
Towards a Framework for Adapting Machine
Learning Components

Maria Casimiro
INESC-ID, IST, Universidade de Lisboa

ISR, Carnegie Mellon University
maria.casimiro@tecnico.ulisboa.pt

Paolo Romano
INESC-ID, IST

Universidade de Lisboa
romano@inesc-id.pt

David Garlan
Institute for Software Research

Carnegie Mellon University
garlan@cs.cmu.edu

Luı́s Rodrigues
INESC-ID, IST

Universidade de Lisboa
ler@tecnico.ulisboa.pt

Abstract—Machine Learning (ML) models are now commonly
used as components in systems. As any other component, ML
components can produce erroneous outputs that may penalize
system utility. In this context, self-adaptive systems emerge as
a natural approach to cope with ML mispredictions, through
the execution of adaptation tactics such as model retraining. To
synthesize an adaptation strategy, the self-adaptation manager
needs to reason about the cost-benefit tradeoffs of the applicable
tactics, which is a non-trivial task for tactics such as model
retraining, whose benefits are both context- and data-dependent.

To address this challenge, this paper proposes a probabilistic
modeling framework that supports automated reasoning about
the cost/benefit tradeoffs associated with improving ML compo-
nents of ML-based systems. The key idea of the proposed ap-
proach is to decouple the problems of (i) estimating the expected
performance improvement after retrain and (ii) estimating the
impact of ML improved predictions on overall system utility.

We demonstrate the application of the proposed framework by
using it to self-adapt a state-of-the-art ML-based fraud-detection
system, which we evaluate using a publicly-available, real fraud
detection dataset. We show that by predicting system utility stem-
ming from retraining a ML component, the probabilistic model
checker can generate adaptation strategies that are significantly
closer to the optimal, as compared against baselines such as
periodic retraining, or reactive retraining.

Index Terms—self-adaptation, machine learning, model re-
train, fraud detection system

I. INTRODUCTION

The widespread use of Machine Learning (ML) models for a
variety of tasks spanning multiple domains (e.g., enterprise and
cyber-physical systems) raises concerns regarding the impact
of the quality of the ML components on system performance.
Indeed, the quality of a ML model in production is inherently
affected by the training data used for its synthesis, and in
particular by whether the statistical relations present in the
training data also hold when the model is used in production.
Further, different operational contexts may have different ML
quality requirements. So if ML quality is acceptable but the
context changes, higher quality decisions may be required,
thus also triggering ML adaptation.

When deploying a ML model in the real world, typically
under changing environments, the actual sample distribution

Support for this research was provided by ANI and Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) through
the Carnegie Mellon Portugal Program under Grant SFRH/BD/150643/2020
and via projects with references POCI- 01–0247-FEDER-045915, POCI-
01–0247-FEDER-045907, and UIDB/50021/2020.

may differ from the one under which the model was trained.
These samples are known as out-of-distribution (OOD) sam-
ples [1] and can be caused for instance by concept drift
(i.e., shifts of the input features) and co-variate shift (i.e.,
shift in the relationship between input feature and the target
variable) [2]. OOD samples are thus a common cause of
ML mispredictions [3], [4] and while these problems and
how to detect their occurrence have been extensively studied
by the ML literature [5]–[8], little research has addressed
the problems of: (i) quantifying the expected impact of ML
mispredictions on system utility – e.g., including penalties due
to service level agreement (SLA) violations and costs related
to training a ML model in the cloud; (ii) reasoning about what
corrective actions to enact in order to maximize system utility
in the face of ML mispredictions.

Self-adaptive systems [9], [10], which are systems capable
of reacting to environment changes in order to maintain system
utility at desired levels, emerge as a natural solution to cope
with ML mispredictions. In particular, the use of formal
reasoning mechanisms for synthesizing optimal adaptation
strategies (i.e., sequences of adaptation tactics [11]) could
ideally be applied to ML-based systems.

While previous work in the self-adaptive systems liter-
ature [12]–[14] has leveraged probabilistic model checking
techniques to synthesize optimal adaptation strategies for non-
ML-based systems, extending those frameworks to deal with
ML-based systems is far from trivial. First, since probabilistic
model checkers verify properties of a formal model of a
system, formal models of ML-based systems need to capture
the key dynamics of ML components in a compact but
meaningful way. This calls for identifying the right abstraction
level to represent such components, ensuring not only that
their characteristic behaviors are modeled, but also that the
formal abstraction is expressive, general, accurate, and that the
model verification is tractable for usage in online adaptation
of systems. Leveraging such an abstraction to represent ML
components ideally would allow the model checker to reason
about the impacts of mispredictions on system utility.

