB-ATC (AIP_cbatc), ATC (AIP_atc) and delayed
metrics (AIP_del) achieve an average of 1359, 1407 and 1453, respectively. This was expected given
the conclusions drawn by the analysis of Figures 6 and 7.
Further, these results show that, for relatively small delay values (i.e., delay 2, corresponding

to approximately 1 day), the use of the CB-ATC method allows to achieve a system utility that is
close to (i.e., 8% worse than) the one obtained in a setting where labels are immediately available
(i.e., the AIP baseline).As the delay grows beyond 12 (corresponding to 5 days), the performances
of CB-ATC, as well as ATC, tend to degrade relatively to the baseline that has only access to
delayed information, leading them to achieve a performance that is on par with a random approach.
Conversely, in the [2, 12] interval of delays, CB-ATC achieves an average gain of approx. 10% with
respect to a random approach.
We suspect that the root cause of the problem is that the quality of the AIP models degrades

significantly as the delay grows, independently of whether the AIPs’ input features are being
predicted (via ATC or CB-ATC) or if delayed values are being used. Regardless, and as previously
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(a) Total cost incurred by each baseline at the end of
the simulation and for each delay value.

(b) Total SLA violations incurred by each baseline at
the end of the simulation and for each delay value.

Fig. 8. Total cost and SLA violations incurred by the different approaches when accounting for label delay.
The values reported correspond to the last instant of the simulation, corresponding to time=98 in Figure 4.

observed, CB-ATC can predict these features more accurately than an oracle that simply outputs
delayed information. We argue that this limitation might be imputed to the modeling approach that
we currently use to construct the AIPs, which we intend to address in future work by investigating
alternative ML modeling techniques and different feature engineering methods.

6.6 Using Additional Tactics
In this work we have created AIPs only for the nop and retrain tactics. However, even in absence
of AIPs capable of estimating the effects of additional tactics, the planning component (i.e., the
probabilistic model checker) of our framework can still be effectively used to support “what-if”
analysis aimed at identifying in which scenarios the use of additional adaptation tactics would
optimize system utility.

In order to demonstrate these capabilities, we consider the availability of a third tactic, which we
refer to as component replacement, that consists of replacing the ML model used for fraud detection
with a rule-based model defined by human experts. We assume that the rule-based model offers a
fixed TPR of 75% and that the current performance of the ML model is 𝑇𝑃𝑅 = 75% and 𝑇𝑁𝑅 = 98%.
The SLA thresholds and costs are the ones previously defined. We then use the planning component
of our framework to conduct a what-if analysis that aims to identify the optimal adaptation tactic
when varying: (i) the TNR for the rule-based model, (ii) the TNR for the ML model after it is
retrained, and (iii) the costs for the retrain and component replacement tactics.
Figure 9 shows the results of this analysis, indicating with different colours the optimal tactic

for each setting of rule-based model TNR, retrained ML model TNR, and tactic costs. The figure
reports on the X axis the TNR of the ML-based component after retrain and on the Y axis the
TNR of the rule-based model. However, Figure 9a and Figure 9b consider different execution costs
for each tactic. This study demonstrates that the model checker is capable of selecting between
multiple adaptation tactics by reasoning on the impact of each alternative tactic on system utility
and identifying the one that yields the maximum gains.
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Fig. 9. Optimal adaptation tactic selection as a function of the True Negative Rate (TNR) offered by the
component replacement and retrain adaptation tactics. Recall that the TNR offers a direct proxy to the FPR
SLA since 𝐹𝑃𝑅 = 1 −𝑇𝑁𝑅. The figures demonstrate that the model checker is capable of selecting between
multiple adaptation tactics by analyzing the expected cost-benefits offered by each and selecting the one
that optimizes system utility.

6.7 Threats to Validity, Limitations, and Discussion
The findings regarding the predictability of the impacts of retrain are data-set and domain- depen-
dent and so they cannot be generalized to other domains or data-sets (external validity). This also
applies to the time complexity of the approach, which depends on the complexity of the formal
model. Thus, further research is required to understand how the proposed framework and architec-
ture fare in different domains (e.g., self-adaptive intrusion detection, spam detector, or machine
translation systems) and for systems that rely on other types of ML models (e.g., neural-networks,
support vector machines, linear models). Analogous considerations apply to the evaluation of the
CB-ATC method, which has only been conducted in the context of the case study considered in this
work. The proposed method should be evaluated on a broader set of data-sets in order to verify
whether the benefits observed in our study generalize to different domains.

