
Building Reusable Repertoires for
Stochastic Self-* Planners

Cody Kinneer
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
ckinneer@cs.cmu.edu

Rijnard van Tonder
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
rvantond@alumni.cmu.edu

David Garlan
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
garlan@cs.cmu.edu

Claire Le Goues
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
clegoues@cs.cmu.edu

Abstract—Plan reuse is a promising approach for enabling
self-* systems to effectively adapt to unexpected changes, such
as evolving existing adaptation strategies after an unexpected
change using stochastic search. An ideal self-* planner should
be able to reuse repertoires of adaptation strategies, but this
is challenging due to the evaluation overhead. For effective
reuse, a repertoire should be both (a) likely to generalize to
future situations, and (b) cost effective to evaluate. In this
work, we present an approach inspired by chaos engineering
for generating a diverse set of adaptation strategies to reuse, and
we explore two analysis approaches based on clone detection
and syntactic transformation for constructing repertoires of
adaptation strategies that are likely to be amenable to reuse in
stochastic search self-* planners. An evaluation of the proposed
approaches on a simulated system inspired by Amazon Web
Services shows planning effectiveness improved by up to 20%
and reveals tradeoffs in planning timeliness and optimality.

Index Terms—self-*, planning, search-based, genetic program-
ming, repertoires

I. INTRODUCTION

The increasing size and complexity of software systems
motivates self-adaptation, to allow systems to operate in
environments with uncertainty. Self-* approaches have been
successful in enabling systems to grapple with changing
environments [1]–[3]. This self-* automation often relies on a
planner, which determines the appropriate adaptation tactics
for the system to use in response to change, arranged in an
adaptation strategy or plan. Whether online [4] or offline [5],
planners facilitate adaptation by making decisions based on the
capabilities of the system, the environment, and the system’s
quality objectives like cost and latency, including making
tradeoffs between competing objectives.

While self-* techniques can allow systems to adapt to
changes considered at design time, they often struggle to
handle unforeseen changes, those changes not considered at
design time. Such changes can violate assumptions that the
system was designed on, resulting in the system failing to
achieve its objectives. Examples of these changes include

This work is supported in part by award N00014172899 from the Office
of Naval Research. This material is based upon work supported by the
NSA under Award No. H9823018D0008. This research supported in part by
the National Science Foundation (CCF-1750116, CCF-1618220). Any views,
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of the sponsoring agencies.

the addition or removal of adaptation tactics, changes in the
effects of these tactics, or changes to the quality objectives.
When such changes occur, the self-* planner must replan.
This is expensive and resource-intensive, whether the plans are
human-written or automatically produced, especially as self-*
systems grow in size and complexity.

One promising solution to this problem is to leverage ex-
isting planning knowledge instead of replanning from scratch.
That is, plan reuse may allow these systems to incrementally
evolve in response to unexpected changes. We envision an
ideal self-* planner that can effectively reuse a repertoire of
existing adaptation strategies. However, while intuitive, plan
reuse is difficult [6] and must be applied thoughtfully to
result in a positive outcome [7]. Of particular concern is
the large evaluation overhead associated with evaluating the
applicability of the existing plans, which can quickly outweigh
the benefits of reuse. This means that to benefit from the
knowledge encoded in the planner’s repertoire, a repertoire of
prior knowledge must be amenable to reuse in the following
key ways: (a) the plans in the repertoire should be likely
to generalize to future situations, and (b) the plans in the
repertoire should be cost effective to evaluate.

We propose and evaluate a novel, two part approach for
constructing effective reusable repertoires. First, we take inspi-
ration from chaos engineering [8] to explore the change space
by randomly generating change scenarios and corresponding
adaptation strategies to build a base of planning knowledge. In
the second phase, we use the insight that adaptation strategies
are similar to software programs to apply program analysis
approaches to the base of adaptation strategies, with the aim
of extracting planning components that are likely to generalize
and are cost effective to evaluate.

We evaluate the proposed approach for building reusable
repertoires by presenting a stochastic self-* planner (extended
from our prior work [7], which could only reuse a single
strategy) that reuses a repertoire of adaptation strategies to
replan after unexpected changes. We show the resulting plan-
ner is more robust and responsive to a a broader range of
unexpected change scenarios than prior work. We evaluate the
proposed approach using an exemplar self-* system, a cloud-
based web server inspired by AWS, and show that replanning
effectiveness improved by up to 20%, as well as reveal trade

offs in planning optimality and timeliness.
The key contributions of this paper are as follows:
1) A two step approach for generating reusable repertoires

for stochastic self-* planners to more effectively replan.
2) A technique, inspired by chaos engineering, for explor-

ing the change space of self-* systems to facilitate the
construction of reusable repertoires.

3) An approach for identifying reusable plan fragments
based on software source code clone detection.

4) A rule-based approach including a collection of syntactic
transformation rules for AST based planning languages
to extract reusable planning components.

5) An empirical investigation of building reusable reper-
toires for a cloud-based web server inspired by Amazon
Web Services, over a wide range of automatically gen-
erated unexpected change scenarios.

Section II provides background, and introduces our exem-
plar system. Section III describes our approach for generating
reusable repertoires for self-* systems. Section IV describes
the results of our evaluation. Section V positions the paper
with respect to related work, and Section VI concludes.

II. BACKGROUND AND EXEMPLAR

Self-* systems are software-centric systems that automati-
cally take action in response to changes in their environments
in order to continue satisfying their quality attribute require-
ments. Frequently, these systems are arranged according to
the well-known MAPE-K architecture [9]. The architecture
typically consists of two layers, a managed system, and a five-
component managing system. The managing system gathers
information on the state of the managed system and its
environment using sensors, and can take actions that affect the
managed system via actuators. The monitor component gathers
information from the sensors, which the analyze component
examines to determine when adaptation is necessary. The plan
component then decides which adaptation tactics the system
should use to adapt, and the execute component carries out
the plan using the actuators. The last component K provides a
shared store of information for the other components to use.