Second, a key requirement for self-adaptive systems is the
quantification of the benefits and costs of applying different
adaptation tactics. Understanding these tradeoffs allows a
planner to select one tactic over another, or more generally
one adaptation strategy over another. However, due to the



context- and data-dependencies of ML adaptation tactics such
as model retrain, estimating the costs and benefits of such
tactics requires developing specified predictors. While a num-
ber of solutions have been recently proposed to estimate the
cost/latency of (re)training ML models on different types of
computational resources [15], [16], the problem of predicting
the benefits on model accuracy deriving from retraining the
model has not been addressed by the current literature.

This paper proposes a probabilistic framework based on
model checking to reason, in a principled way, about the
cost/benefit tradeoffs associated with adapting ML components
of ML-based systems. The proposed approach is based on
the insight that this is achievable by decoupling the problems
of (i) modeling the impact of an adaptation tactic on the
ML model’s performance and (ii) estimating the impact of
ML (mis)predictions on system utility. We show that the
former can be effectively tackled by relying on blackbox
predictors that leverage historical data of previous retraining
processes. The latter problem is solved by expressing inter-
component dependencies via an architectural model, which
enables automated reasoning via model checking.

To validate the proposed framework, we apply it to a
fraud detection use-case and implement a prototype of a self-
adaptive credit-card fraud detection system. Specifically, we
use the proposed framework to automate the decision of when
to retrain a state of the art ML model for fraud detection [17]
and evaluate it using a public data set [18], accounting for the
impact of SLA violations as well as model retrain cost and
latency on system utility. We demonstrate that by leveraging
the predicted benefits of retraining a ML component, a self-
adaptation manager can generate adaptation strategies that are
closer to the optimal one when compared against baselines
such as periodic retrains, or reactive retrains (triggered upon
an SLA violation).

II. PROBABILISTIC MODEL CHECKING

Probabilistic model checking is a set of methods for reason-
ing about and analyzing systems that exhibit probabilistic and
uncertain behavior. Probabilistic model checking techniques
have been extensively used in the self-adaptive systems lit-
erature [12]–[14] to synthesize optimal adaptation strategies.
To generate these strategies, it is necessary to instantiate a
formal model of the system under adaptation, and to specify
an adaptation goal in the form of a property (written as a
temporal logic formula) which the model checker can verify
for optimality. Additionally, these techniques are a natural fit
for planning the need for adaptation in self-adaptive systems
since they support proactive adaptation schemes such as look-
ahead [14]. This consists of having the model checker, via
the formal model of the system, simulate the different possible
future states to synthesize the adaptation strategy (sequence of
adaptation tactics to execute) that maximizes system utility.

This work leverages the PRISM model checker [19], which
is a probabilistic model checker commonly used in the lit-
erature [14], [20]. We define the formal models as Markov
Decision Processes (MDPs), which allow to model systems’

dynamics through a set of states, whose transitions are either
probabilistic or partially controlled by an actor and which
model the evolution of the state of the system in discrete
timesteps. At each timestep, a set of adaptation tactics is avail-
able for adaptation and the model checker has to select one to
execute. Not adapting is considered a possible tactic available
for adaptation that has no impact on the system and which
we refer to as NOP. The choice between adaptation tactics
corresponds to a nondeterministic choice, and is guided by the
optimization of a user-defined property. This property encodes
the goal of the adaptation process and generally corresponds
to maximizing system utility. To specify these properties,
PRISM relies on probabilistic reward computation-tree logic
(PRCTL) [21]. By specifying reward-based properties as a
function of state-specific constraints of the system, PRISM
generates optimal strategies that comply with these constraints.

III. FRAMEWORK FOR ML ADAPTATION

This section introduces the proposed framework for rea-
soning about adaptation of ML-based systems. We start by
discussing the assumptions and design goals underlying the
framework and its requirements for ensuring the design goals.
Then, we focus on its novel aspects, namely: (i) how to
formally model ML components in order to reason about the
impacts of ML mispredictions on system utility; (ii) how to
predict the costs/benefits of different adaptation tactics and
how to integrate these predictions with the formal model.

A. Design Goals and Assumptions

The proposed framework targets systems composed of ML
and non-ML components and is designed to automate the anal-
ysis of the tradeoffs associated with adapting (e.g., retraining)
a ML component at a given moment with the goal of maximiz-
ing system utility. Our design aims to ensure the following key
properties: (i) generic – designed to be applicable to different
types of offline supervised ML models (e.g., neural networks,
random forests); (ii) tractable – designed to be usable by
a probabilistic model checker like PRISM, which requires
identifying an adequate level of abstraction to model ML
components in order to enable systematic analysis via model
checking; (iii) expressive – designed to capture the general
and key dynamics of ML models; (iv) extensible – designed to
be easily extended to incorporate additional adaptation tactics
(e.g., transfer learning, unlearning), as discussed by [22], and
customized to capture application specific dynamics.