We have evaluated the use-case for specific execution contexts (regarding system SLAs, tactic
cost and latency) which impact the difficulty of the problem (internal validity). Specifically, for the
considered use-case and evaluation, retrain latency was assumed to be lower than one time interval.
This assumption holds for the considered use-case since the ML components employed by the fraud
detection system are relatively simple and hence it is reasonable to assume that their training takes
less than 10 hours. However, for more complex ML components, such as large language models
(LLMs) [47] this assumption might not hold. A simple approach to circumvent this issue would
consist in setting the time interval used by the model checking tool to be at least as large as the
retrain latency, while preserving the frequency with which the framework analyzes the need for
adaptation (i.e., the frequency with which we query the framework). On the one hand, this would
avoid the need to estimate the ML model’s quality over multiple time steps in the future, which
would be necessary if the time interval was set to be smaller than the retrain latency. On the other

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 0. Publication date: February 2023.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

0:26 Casimiro et al.

hand, it would still preserve the framework’s reactivity to possible changes in the environment, as
this is dictated by the frequency with which we query the framework.

Further, although in this article we have constructed and evaluated AIPs to predict the impact of
executing only two tactics (nop and retrain), our framework has been designed to support other
tactics, such as the ones identified in our prior work [14]. Additionally, this work constitutes a
first step towards enabling long term planning of ML adaptations, which the probabilistic model
checker intrinsically supports. In fact, the current challenge hindering this extension lies in the
computational complexity of creating the AID when accounting for longer horizons (i.e., larger
than one time interval). This same challenge also impacts the extension to a setting with multiple
adaptation tactics, due to the need to account for possible dependencies among tactics (i.e., tactics
whose outcome depends on whether a different tactic was executed, e.g., retrain and fine-tune).
Nonetheless, the methodology presented in this work established the required building blocks for
coping with more than two tactics (also discussed in Section 6.6) and long term planning extensions.
Finally, the several building blocks that constitute the framework are what makes it general.

Specifically, to instantiate the framework for additional applications, it is necessary to (i) create an
AID by following the proposed methodology (Section 4.4), (ii) instantiate AIPs for the available
adaptation tactics and metrics of interest,5 leveraging the AID that was created, (iii) create a formal
model of the system, capturing the error of the ML component as described in Section 4.3. Further,
the proposed strategy to formally model ML components does not constrain the applicability
of the framework to specific types of ML models. In fact, classification models can be evaluated
through confusion matrices independently of the underlying ML algorithms they employ (e.g.,
neural networks, random forests).

7 CONCLUSIONS AND FUTUREWORK
This work proposes a self-adaptation framework for ML-based systems. We proposed a strategy
for formally modeling the behavior and state evolution of ML components in order to leverage
probabilistic model checking techniques and synthesize optimal adaptation strategies. We presented
a general approach for generating blackbox predictors that estimate the impact of adapting the
ML component. We instantiated the proposed framework on a use-case from the credit card fraud
detection domain and showed that reasoning about the cost-benefit trade-offs of retraining ML
components allows for better adaptation decisions when compared against model-free baselines.

We further evaluated the impact of delays in the availability of labeled data, required to quantify
the current model’s performance, on the effectiveness of the proposed framework. Thus, we
integrated in our framework a state-of-the-art technique for model’s quality estimation (ATC)
and identified relevant shortcomings that arised when employing it in our use case. This led
us to propose a novel variant, named CB-ATC, which we empirically showed to provide more
accurate estimates of model’s quality (e.g., its normalized confusion matrix) than ATC. We finally
demonstrated that, by employing CB-ATC, it is possible to approximate the ideal scenario of
immediate label availability in the presence of delays of up to 1 day, in the considered use case.
For larger delays, the effectiveness of the self-adaptive framework degrades and the use of model
quality estimation methods such as CB-ATC does not seem to provide substantial gains over simpler
approaches that leverage delayed labels.

This work opens a number of avenues for future work, namely: (i) validate the framework in a
broader range of domains; (ii) study the impact of resorting to different model types and techniques
to instantiate the AIPs; (iii) investigate the use of alternative feature engineering approaches to
develop more accurate AIPs; (iv) increase the repertoire of adaptation tactics employed by the

5For the considered use-case these metrics were recall and false positive rate (FPR) and the tactics were nop and retrain.
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framework and demonstrate the trade-offs of each adaptation tactic in the presence of different
environmental drifts (e.g., different types of data-set shifts [56], changes in the costs of computational
resources or workload characteristics); (v) extend the framework to plan for the long-term (e.g., by
considering adaptation tactics whose execution latency span over multiple time intervals).
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