In this work, we focus on the planning component, and
propose a novel planning approach that effectively generates
and then reuses knowledge to help systems respond to unantic-
ipated changes. The rest of this section provides background
on planning, and the planner we extend from prior work
(Section II-A); and outlines the exemplar self-* system we
use to explain and evaluate our work (Section II-B).

A. Planning with reuse and stochastic search

The planner is a key component in a self-* systems since it
is responsible for determining how the system should adapt.
The planner outputs an adaptation strategy or plan, which
consists of an ordered collection of tactics. There are several
approaches for planning, including online planners [4] which
generate plans at runtime, and offline planners [5] that produce
strategies offline which are then chosen at runtime; these two

〈plan〉 ::= ‘(’ 〈operator〉 ‘)’ | ‘(’ 〈tactic〉 ‘)’

〈operator〉 ::= ‘F’ 〈int〉 〈plan〉 (For loop)
| ‘T’ 〈plan〉 〈plan〉 〈plan〉 (Try-catch)
| ‘;’ 〈plan〉 〈plan〉 (Sequence)

〈tactic〉 ::= ‘StartServer’ 〈srv〉 | ‘ShutdownServer’ 〈srv〉
| ‘IncreaseTraffic’ 〈srv〉 | ‘DecreaseTraffic’ 〈srv〉
| ‘IncreaseDimmer’ 〈srv〉 | ‘DecreaseDimmer’ 〈srv〉

Fig. 1: Grammar for specifying plans. Servers (srv) can be
any of the 16 availability zones listed in Table I; For loops
can iterate up to 10 times.

paradigms tradeoff between plan optimality, and time. Existing
planners generally struggle to handle unanticipated scenarios.

We instantiate our proposed approach for reusable
repertoires by extending a planner we proposed in our
prior work [7], which investigated plan reuse using
genetic programming. Genetic programming [10] (GP)
is a population-based stochastic search approach inspired by
evolutionary processes in biology, and is a type of genetic
algorithm [11]. In our context, the search traverses a space of
possible plans, written in a simple domain-specific planning
language inspired by Stitch [5], and then represented as
abstract syntax trees (ASTs). The genetic program evaluates
the fitness of the candidate plans by simulation. Figure 1
shows the grammar. Individual tactics can be composed using
sequencing (the ; operator), loops (the F operator), or a
try-catch operator (the T operator). The tactics expressed
in the language correspond to the atomic adaptation tactics
available to the self-* system, and is therefore specific to the
considered system; we describe our exemplar system next.

Our prior approach was predicated on the idea of reuse:
when an unexpected change occurs, the search-based planner
replans, using a known-good previous plan to seed the search
population. However, effective plan reuse is difficult [6],
and our previous approach required the development of
reuse-enabling techniques to support it. In this work, we
observe that plans can be treated as programs and analyzed
accordingly to help identify semantically useful components
for reuse; we therefore present a self-* planning approach that
develops and then reuses carefully-constructed repertoires of
adaptation strategies.

B. Exemplar system

Our exemplar system is a cloud-based web server running
on an infrastructure inspired by Amazon Web Services (AWS),
which has been built based on the SWIM [12] examplar to
evaluate other planning approaches [4], [7]. The goal of the
system is to serve content in response to user requests. The
system should perform this function in a way that maximizes
several different (and competing) quality attribute require-
ments, and the system has access to several adaptation tactics
to accomplish this.

Location Name
Cost in $ Number of

per instance Availability
per month Zones

N. Viriginia us-east-1 69.12 6
Ohio us-east-2 69.12 3
Oregon us-west-2 69.12 4
Mumbai ap-south-1 72.72 3
Stockholm eu-north-1 73.44 3
Canada ca-central-1 77.04 2
Ireland eu-west-1 77.04 3
London eu-west-2 79.92 3
Paris eu-west-3 80.64 3
N. California us-west-1 80.64 2
Frankfurt eu-central-1 82.80 3
Seoul ap-northeast-2 84.96 3
Singapore ap-southeast-1 86.40 3
Sydney ap-southeast-2 86.40 3
Tokyo ap-northeast-1 89.28 3
Sao Paulo sa-east-1 110.16 3

TABLE I: Regions in exemplar system with cost and number
of availability zones. Cost data from Concurrency Labs [13].

Architecture. The architecture of the cloud service provider
allows the system to provision virtual server instances. These
instances may be requested based on availability zones, which
provide a way to provision instances on architecturally sepa-
rate pieces of infrastructure (i.e., a failure in one availability
zone should be contained to that zone, and instances running
in other zones are expected to remain available). These avail-
ability zones are grouped based on a higher-level architectural
entity called regions, which provide additional isolation for
reliability purposes. Table I shows the regions available in the
exemplar system, along with the number of availability zones
in each region, and the cost of starting up a server instance
in that region. In total, there are 50 availability zones spread
across 16 regions. The considered regions and number of
availability zones per region are both based on AWS. The cost
per month information was obtained from Concurrency Labs
based on AWS’s Price List API [13] for a c5.large instance.
For the purposes of the exemplar, we assume that the system
can only utilize this instance type.

Quality attributes. The system’s quality attributes are profit
and user-experienced latency. To generate profit, the system
can serve advertisements along with the users’ requests, but
profit is reduced by the costs of running server instances. The
system has the ability to not serve high definition images and
media content (including ads) to speed up handling of requests,
at the cost of reduced quality and ad revenue. The latency
quality attribute is the amount of time users spend waiting for
their request to be served, and can be measured as the number
of users that need to wait longer than an acceptable threshold.
Since these quality attributes are conflicting, the system must
take care to balance them appropriately.

Uncertainty. Complicating balancing these quality attribute
requirements are several sources of uncertainty that the system
must manage. One source of uncertainty is the number of users
sending requests to the system, which can change. Addition-
ally, the reliability of the underlying cloud infrastructure is

questionable, e.g., server instances can fail, or the available
server instance characteristics can change.