To realize the proposed framework it is assumed that:
A1 There are fluctuations of the ML model’s quality over

time – ML techniques are inherently approximate (they
can mispredict even in absence of changes); or the
system may be operating under changing environments
which lead to ML mispredictions (data shift);

A2 The adaptation tactics can have non-negligible costs and
latencies. Considering the case of an adaptation tactic
such as model retrain, the costs could be quantified in
terms of energy consumption or as the economical cost



Environment

ML-based System
(managed system)

Non-ML component 1

Self-Adaptation Manager
(managing system)

System
attributes 

Plan
PRISM model
of the system

Execute

Adaptation
strategy 

Execute 1st tactic of
adaptation strategy 

Knowledge 
Outcome of previous

adaptations

Analyze 
Adaptation

Impact Predictor 
(AIP)

ML component 1

Environment
events 

System
output

Monitor 
ML component's
performance
(TP/TN/FP/FN)
Environment
generated events
System requirements
(SLAs) and costs

Legend:

Data transfer

MAPE-K
Component

Required
Module

Tactic

ML Component

Non-ML
Component

cost-benefits
predictions 

Non-ML component N ML component M

... ... 

Tactic NNOPRetrain ... 

Fig. 1: Architecture of the self-adaptation framework.

incurred by provisioning the virtual machines used for
retrain (in the case of cloud deployments);

A3 Time is discretized into fixed-sized intervals. At each
time interval, the framework synthesizes the optimal
adaptation strategy to use in the following time in-
terval(s). The most appropriate granularity of time
discretization is inherently application dependent and
should be chosen by taking into consideration that it
will affect the rate at which adaptations are performed.

B. Self-Adaptation Manager’s Architecture

Similarly to previous work [12]–[14], the proposed frame-
work leverages a self-adaptation manager that adopts a MAPE-
K [23] architecture, as illustrated in Figure 1. The following
paragraphs briefly describe each module of the architecture.
Environment. Generates events which constitute the inputs to
the system, and hence to its ML component(s). These events
may cause ML mispredictions and a decrease in system utility.
ML-based system. Implements the domain specific tasks, for
which it relies on at least one ML component and may rely
on several other components, both ML and non-ML.
Self-adaptation manager. Provides the required functionali-
ties for ML adaptation. The novelty of the proposed framework
with respect to existing self-adaptation managers lies in the
operation of the Analyze and Plan components: Analyze –
contains the cost/benefit predictors, which leverage historical
data of previous adaptations and of their impact on the ML
component’s quality (e.g., accuracy) in order to estimate its
future performance in case an adaptation is or is not executed;
Plan – comprises the adaptation planner, which relies on a
formal model of the system being adapted and on a prob-
abilistic model checker to synthesize the adaptation strategy
that maximizes system utility.

The self-adaptation manager should thus abide by the fol-
lowing key requirements:

R1 Provide the means to predict the effects of adapting and
not adapting the model on its future accuracy;

R2 Include a way to characterize in a compact but mean-
ingful way the error of a ML component;

R3 Be able to determine the impact of ML mispredictions
on overall system utility.

The following sections describe the Analyze and Plan
components, explaining how these requirements are met.

C. Formally Modeling ML Components

This section details how we formally model the ML compo-
nents to capture their error in a compact but meaningful way
(realizing R2), and its impact on system utility (realizing R3).

ML component definition. Depending on the domain of oper-
ation of a system, the most appropriate type of ML component
varies. For instance, while in cyber-physical systems it is
common to see reinforcement learning ML components [24],
in the context of fraud detection [25], [26] or medical diagnosis
systems [27] offline trained ML components (e.g., decision
trees or neural networks) are more common. We focus our
analysis on offline trained ML components and specifically
on ML classifiers. (Note that it is possible to transform a
regressor into a classifier by discretizing the target domain,
although this implies introducing an intrinsic prediction error
due to the chosen discretization granularity.)

ML component state. Since the goal of the proposed frame-
work is to model ML components, and in particular the impact
of their mispredictions on system utility, we require a way to
evaluate their classification performance. Classification models
are typically evaluated based on a popular construct known as
confusion matrix [28], which provides a statistical character-
ization of the model’s quality by describing the distribution
of its misclassification errors. For a classification problem
with N classes, the confusion matrix normalized by rows C
(the rows represent the actual sample class and sum to 1)
contains, in each cell (i, j), the ratio of samples of class
i (ground truth) that have been classified as being of class
j (prediction). For the simpler case of binary classification
problems, the confusion matrix is reduced to a 2 × 2 matrix
where each cell specifies the following: True Positives Rate
(TPR) – percentage of examples of the positive class that
the model classified as such; True Negatives Rate (TNR) –
percentage of examples of the negative class that the model
classified as such; False Positives Rate (FPR) – percentage
of examples of the negative class that the model classified as
positive; False Negatives Rate (FNR) – percentage of examples
of the positive class that the model classified as negative. This
representation allows for extracting further error metrics such
as the model’s accuracy, and f1-score.

The row-normalized confusion matrix has the following
relevant properties: (i) generic – can be computed for dif-
ferent ML models (e.g., random-forest or neural network); (ii)
tractable – is compact and abstract enough to be encoded
into a formal model; (iii) expressive – captures the predictive
performance of the ML model and allows for computing
several error metrics; (iv) extensible – can be used to model
the impacts of executing different adaptation tactics [22] (e.g.,
retrain, nop), by updating its cells. These properties make it a
natural fit to model ML components and hence realize R2.

Depending on the predictive models used by the model
checker to estimate the evolution of the confusion matrix (or



the cost of executing an adaptation tactic) the state of the ML
component can be extended with additional variables, e.g., that
describe the expected data shifts on the input or output.

ML Component Interface. Since the framework aims to
adapt offline-trained ML components, we define the base
interface as being composed of the methods query and retrain.
As the name suggests, this method models the execution of
a retrain procedure of the ML component by triggering an
update of its row-normalized confusion matrix. The tech-
niques employed to predict how the confusion matrix of a
ML component evolves as a result of a retrain procedure
are described Section III-D. The query method models the
process of asking the ML component for predictions for a
set of inputs. Specifically, this method should abstract over
the concrete input/output values of the samples and of the
predictions, requiring only the total number of inputs for the
ML component and the expected distribution of (real) output
classes O (given by the probability pi for an input to be of
class i, for all classes i ∈ [1, N ]). The method returns a (non-
normalized) confusion matrix C∗, that reports in position (i, j)
the (absolute) number of inputs of class i that are classified
as of class j by the model. C∗ can be simply computed by
multiplying each row i of the normalized confusion matrix
C by pi. The interface can be extended to account for more
adaptation tactics which allow to tailor the framework to
specific adaptation scenarios.

Dealing with uncertainty. As shown by recent work [14],
[29], [30], capturing uncertainty and including it when rea-
soning about adaptation contributes to improved decision
making. To capture uncertainty, we leverage the probabilistic
framework proposed by Moreno et al. [11] which allows to
account for different sources of uncertainty in the system
(e.g. uncertainty on the effects of an adaptation tactic or on
the input class distribution) and which generates memoryless
strategies (strategies that depend only on the current state of
the system). This framework accounts for uncertainty by mod-
eling the source of uncertainty as a probabilistic tree which
is approximated via the Extended Pearson-Tukey (EP-T) [31]
three-point approximation. The current state of the source of
uncertainty is represented by the root node of the probability
tree and the child nodes are its possible realizations.

D. Predicting the Effects of Adapting (or not)

A key requirement of our framework is the ability to
predict the costs and benefits of executing adaptation tactics
on the ML components (requirement R1). For this purpose,
the proposed framework associates with each adaptation tactic
a dedicated component, which we call Adaptation Impact
Predictor (AIP). The AIP is in charge of predicting: (i) the
adaptation tactic’s cost, that is charged to the system utility;
(ii) the impact of the adaptation on the future quality of the
ML component. For each ML component, we also include
an adaptation tactic corresponding to performing no changes
to the ML component (NOP). While the AIP for tactic NOP
always predicts zero costs (this tactic inherently has no cost),

its model quality predictor captures the evolution of the
model’s performance if no action is taken, e.g., the possible
degradation of accuracy of the ML component due to data
shifts. Overall, this approach allows the model checker to
quantify the impact of different adaptation tactics on system
utility and reason about their cost/benefits tradeoffs.

We focus on the problem of how to predict the future
evolution of the performance of the ML component and
describe, in the next section, how we tackle the problem of
implementing AIPs for the retrain and NOP tactic for generic
ML components. Indeed, for adaptation tactics such as retrain
the problem of estimating their costs has been investigated in
the system’s community. The literature has shown that data-
driven approaches [15] based on observing previous retraining
procedures, possibly mixed with white-box methods [16], can
generate accurate predictive models of the retrain cost.

Predicting future quality of ML components. Given the
reliance on a row-normalized confusion matrix C to charac-
terize the performance of ML components, predicting their
performance evolution requires estimating how C will evolve
in the future, e.g., due to shifts affecting the quality of the
current model or as a consequence of retraining the model to
incorporate newly available data.

The proposed method abstracts over the specific adaptation
a() by modeling it as a generic function a(M, I,N ) −→ M′

that produces a new ML model M′, and takes as input:
(i) model M prior to the execution of the adaptation; (ii)
data I, used to generate model M; (iii) new data, N , that
became available since the last adaptation, e.g., by deploying
the model in production and gathering new samples and
corresponding ground truth labels. We assume that both I
and N contain ground truth labels. Additionally, we assume
that M and M′ are generic supervised ML models that are
queried and returned predictions for the input samples. These
two assumptions allow to determine the confusion matrices
of models M and M′ at any future time interval, since their
predictions can be compared with the ground truth labels.