Adaptation tactics. To manage the uncertainty in the envi-
ronment, the system has several adaptation tactics that can
be used to respond to changes in the environment. These
tactics are to start or shutdown instances, raise or lower a
dimmer, and to adjust the proportion of requests directed to
each availability zone. The system can start or stop server
instances on a per availability zone basis. For the purposes of
the exemplar system, we will assume that a maximum of 5
instances can be running at a time at each availability zone.
The dimmer controls the proportion of requests that are served
with low-fidelity content (and without ads). A higher dimmer
value allows the system to respond to more requests in the
same amount of time, but reduces content quality and system
revenue. The dimmer can be changed in 25% intervals and
can be set on a per availability zone basis. The system can
adjust traffic allocation by changing a traffic level parameter
at each zone. This parameter can be a value between 0 − 4,
and traffic is allocated to each zone proportionally. Since there
are 50 availability zones, each with 5 settings for the dimmer
value, traffic value, and 6 settings for the number of instances,
there are 6× 10108 configurations.

The behavior of server instances depends on three attributes,
cost, power, and brownout ratio. The cost is the amount of
money charged by the service provider to run an instance per
unit time. The power represents how many dimmed requests
(low-fidelity content and without ads) can be served per unit
time. The brownout ratio is the ratio of dimmed requests to full
requests that can be served (e.g., an instance with a brownout
ratio of 2 could serve twice as many dimmed requests as full
requests for the same unit of time). These attributes are set
on a per availability zone basis, and by default, the costs are
set according to regions as shown in Table I. While the power
and brownout ratio are set to 1000 dimmed requests per second
and two respectively, for all availability zones.

Change scenarios. To study how self-* systems respond to
various types of unexpected changes, the exemplar system
supports the easy generation of change scenarios. A change
scenario is defined as a vector of attributes that influence
the system’s behavior and utility. There are a total of 159
attributes that can be changed. These consist of three attributes
that apply to the system as a whole, including the number
of incoming requests, and coefficients on the profit and la-
tency values (these coefficients control the weighting of these
conflicting quality attributes in the system’s utility function).
Six values determine the tactic failure rates of each of the
six tactics available to the system. The remaining attributes
are the instance cost, power, and brownout ratio, which can
be manipulated (to obtain new change scenarios, not by the
system) for each of the 50 availability zones, resulting in 159
attributes total.

Fig. 2: A high level view of the approach.

III. APPROACH

We introduce a planner that aims to effectively reuse prior
knowledge. However, as we learned in our previous work [7],
using individual prior plans to seed a replanning effort is not
always satisfactory, almost by definition: individual plans do
not account for unanticipated changes. We therefore propose to
build repertoires of useful prior knowledge to seed replanning.

Figure 2 overviews the approach, which divides the planning
process into an offline and runtime step. During the offline
initialization phase, we construct a reusable repertoire of
adaptation strategies for the planner to incrementally evolve at
runtime. This phase is further subdivided into a two step pro-
cess: firstly exploring the space of randomly generated change
scenarios and producing adaptation strategies to address them,
and then analysing the generated adaptation strategies to
extract generalizable and cost effective components for the
repertoire. In the online phase, we extend our prior genetic
programming planner [7] by seeding it with the adaptation
strategies in the repertoire.

A key idea behind repertoire construction is that certain
“pieces” of plans are particularly informative for reuse. For
example, repeated planning components, such as starting more
instances of the most cost effective server type, are likely to
generalize. Thus, effective repertoire construction requires:

1) a diverse set of previously-produced plans, constructed
in response to a wide variety of potential system
changes, and

2) a way to consolidate and identify the most plan compo-
nents that hold the most promise for future reusability

For (1), we build on the idea of chaos engineering to explore
the space of possible changes by randomly generating change
scenarios to generate a diverse base of planning knowledge; we
explain in more detail in Section III-A. For (2), we make the
observation that plans are, effectively, small programs, and our
goal in analyzing them is to identify semantically-meaningful
programs or program pieces that may be informative for future
use. We thus propose two techniques for this analysis phase,
one that adapts clone detection to this domain (Section III-B),
and another that proposes a set of rule-based plan transforms
to identify cost-effective plan pieces (Section III-C).

Attribute Type Selection Rate

Utility Coefficients 13.33%
Tactic Failure Rates 23.33%
Number of Users 15.75%
Instance Cost 15.75%
Instance Power 15.75%
Instance Brownout 15.75%

TABLE II: Scenario attribute type and selection probability
during mutation.

Fig. 3: An example of a clone within a plan.

A. Generating Unexpected Changes

Our technique requires a diverse set of starting strategies
that may generalize to future situations. To obtain these strate-
gies, we explore the space of unexpected changes by generat-
ing change scenarios using a mutation-based approach inspired
by chaos engineering. Chaos engineering is an approach to
promote software quality attributes such as availability and
robustness in large complex systems [8]. It involves subjecting
the target system to chaos experiments, which should be
conditions that may result in system entering an undesirable
state, with the goal of verifying that the system appropriately
responds to the experiment. If the system does not respond
in an acceptable way, then it can be improved to be more
robust to similar situations that might be encountered in
production. An example of chaos engineering is Netflix’s
Simian Army [14].

We therefore propose an approach for building a reusable
repertoire by performing chaos experiments offline to obtain
a diverse set of adaptation strategies for later reuse. At a
high level, this approach randomly selects a scenario attribute,
and then randomly mutates it. Because the vast majority of
attributes (150 out of 159) are the availability zone specific
parameters, random attribute selection is biased to favor the
other attributes, to promote scenario diversity. Table II shows
this distribution. Attributes within the same type are chosen
uniformly at random. Since different attributes have different
sensitivity to change, the particular mutation applied depends
on the attribute selected. This mutation procedure is repeated
m times, where m is the number of desired mutations.