We seek to build blackbox regressors (e.g., random forests
or neural networks) that, given model M obtained at time 0
on dataset I, and given new data N available at time t > 0,
predict the confusion matrices of both models (M and M′) at
time t+ k, where k > 0 is the prediction lookahead window.

Adaptation impact dataset. In order to train such a blackbox
regressor, we build an Adaptation Impact Dataset (AID) by
systematically simulating the execution of the adaptation tactic
using production data in different points in time. This allows
for gathering observations characterizing the execution of the
adaption tactic in different environmental contexts, such as:
(i) different sets of data used to adapt the model; (ii) variation
in the time passed since the last execution of the tactic; (iii)
different ML performance before and after adaptation

The first step of the procedure consists in monitoring model
M0 of a ML component in production over T time intervals.
During this monitoring period, given the absence of AIPs, we
assume that no adaptation is executed.



Next, we deploy M0 on a testing platform (so as not to
affect the production environment) and systematically apply
adaptation a() at each time interval i > 0, i.e., a(M0, I0,Ni).
This yields a new model Mi, which we evaluate at every
future time interval i < j ≤ T , obtaining the corresponding
confusion matrices, noted as Ci(j). Overall, this procedures
yields T models, resulting from the adaptation of M0 at
different time intervals, and produces T ·(T−1) measurements
of the confusion matrices at times j > i.

For each of the aforementioned T · (T − 1) measurements,
we generate an AID entry, ei,j,k, which describes the quality at
time j+k of model Mj obtained by executing a(Mi, Ii,Nj)
at time j on model Mi, where Ii denotes the data used at time
i to generate model Mi, and Nj the new data gathered from
time i until time j. Each entry ei,j,k has as target variables the
N2 −N independent entries of the confusion matrix at time
j + k of model Mj and stores the following features:

• Basic Features: provide basic information on (i) the
amount of data (i.e., number of examples) used to gener-
ate model Mi, i.e., Ii, and gathered thereafter, i.e., Nj ;
(ii) the accuracy of the model shortly after its generation
and at the present time; (iii) the time elapsed since the
last execution of the adaptation tactic, i.e., j − i.

• Output Characteristics Features: describe the distribution
of the output of models Mi and Mj . It also includes
the distribution of the uncertainty of the models’ pre-
dictions. This feature is included only when the ML
model provides information regarding the uncertainty of
a prediction. This information is usually provided by
commonly employed ML models like random forests,
Gaussian processes, and ensembles.

• Input Characteristics Features: aim to capture variations
in the distributions of the features of datasets Ii and Nj .
Specifically, for each feature f , we compute the Pearson
correlation coefficient between its values in Ii and Nj .

Overall, the AID can be seen as composed of pairs of
features, where each pair describes a specific “characteristic”
of the data or model at two different points in time, e.g.,
amount of data available at time i and j, or distribution of
predicted classes at time j+k by models Mi and Mj . The last
step of the process consists of extending the AID by encoding
the variation of each feature as follows: (i) for scalar features
(e.g., amount of data) we encode their variation using the
ratio and difference; (ii) for features described via probability
distributions (e.g., prediction’s uncertainty) we quantify their
variation using the Jensen-Shannon divergence [32] (inspired
by previous work [25]), which yields a scalar measurement
of the similarity between two probability distributions. This
generic methodology can also be applied to the case of the
NOP tactic. In this case, the dataset describes how the accuracy
of a model originally obtained at time i will evolve at time
j + k, based on the information available at time j.

Building the AIPs. We exploit the AID dataset to train a set
of independent AIPs, which can be simple linear models or
blackbox predictors such as random forests or neural networks.

Each AIP is trained to predict the value of a different cell of
the confusion matrix. Given an n-ary classification problem,
we have n2 − n independent values for the corresponding
confusion matrix, given that each row must sum to 1. For the
case of binary classification, n = 2, it is sufficient to predict
the values of the two elements on the diagonal, which, being
in different rows, are not subject to any mutual constraint.
For the general case of n > 2, it is necessary to ensure that
the predictions of the AIPs targeting different cells of the
same row sum to 1. This can be achieved by using a softmax
function [33] to normalize the predictions generated by the
AIPs into a probability distribution.

Integrating the AIPs in the formal model. As for the
integration of the AIPs in the formal model, which is checked
via a tool such as PRISM, a key practical issue is related with
the fact that these tools do not typically allow for interacting
with external processes (which could be used to encapsulate
the implementation of the AIPs) during model analysis. This
can be necessary if the model checker is used to reason on a
lookahead horizon of l > 1 time intervals. This generates up
to al possible adaptation strategies, where a is the number of
adaptation tactics available, requiring up to l · al predictions.

This problem can be circumvented by integrating directly
the AIPs as part of the formal model to be checked. This
approach is reasonable if the AIPs are implemented via simple
methods, such as linear models, but is cumbersome and
unpractical for the case of more complex models, such as
neural networks. An alternative approach, which is the one
currently implemented in our framework, is to precompute
all the predictions that will be required during the model
checking phase and provide them as input constants to the
model checker tool. This approach is viable only when the
lookahead window and the set of available adaptations are
small, but allow us to use arbitrary external predictors.

IV. SELF-ADAPTIVE FRAUD DETECTION SYSTEM

To demonstrate the proposed framework, we instantiate an
online adaptation manager for a ML-based credit card fraud
detection system. Typically, fraud detection systems rely on
supervised binary classifiers to classify incoming (credit/debit
card) transactions as either legitimate or fraudulent and have
banks and merchants as their clients. In this domain, quality
attributes of interest are for example the overall cost of service
level agreement (SLA) violations. Hence, we consider that
our system has SLAs on the target: (i) TPR (or recall) –
percentage of fraudulent transactions actually caught – and
(ii) FPR – percentage of fraudulent transactions not caught –
which should be kept within pre-defined thresholds:

SYSTEM(recall) ≥ recall threshold;
SYSTEM(FPR) ≤ FPR threshold;

SLA violations can occur when the ML component mis-
classifies a substantial amount of samples, such that either the
TPR (recall) decreases below the threshold, the FPR becomes
higher than acceptable, or both. These misclassifications are



typically caused by environmental changes through data shifts,
i.e., the input to the ML component changes such that it is no
longer capable of correctly classifying those samples. This oc-
curs for example, when the amount of fraud in a given period
increases, or when fraudsters change their strategies [22], [26].

Whenever these SLAs are violated, the system incurs non-
negligible costs, which we assume are fixed. We further as-
sume that the fraud-detection system is deployed in production
and that new data is gathered continuously, along with the
corresponding ground truth labels. The framework can either
do nothing (NOP) or retrain the model, leveraging the newly
collected data and labels. We consider fixed retrain costs
since the problem of estimating these costs has already been
addressed [15], [16]. We also capture retrain latency by having
it weigh in the system utility. Specifically, retrain latency is
first translated into a percentage of the time period. For this
percentage of time, system utility is computed based on the
confusion matrix of the ML component that represented the
state prior to the retrain. For the remainder of the time interval,
system utility is computed based on the confusion matrix of
the retrained model. Since the distribution of environment
generated events may not be uniform, system utility is further
weighted by the percentage of events in each period (during
adaptation and after). Finally, driven by the desire to keep the
problem tractable (eschewing the need to estimate several fu-
ture states of the ML component as described in Section III-D)
and since we consider retrain latency to be less than one time
interval, we fix the lookahead horizon to one time interval.

The framework solves the problem of deciding when to
retrain such that the global cost given by the sum of SLA and
retrain costs is minimized. Next, we describe the formal model
of the system, illustrating some of its components resorting to
PRISM syntax, and the process of creating the AIPs.

A. Formal Model of the Fraud Detection System

The formal model of the system requires modules for each
of the different moving parts that have an impact on the
system. Thus, we model: (i) the environment under which the
system is operating; (ii) the actual system, to analyze how
mispredictions affect system utility, to simulate the execution
of the tactics and to understand their impact on system utility;
and (iii) the adaptation tactics, which in our case consist of
either retraining the model or sticking with the current one.

Since we assume that the two tactics cannot be executed
simultaneously, we further consider an adaptation manager
module that prevents this from happening and non determinis-
tically selects which tactic to execute. As shown in Listing 1,
whenever there is a new event generated by the environment
(line 5) – for the fraud detection system an event consists of
a batch of transactions – the adaptation manager enters the
selectTactic stage and can select to execute one tactic among
the available ones. For example, while tactic nop (do nothing)
can always be executed (line 8), tactic retrain can only be
executed when there is newData with which to train the ML
component (lines 9-10). Finally, since our approach assumes
that time is divided into fixed-sized intervals, we further model

Listing 1: Adaptation manager and System rewards1

1 module adaptation_manager
2 selectTactic : bool init false;
3 currTactic : [none .. retrain] init none;
4
5 [newEvent] !selectTactic -> (selectTactic’=true)&(currTactic’=none);
6
7 // non-deterministic choice between adaptation tactics
8 [nop] (selectTactic=true) -> 1:(currTactic’=nop)&(selectTactic’=false);
9 [retrain] (selectTactic=true)&(newData > 0) ->