B. Clone detection

Our first intuition for how to improve a repertoire con-
structed from a diverse set of plans is that some planning
motifs are more likely to generalize to unexpected situations.

For example, more servers of the most efficient type (the best
performance per cost) is useful in a variety of situations, e.g.,
if the number of users increases or if the processing resources
per request increases. Of course, there are other changes where
this tactic is not helpful (such as when the quality requirements
change dramatically), but overall this applies to many change
scenarios. This motif may therefore appear in many of the
diverse plans generated in the first phase.

Thus, our first approach leverages clone detection to identify
reusable plan components that appear in many plans in the
scenario set. Clone detection analyzes software for duplicate
source code (see refs. [15], [16] for surveys), which aids
developers in refactoring code to promote maintainability or
eliminate technical debt. Although this technique is more
commonly applied with the aim of reducing redundancy, we
observe that the idea can identify planning components that
are more likely to be generalizable. Figure 3 shows an example
of a clone within an adaptation plan. In this plan, a subplan is
repeated. Because this clone is duplicated, it possibly contains
important planning knowledge; this key knowledge may be
more likely to generalize. By extracting just the clone rather
than repeating the full plan(s) in the repertoire, the planner can
reuse this prior knowledge more cost-effectively. We therefore
apply clone detection to the generated adaptation strategies
to find those adaptation strategy components that occurred
multiple times throughout the considered change scenarios.

Implementation. Our implementation builds on the
Deckard [17] clone detection tool. Deckard performs
clone detection by encoding abstract syntax tree (AST)
subtrees as vectors, and computing the distance between these
vectors to identify similar code regions using clustering.

Note that our approach can generalize to any clone detection
mechanism. We use Deckard because it operates on generic
tree structures (and can thus be straightforwardly adapted to
our plan representation), it considers semantics, is scalable to
large AST sizes, and has a publicly-available implementation.

We must make changes to the vector generation step to
effectively adapt Deckard’s approach to our planning con-
text. Converting an AST into numerical vectors produces
a representation amenable to clustering; Deckard generates
vectors for AST subtrees based on the number and type of
child nodes. By default, Deckard does not consider variable
identifier names during vector generation. This is sensible
for analyzing large programs written in a general purpose
language like Java, where identifiers often vary between clones
and where the large number of identifiers quickly explodes
vector size. However, our planning language is simple by com-
parison. More importantly, tactic names (like StartServer
encode considerable semantically meaningful information. We
therefore developed our own vector generator step for the
planning language that tracks the occurrence of tactic names.

C. Rule-based Plan Transformation

The clone detection approach can automatically identify
reusable repeated planning components. However, human do-
main expertise, particularly in the peculiarities of the planning

language and domain, provides an important avenue for further
improvement to repertoire construction. Naive human replan-
ning is time-intensive and expensive, and so any mechanism
for incorporating expert knowledge into planning must be
sensitive to this cost.

We therefore propose a second approach to repertoire
improvement based on human-provided, rule-based source-
level transformation templates. Such templates are useful for
improving general software quality [18], suggesting that trans-
formation templates for our program-like adaptation strategies
could usefully improve their quality, in terms of their general-
izability and reusability. For example, we can exploit a priori
knowledge of our plan grammar and operator semantics to
apply plan transformations that avoid generation of redundant
or known-expensive subplans.

We use Comby for declaratively specifying templates [19].
Comby performs transformations on trees using declarative
templates that are syntactically close to the underlying pro-
gramming language; this is our planning language, in this
context. Such templates are therefore lightweight and relatively
easy-to-write, easing the burden of manually specifying trans-
formation templates. Comby generically supports language
syntax with little or no configuration, and is thus a suitable
tool for generalizing our template-driven approach to other
planning languages like Stitch [5] or PRISM [20].

Transformation rules for plan reuse. Table III summa-
rizes the eight transformation rules we produced for plans
in our exemplar system. Each rule reduces the size of the
plan by removing subexpressions, corresponding to subplans.
To illustrate, consider the first rule provided in Table III.
The seq-take-first rule matches a sequence expression
(denoted by ;) and binds named identifiers 1 and 2 to its
two respective subexpressions. The :[] syntax denotes a
structural hole that binds to expressions. The transformation,
denoted by ⇒ reduces the sequence expression to only the
first subexpression, corresponding to identifier 1.

All syntax besides hole syntax refers to concrete syn-
tax in the underlying language, including operator keywords
like T or F and parentheses. Comby rules always match
balanced parentheses, which ensures that both matched and
transformed subexpressions and plans are syntactically well-
formed. Comby is thus well-suited to transforming expressions
corresponding to subtrees (like balanced parentheses), corre-
sponding to subplans. These transformations are generally not
expressible using regular expressions and would be otherwise
difficult to implement programmatically.1

Our rules are informed by the grammar in Figure 1:
for each nonterminal operator (i.e., Sequence, Try-catch,
and For loop) we wrote a rule that extracts a respec-
tive subexpression (seq-take-*, try-take-* rules), or
reduces the number of iterations that subexpressions are
evaluated (try-unnest, for-* rules). In particular, the
seq-take-first and seq-take-second rules pick the first

1Applying a rule to expressions in a plan requires a simple command-line
invocation: comby '(T (:[1]) (:[2]) (:[3]))' '(:[1])' plan.ast

seq-take-first (; (:[1]) (:[2])) ⇒ (:[1])
seq-take-second (; (:[1]) (:[2])) ⇒ (:[2])
try-take-first (T (:[1]) (:[2]) (:[3])) ⇒ (:[1])
try-take-second (T (:[1]) (:[2]) (:[3])) ⇒ (:[2])
try-take-third (T (:[1]) (:[2]) (:[3])) ⇒ (:[3])
try-unnest (T (:[1]) (T (:[1]) (:[2]) (:[3])) (:[3])) ⇒ (T (:[1]) (:[2]) (:[3]))
for-prune (F i:[1] (:[2])) ⇒ (:[2])
for-decr† (F i:[1] (:[2])) ⇒ (F i:[1] (:[2]))

TABLE III: Syntax transformation rules for pruning plans. Hole syntax, like :[1], binds an identifier 1 to an expression.
Each rule either replaces a nonterminal expression with a subexpression, or reduces the number of times a subexpression is
evaluated. †The for-decr rule decrements the loop iterator matched by :[1] within the fixed integer range 3–10. For brevity,
we elide the rewrite rule that decrements these values.