10 1:(currTactic’=retrain)&(selectTactic’=false);
11
12 [tick] (currTactic != none) -> 1:(currTactic’ = none);
13 endmodule
14
15 formula tactic_cost = (currTactic = retrain) ? retrainCost : 0;
16 formula fpr_violation_cost = (fpr > FPR_THRESHOLD) ? FPR_COST : 0;
17 formula tpr_violation_cost = (tpr < TPR_THRESHOLD) ? TPR_COST : 0;
18
19 rewards "systemUtility"
20 [tick] true & (time>0) :
21 (tacticLatency * percentTxs * (
22 ((INIT_FPR > FPR_THRESHOLD) ? FPR_COST : 0)
23 + ((INIT_TPR < TPR_THRESHOLD) ? TPR_COST : 0)
24 ) + (1 - tacticLatency) * (1 - percentTxs) *
25 (tacticCost + fpr_violation_cost + tpr_violation_cost));
26 endrewards

a clock whose purpose is to keep track of the passing of each
time interval. The clock module is implemented as in [11].
Synthesizing optimal adaptation policies. As can be seen
in Listing 1, each tick of the clock triggers the accrual of a
reward. For this specific use-case, the rewards consist of the
total costs incurred by the system during that time period due
to possible SLA violations and tactics executed. To generate
optimal adaptation policies, PRISM requires the specification
of a property. Since for this use-case system utility is defined
as the total costs incurred by the system and the goal is to
minimize these costs, the property that leads to the optimal
adaptation policy corresponds to minimizing system utility,
which is defined in PRCTL (reward-based property specifica-
tion logic, c.f. Section II) as RsystemUtility

min=? [F end], which means
“minimum system utility when time ‘end’ is reached”. ‘end’
defines the simulation horizon, i.e., how many future time
intervals we want the formal model to simulate.
Extending the tactic’s repertoire. To reason about self-
adaptation considering more adaptation tactics, the formal
model needs to be changed only through the addition of
the corresponding tactics’ modules such that the adaptation
manager can consider them as available when making its
nondeterministic choice. This can be performed by adding
these tactics to Listing 1, in addition to nop and retrain.

B. AIPs for the Fraud Detection System

As discussed in Section III-D, the framework instantiates an
AIP for each adaptation tactic. In this case since there are two
adaptation tactics (retrain and nop), the framework instantiates
one AIP for each which is composed of two predictors: one
for predicting the increase/decrease in the True Positive Rate
(TPR) and a second one to predict the True Negative Rate
(TNR). Thanks to the properties of the confusion matrix, by

1In PRISM commands are encoded as probabilistic state transitions follow-
ing the format [action] guard → prob1:update1 + ... + probn:updaten.
When guard is true, update1 is applied with probability prob1 (called
transition probability). action allows to specify a name for the command
or to synchronize commands between modules. Thus, commands with the
same action are only triggered when all the guard of all commands is true.



predicting the future TPR and TNR, we can fully characterize
the ML component’s confusion matrix in the following time
interval. These predictions are then provided as inputs to the
formal model and leveraged by the probabilistic model checker
to synthesize an optimal adaptation strategy.

V. EVALUATION

This section validates the usage of the framework for the
self-adaptive credit card fraud detection system described in
Section IV by evaluating the following research questions:

RQ1 Can the benefits of a model retrain be predicted with
acceptable accuracy?

RQ2 Does the proposed approach allow to improve system
utility when compared against baselines such as periodic
retrains, or reactive policies that retrain the model when-
ever there is an SLA violation?

RQ3 How are the gains achievable with this approach affected
by alternative execution contexts?

RQ4 Is the time complexity of the approach acceptable for a
real-time system deployment?

Experimental Settings. We leverage Kaggle’s IEEE-CIS
Fraud Detection dataset [18] and the winning solution of the
challenge [17] as basis for our implementation. We utilize the
winning solution to implement the data cleaning, and feature
selection tasks. The data splits for training, validation, and
test, the self-adaptation mechanisms, and the generation of
the retrain benefits dataset are then implemented on top of
that base solution. Further, for the purpose of our use-case we
leverage only the train dataset of the Kaggle competition, since
the test dataset does not have labels of the transactions. The
absence of labels would prevent us from being able to assess
the performance of the system or the benefits of retraining.
Also, we always ensure the transactions of the dataset are
given to the models respecting their original time-stamps, as
we do not wish to give any advantage to the models by
providing them with future information. As such, we use the
first 1/3 of the original Kaggle train dataset to train (70%)
and validate (30%) the initial fraud detection model. The
remaining 2/3 are divided as follows: 70% are used for training
and validation of the AIPs (80% and 20%, respectively), and
the remaining 30% for testing the framework. Throughout
the evaluation, the cost of an SLA violation is fixed to 10
and the AIPs are random-forest predictors of the sklearn
package [34] with default parameter values except for the
number of trees which we set to 12, similarly to the fraud
detection model. The time interval corresponds to 10 hours
and the horizon to one future time interval. Our implemen-
tation is available at https://github.com/cmu-able/ACSOS22-
ML-Adaptation-Framework
Baselines. We consider the following baselines:

• No-retrain: the fraud detection model is only trained
once, at the beginning of the testing period;

• Periodic: the model is retrained at every time interval;
• Reactive: the fraud detection model is retrained whenever

there is an SLA violation;

(a) Cumulative cost incurred by each baseline.