(resp., second) expression from a sequence expression. The
try-take-* rules pick one of three Try subexpressions. The
try-unnest rule prunes Try expressions that share identical
child nodes in the first and third arguments.2 The intuition
is that structurally similar subtrees can yield similar benefits,
and nested repetitions imply duplicative evaluation unlikely to
improve performance. Similarly, for-prune and for-decr

reduce the number of times a For loop executes.
Our experience is that writing programs (e.g., in Java) for

transformation rules inside the genetic planner is possible but
disadvantageous. Transformations expressed in code are less
readable, and can contribute to a planner becoming a black-
box. Declarative rules easily express lightweight transforma-
tions, and decouples the rule-based system from probabilistic
plan discovery, offering greater flexibility.

Rule application. We apply the eight rules to the initial
repertoire, selectively removing expressions, which results in
smaller plans overall. The general intuition is that smaller
plans lead to quicker evaluation times, while retaining particu-
larly valuable subplans for reuse, and thus contribute to greater
overall utility. The genetic programming planner explores
coarse-grained changes (both adding or deleting subplans),
with the overall effect of performing additive changes that
create ever-larger plans. Thus, it may miss the opportunity to
prune less useful subplans (especially those containing large
subexpressions), akin to getting stuck in local optima.

IV. RESULTS

In this section we evaluate the approach for generating and
reusing repertoires of adaptation tactics for more effective
planning in response to unexpected changes described in
Section III. The evaluation is based on a simulated self-*
system described in Section II-B. We evaluate the following
three research questions:

1) Does reusing a repertoire of adaptation strategies in a GP
planner result in more effective plan reuse compared to
reusing a single adaptation tactic?

2) Can clone detection identify more reusable adaptation
strategy components?

3) Can syntactic transforms improve the reuseability of
adaptation repertoires?

2When the same hole identifiers are used in a rule, the expressions must
be syntactically equal for the rule to match.

We ran experiments on an Ubuntu 16.04.6 LTS server with
OpenJDK version 1.8.0_242, an Intel Xeon CPU E5-2699 v3
with 72 cores running at 2.30GHz, and 126 GB of RAM. We
restricted experiments to 30 cores and 5 GB of memory.

A. The Repertoire

First, we ask whether a basic repertoire of adaptation
strategies generated using a chaos engineering approach results
in improved planning in response to an unexpected change.

a) Experimental Setup: We performed replanning on
the simulated system for 30 randomly generated unexpected
change scenarios. We report the utility obtained for replanning
based on using (1) the generated repertoire of adaptation
tactics, (2) a single plan (as in prior work [7]), and (3)
from scratch (no reuse). We generated the unexpected change
scenarios by creating 10 scenarios for each of 3 different
different settings for the m number of mutations parameter, 1,
5, and 10. This permits exploring how the size of the change
influences replanning effectiveness for the approaches.

The repertoire comprises 200 adaptation strategies that we
generated for 200 change scenarios. We generated the change
scenarios by applying 1–5 random mutations to the baseline
scenario (with the number of mutations selected uniformly at
random). When replanning using a single adaptation strategy
only, we selected the starting adaptation strategy for reuse
randomly from the set of 200 adaptation strategies. When
replanning from scratch, the population is initialized com-
pletely randomly. To generate the starting population from
the repertoire, 10% of the population is selected randomly
from the repertoire, and the remaining 90% is generated from
scratch; these values were taken from the prior work [7].

For all approaches, the genetic program was configured
to plan for 30 generations using a population size of 1000.
Planning was automatically terminated at 2000 seconds.

b) Results: Figure 4 shows the results for the first 60
seconds of planning. For space constraints, only trials with
10 mutations (the highest and most challenging setting) are
shown; the results for 1 and 5 were similar. The vertical axis
is the utility obtained by the planner, and the horizontal axis
is the planning time in seconds. The graph therefore shows
the utility that the system would obtain by executing the best
available plan produced by that planning approach at that time.
Results from replanning using a single plan are labeled single.

0 1 2 3 4 5 6 7 8 9

1
0

0 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 60

0e+00

1e+07

2e+07

3e+07

4e+07

Cumulative Evaluation Time (seconds)

U
ti

li
ty

Initial Population

scratch

repertoire

deckard

single

Fig. 4: Results comparing planning from scratch, the repertoire, replanning from a single plan only, and replanning using
Deckard. Deckard resulted in better utility for the first 13 seconds of planning, and is then overtaken by the repertoire.

For almost all randomly generated scenarios, the repertoire
approach results in the highest planning utility. Sometimes the
improvement compared to the next best planner was small,
especially for single-mutation cases. For other scenarios the
improvement was quite large (such as trial 9 in Figure 4. On
aggregate, using the repertoire resulted in an average improve-
ment of 11% to utility compared to reusing a single plan only.
Planning using a single plan tends to only outperform planning
from scratch, often slightly, reinforcing previous results [7].
One drawback to the repertoire approach is that it takes more
time to produce the first plan (often taking around 15 seconds),
although the plan that is obtained is often high quality. This
is intuitive since effective plans are often large and expensive
to evaluate, and the repertoire approach must evaluate many
of these large and expensive plans. If planning in a domain
where waiting 15 seconds is unacceptable, then reusing a
single plan is better. Otherwise, the repertoire results in the
highest expected utility.

B. Clone Detection

Next, we ask whether initializing the population from
clones is an effective strategy for identifying reusable
planning components. To answer this question, we performed
replanning on the same randomly generated unexpected
change scenarios as in Section IV-A using a clone detection
approach to initialize the population. To do this, we ran
Deckard on the repertoire of 200 adaptation strategies
generated in the previous subsection to obtain a list of
clones. Clones were selected from this list using tournament
selection, selecting seven clusters randomly from the list and
returning a random clone from the largest cluster. The initial
population was initialized with these clones. The result of
this strategy is shown in Figure 4, labeled as deckard.

Overall, the clone detection approach results in an improve-
ment compared to planning from scratch and replanning with
a single plan only, but the maximum utility was obtained
by reusing the repertoire rather than the extracted clones.
Nevertheless, the clone detection approach yields plans more
quickly. Given enough planning time, the repertoire approach

eventually finds a better plan than the clone detection ap-
proach, but when a small amount of time is available, the clone
detection approach is better. The breakeven point, where both
clone detection and the repertoire are best for an equal number
of the trials, occurs after 13 seconds of planning. For the first
10 seconds of planning, the clone detection approach yields
the highest utility for 24 out of the 30 trials, with reusing
a single plan being the best for 4 trials and planning from
scratch the best for the remaining 2 trials. When planning for
longer than 13 seconds the repertoire approach is expected to
result in the highest utility.

C. Rule-based Syntactic Transforms

The third research question addresses the efficacy of tai-
loring reusable plan fragments with syntactic transformations.
For this experiment we generated adaptation strategies for
the same 30 unexpected change scenarios as before, while
applying eight syntactic transformations (as described in in
Section III-C). For each syntactic transformation, we applied
the transformation to the starting repertoire of 200 adaptation
strategies from prior experiments, and then used the trans-
formed repertoire to seed the initial population for replanning.
The large number of trials makes the results of this experiment
difficult to show visually, so results are shown in Table IV.

Of the eight transforms evaluated, four result in an improve-
ment over the baseline (the repertoire with no transforms)
more than half of the time. The try-take-first performed
the best, improving on the baseline for 29/30 trials, and with
an average improvement to expected utility of 3.51%. This
improvement is consistent across each of the three numbers of
mutations in the experiment. The for-prune transformation
also results in an improvement for all three numbers of muta-
tions, but with a lower percentage of trials improved (63.3%)
and a lower overall improvement to utility (0.56%). The other
two transforms that showed an overall improvement were
try-take-third and try-unnest. These transforms both
improved about 60% of trials for 0.46% and 0.26% average
improvement respectively. The other transforms resulted in an
overall decrease to expected utility.

Rule
Trials
Improved
(%)

Overall %
Change

1 Mutation
% Change

5 Mutation
% Change

10 Mutation
% Change

seq-take-first 40.0 -0.36 0.57 -0.93 -0.53
seq-take-second 26.7 -2.13 -2.36 -0.89 -3.01
try-take-first 96.7 3.51 3.79 3.27 3.53
try-take-second 36.7 -0.75 -2.36 -0.89 -1.56
try-take-third 63.3 0.46 0.89 -0.06 0.59
for-decr 40.0 -0.43 0.93 -0.26 -1.52
for-prune 63.3 0.56 0.58 0.71 0.42
try-unnest 60.0 0.26 0.51 -0.13 0.40

TABLE IV: Improvement in maximum utility obtained by syntactic transforms over using the repertoire without transforms.
try-take-first performed the best with a consistent 3.5% improvement.

0 1 2 3 4 5 6 7 8 9

1
0

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

0e+00

1e+07

2e+07

3e+07

4e+07

Cumulative Evaluation Time (seconds)

U
ti

li
ty

Initial Population

repertoire

deckard

prune-for

prune-try-take-first

prune-try-take-third

prune-try-when-similarly-nested

Fig. 5: Utility versus planning time for the four beneficial syntactic transforms. Some transforms obtained results as quick as
Deckard but with better utility. try-take-first is the overall best after around 2 minutes of planning.

The biggest takeaway from these results is the strong per-
formance of the try-take-first transform, which improves
utility for all but one trial for 3.51% on average. Compared
to replanning with a single plan only, this transform resulted
in an overall average improvement of 15%, with the best
overall improvement being 20% for trial 9. It is interesting
that try-take-first performed much better than other
try-* templates, since all these transforms similarly prune
subtrees of Try-catch operators. The difference is that the
try-take-first picks the first subtree of the Try-body and
removes other subtrees, while remaining templates remove
other parts of the Try-catch subtrees. This result makes sense
intuitively since the transform captures what is likely the most
important information contained in the Try-catch operator
(the subplan that is attempted first) while reducing evaluation
time on evaluating the contingencies. We’ve previously noted
a common planning motif where an important subplan is
tried multiple times to ensure that it is carried out, should
it fail a few times. Crucially, when this occurs, capturing the
important subplan with a tailored rule allows the planner to
reuse the information learned during subsequent replanning
while reducing the evaluation time.

Figure 5 shows the results of the syntactic transforms versus
clone detection (deckard), and using the repertoire without
modifications (repertoire). For presentation, we show only the
four transforms that result in a positive average improvement.
Compared to planning from scratch or reusing a single plan

(shown as single), replanning using only the repertoire results
in the highest utility, but typically requires more time to begin
returning results (cf. Section IV-A). Overall, Table IV shows
that the try-take-first improves on the repertoire by
3.5%. Figure 5 shows that syntactic transforms generate plans
as quickly as the Deckard-based planner, but with consistently
higher utility. Interestingly, the try-unnest and for-prune

transforms take about as long to start returning plans as
the repertoire alone, around 15 seconds, but result in higher
utility than try-take-first for the first minute or two of
planning. If a plan is needed within a short time window,
such as 10 seconds, try-take-first is the best approach.
For an intermediate window between around 15 seconds to
60 seconds, try-when-similarly-nested or for-prune
perform the best. When planning longer than 60 seconds is
permissible, try-take-first is again most effective.

D. Discussion

Generating a repertoire of adaptation strategies by exploring
the change space on its own resulted in an overall improvement
to utility of 11%. The clone detection approach resulted in
better quality adaptation strategies for the first 10 seconds of
planning compared to the repertoire on its own, but when
planning for longer than 10 seconds reusing the repertoire
on its own was better. The best results were obtained by the
try-take-first syntactic transformation, which resulted in
a 3.5% improvement over the repertoire on its own, although

this approach required one to two minutes of planning be-
fore obtaining the best utility. These results show that our
approaches for building reusable repertoires can enable self-*
systems to more effectively apply existing knowledge to replan
following an unexpected change.

There are a number of threats to the generality of the results
that we attempted to minimize, such as by evaluating on an
indicative self-* system inspired by AWS. Once key concern
is that the kinds of unexpected changes generated during the
evaluation may be different from the kinds of changes that a
self-* system may actually need to replan for. Indeed, by their
nature, we cannot expect the kinds of unexpected changes that
will arise. This means that the results cannot be taken to show
that the approach will always result in a 15% improvement.
Rather, they demonstrate how it is possible to apply existing
planning knowledge from the situations that were expected at
design time, to at least some types of unexpected changes
that are similar in nature to those kinds of changes that
were considered. This is shown by the results from different
numbers of mutation operations used to generate the change
scenarios, particularly when replanning for change scenarios
generated with 10 mutations, twice the number of allowed
mutations that could be considered during the offline phase,
meaning these scenarios were fully "unexpected" from the
point of view of the system during the offline phase. Despite
this, plan reuse still resulted in an improvement for these
experiments (for the repertoire, 12% average improvement for
the scenarios with 10 mutations compared to 11% average
improvement overall). Of course, the amount of improvement
is likely to be less for 1000+ mutations or for mutation
operators dramatically different from those used offline, but
as we cannot realistically expect to plan for every possible
unknown unknown, we instead seek to reuse as much existing
planning knowledge as possible.

Another issue related to generality is how well the approach
will scale to more complicated planning problems. An advan-
tage of approaches using stochastic search is that these ap-
proaches scale well to large search spaces. However, stochastic
search methods are sensitive to the shape of the search space,
and are likely to struggle when the search space is difficult
to explore. Additionally, the planning knowledge contained
in other planning problems may be more or less reusable.
Regarding the applicability of the repertoire construction ap-
proaches to other problems, the clone detection approach can
be readily applied to other planning problems with an AST
representation. The specific syntactic transformations used in
this work will likely need to be modified to work for other
problems, although some ideas like removing for loops may
be transferable, at a minimum the syntax may need to be
updated to reflect the particularities of the planning language.
On the other hand, the flexibility provided by the syntactic
transformation approach allows for experts to fine tune the
approach to the demands of other more challenging problems.
It is also possible to combine the three approaches (repertoire,
clone detection, and transforms) and we leave investigating
these issues to future work.

V. RELATED WORK

Self-* planning and reuse. There are many approaches
for self-adaptive systems planning, including model-based
approaches [4], manual human written plans [5], and heuristic
planners such as genetic algorithms [7], [21]–[23]. In this
work, we focus on planners built around evolutionary al-
gorithms that reuse prior effective adaptation strategies [7],
[24], [25], in particular building on our prior work [7] that
showed how reusing single plans encoded as ASTs can allow
a self-adaptive system to replan more effectively following
an unexpected change. In this work, we investigate reusing a
repertoire of adaptation strategies, and explore two approaches
for identifying reusable planning components for constructing
repertoires that are amenable to reuse.

EvoChecker [24] is an evolutionary approach for generating
generating probabilistic models, and can be used to reconfigure
self-* systems at runtime. EvoChecker supports reusing prior
solutions by seeding the search with archived prior solutions,
and three update rules for maintaining this archive were stud-
ied, including storing the complete population from the current
adaptation step, storing the best two configurations from the
current adaptation step, and accumulating the previous best
two configurations from all previous adaptation steps. Our
approach for repertoire construction instead proactively builds
a repertoire of effective responses for potential unexpected
situations that may arise in the future.

Seeding an evolutionary algorithm has also been studied in
the area of service-oriented computing [25], where a multi-
objective evolutionary algorithm can reuse previously stored
service composition plans. This work investigates four seeding
strategies, including strategies that are pregenerated for the
purpose of obtaining knowledge about the problem (like
our approach), as well as two strategies that reuse previ-
ously solved composition problems. In this work, we build
repertoires of solutions encoded as ASTs rather than service
composition plans. Additionally, we present approaches for
extracting the reusable portions of prior solutions to improve
reuse effectiveness.

Case-based plan adaptation [26] also reuses previous plan-
ning solutions in new contexts, including maintaining reper-
toires of previous solutions. Evolutionary algorithms have been
explored in this context [27], [28], e.g., by injecting solutions
to previous problems into a GA population to speed the
solution of new problems. Although the seeding approach to
reuse is similar, these works do not address the challenge of
reusing previous solutions in response to unexpected changes
in self-* systems.

Program analysis. We build two repertoire customization
approaches based on techniques from clone detection and
rule-based syntax transformation. There are many approaches
for performing clone detection in the software analysis and
maintenance literature (see ref. [15], [16] for surveys). In this
work, we use the well known Deckard [17] clone detection
tool to find clones in self-* adaptation strategies. While much
of the clone detection in software engineering literature seeks

to avoid clones as indicative of technical debt, we instead
promote clones as signaling generalizable features.

There is also a large body of work on declarative syn-
tax transformation techniques (e.g., [29], [30]). We use
Comby [19], [31] particularly because it operates on our plan-
ning language without any additional special configuration and
delivers fast, lightweight, readable transformation templates.
Alternative tools would require us to write a parser or grammar
specification that integrates with an existing framework, or
require more effort to write transformation rules. To the best
of our knowledge, our approach is the first to implement and
evaluate a rule-based transformation approach in conjunction
with genetic programming for building reusable self-* plans.

VI. CONCLUSION

While plan reuse with stochastic search is a promising idea
for enabling self-* systems to replan following an unexpected
change, reusing repertoires of adaptation strategies presents
new challenges for plan reuse in self-* systems. In this work,
we present a two part approach for constructing reusable reper-
toires of adaptation strategies that are likely to generalize and
are cost effective to evaluate. This approach first takes inspira-
tion from chaos engineering to obtain diverse set of adaptation
strategies, and then applies ideas from program analysis to
identify planning pieces amenable to reuse. We investigate two
approaches, clone detection and syntactic transformations, for
this analysis step, and evaluate our approach on a simulated
self-* system inspired by AWS. The results found that the most
effective approaches resulted in an improvement over prior
work by up to 20%. Proactively building reusable repertoires
of adaptation strategies is a step towards self-* systems robust
to a wide range of unexpected changes.

REFERENCES

[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[2] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184–206, 2015.

[3] J. Zhang and B. H. Cheng, “Model-based development of dynamically
adaptive software,” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 371–380.

[4] A. Pandey, G. A. Moreno, J. Cámara, and D. Garlan, “Hybrid planning
for decision making in self-adaptive systems,” in 2016 IEEE 10th
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO). IEEE, 2016, pp. 130–139.

[5] S.-W. Cheng and D. Garlan, “Stitch: A language for architecture-based
self-adaptation,” J. Syst. Softw., vol. 85, no. 12, pp. 2860–2875, 2012.

[6] B. Nebel and J. Koehler, “Plan reuse versus plan generation: A theoret-
ical and empirical analysis,” Artificial Intelligence, vol. 76, no. 1-2, pp.
427–454, 1995.

[7] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. Le Goues, “Managing
uncertainty in self-adaptive systems with plan reuse and stochastic
search,” in International Conference on Software Engineering for Adap-
tive and Self-Managing Systems, 2018, pp. 40–50.

[8] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35–41, 2016.

[9] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[10] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to
genetic programming. Lulu.com, 2008.

[11] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,
pp. 66–73, 1992.

[12] G. A. Moreno, B. Schmerl, and D. Garlan, “Swim: an exemplar
for evaluation and comparison of self-adaptation approaches for web
applications,” in Proceedings of the 13th International Conference on
Software Engineering for Adaptive and Self-Managing Systems. ACM,
2018, pp. 137–143.

[13] “Choose your aws region wisely,”
https://www.concurrencylabs.com/blog/choose-your-aws-region-wisely/,
Concurrency Labs, accessed: 2020-02-18.

[14] Y. Izrailevsky and A. Tseitlin, “The netflix simian army,”
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116,
The Netflix Tech Blog, accessed: 2020-3-23.

[15] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp. 64–
68, 2007.

[16] A. Sheneamer and J. Kalita, “A survey of software clone detection
techniques,” International Journal of Computer Applications, vol. 137,
no. 10, pp. 1–21, 2016.

[17] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[18] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic Patch Generation
Learned from Human-written Patches,” in International Conference on
Software Engineering, ser. ICSE ’13, 2013, pp. 802–811.

[19] “Comby,” https://comby.dev, Online, accessed 13 May 2020.
[20] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification

of probabilistic real-time systems,” in Int. Conf. on Computer Aided
Verification, ser. CAV ’11, 2011, pp. 585–591.

[21] E. M. Fredericks, I. Gerostathopoulos, C. Krupitzer, and T. Vogel, “Plan-
ning as optimization: Dynamically discovering optimal configurations
for runtime situations,” in International Conference on Self-Adaptive
and Self-Organizing Systems (SASO). IEEE, 2019, pp. 1–10.

[22] A. J. Ramirez, B. H. Cheng, P. K. McKinley, and B. E. Beckmann,
“Automatically generating adaptive logic to balance non-functional
tradeoffs during reconfiguration,” in Int. Conf. on Autonomic Computing,
ser. ICAC, 2010, pp. 225–234.

[23] T. Chen, K. Li, R. Bahsoon, and X. Yao, “FEMOSAA: feature guided
and knee driven multi-objective optimization for self-adaptive software
at runtime,” CoRR, vol. abs/1608.08933, 2016. [Online]. Available:
http://arxiv.org/abs/1608.08933

[24] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-
bilistic models for quality-of-service software engineering,” Automated
Software Engineering, vol. 25, no. 4, pp. 785–831, 2018.

[25] T. Chen, M. Li, and X. Yao, “Standing on the shoulders of giants:
Seeding search-based multi-objective optimization with prior knowledge
for software service composition,” Information and Software Technology,
vol. 114, pp. 155–175, 2019.

[26] H. Muñoz-Avila and M. T. Cox, “Case-based plan adaptation: An
analysis and review,” IEEE Intelligent Syst., vol. 23, no. 4, pp. 75–81,
2008.

[27] A. Grech and J. Main, Case-Base Injection Schemes to Case Adaptation
Using Genetic Algorithms, ser. ECCBR, Berlin, Heidelberg, 2004, pp.
198–210.

[28] S. J. Louis and J. McDonnell, “Learning with case-injected genetic
algorithms,” Trans. Evol. Comp, vol. 8, no. 4, pp. 316–328, 2004.

[29] L. Wasserman, “Scalable, example-based refactorings with refaster,” in
Workshop on Refactoring Tools, ser. WRT@SPLASH ’13, 2013, pp.
25–28.

[30] J. I. Maletic and M. L. Collard, “Exploration, analysis, and manipulation
of source code using srcml,” in International Conference on Software
Engineering, ser. ICSE ’15, 2015, pp. 951–952.

[31] R. van Tonder and C. Le Goues, “Lightweight Multi-Language Syntax
Transformation with Parser Parser Combinators,” in Programming Lan-
guage Design and Implementation, ser. PLDI ’19, 2019, pp. 363–378.