(b) Cumulative SLA Violations incurred by each baseline.

Fig. 2: Utility improvements achievable through the use of the
proposed framework. The execution context for this experi-
ment is: fpr threshold = 1, recall threshold = 70, retrain cost =
8, retrain latency = 0. The number of retrains executed by each
approach is shown in the legend of each plot, between brackets
after the approach’s name. The retrains are also represented by
the squares in each line.

• Random: at each time step, there is a 50-50 choice that
the model will be retrained;

• Optimum: this is the optimal solution which is computed
by looking at the actual future results of both retraining
and not retraining the model.

A. Utility Improvement due to Retrain

Figure 2 compares the proposed framework (represented by
line AIP) against the baselines. To evaluate whether the use of
the framework allows to improve system utility over baselines
that do not explicitly estimate the benefits of retrain, we define
the SLA thresholds as RECALL ≥ 70% and FPR ≤ 1%,
fix the retrain latency to 0 and the retrain cost to 8. As
Figure 2a shows, by leveraging the proposed framework it
is possible to have the fraud detection system minimize its
total costs and be closer to the optimal possible cost. This
answers RQ2 and shows that the framework does improve
system utility over simpler, model-free baselines due to its
ability to estimate the benefits of executing the retrain tactic.
As for the number of SLA violations, as shown in Figure 2b,
the AIP violates slightly more SLAs than all other baselines
except No retrain – which, as expected, is by far the approach
that violates the most SLAs. However, as seen previously,
this does not translate into higher incurred costs, which is
the quality attribute under optimization.



(a) Variation of Recall SLA (b) Variation of retrain cost (c) Variation of retrain latency

Fig. 3: Impact of execution context on the total cost incurred.

Recall Retrain Retrain
threshold cost latency

[50, 60, 70, 80, 90] [1, 5, 8, 10, 15] [0, 1, 5]

TABLE I: Values tested for different execution contexts.

Model TPR TNR
type MAE Corr-coef MAE Corr-coef

Retrain S 0.1141 0.6811 0.0055 0.7436

Retrain M 0.1158 0.6727 0.0060 0.7086

Retrain L 0.1162 0.6731 0.0059 0.7121

NOP S 0.1343 0.6165 0.0066 0.6142

NOP M 0.1254 0.5793 0.0068 0.6008

NOP L 0.1276 0.5737 0.0068 0.5943

TABLE II: Performance of the AIPs on different sets of
features (S, M, L) and evaluated resorting to the mean absolute
error (MAE) and to the Pearson correlation coefficient (corr-
coef). NOP represents the AIPs that estimate the future TPR
and TNR when the model is not retrained.

B. Impact of Execution Context

In order to evaluate how different execution contexts impact
the need for retrain and answer RQ3, we ran experiments for
different SLA thresholds, retrain costs, and retrain latencies.
Specifically, we tested the values shown in Table I for each
dimension, fixing the remaining two dimensions to the values
of the base scenario (recall threshold = 70, retrain cost = 8,
retrain latency = 0). Figure 3 displays these results.

Regarding the recall threshold (Figure 3a) the results show
that, as expected, the cost incurred by the approaches increases
as the recall threshold increases. This is justified by the fact
that an increase in the recall threshold yields a more difficult
problem – the system tolerates less incorrect classifications of
fraud transactions. This is translated into an increase of the
SLA violations, thus increasing the cost. The optimum and
AIP approaches also suffer a cost increase since retraining
does not prevent them from violating the thresholds.

Focusing now on the retrain cost (Figure 3b) we see that
if the cost is very low, the decision of whether to retrain
is fairly trivial and so all approaches that retrain the ML

component are close to the optimum. However, as the retrain
cost increases, we start to notice how being careful in selecting
when to retrain, accounting for the costs and benefits of the
tactic, does pay off, as AIP is closer to the optimum than the
other approaches. As expected, the no retrain approach is not
affected by this dimension.

Finally, regarding the retrain latency dimension, the tested
values correspond to percentages of the time interval that are
occupied with the process of retrain. That is, retrain latency
= 0: retrain is assumed instantaneous; retrain latency = 1:
during the first 10% hours of the time interval the model is
being retrained and as such transactions are classified using
the existing (non-retrained) model. The same rationale applies
to retrain latency = 5. The results (Figure 3c) show that
this dimension has relatively little impact on the cost of any
approach, although as expected the total cost of the optimum
solution increases slightly as the retrain latency grows. In fact,
even if this baseline can always determine correctly whether
it is worth retraining the model at any time t, if the retrain
latency grows, a fraction of the transactions in input for the t-
th interval will be classified using an old model, thus suffering
from an increase in misclassifications and SLA violations.

C. Accuracy of the AIPs

This section answers RQ1 by evaluating the performance of
the AIPs resorting to the mean absolute error (MAE) and to the
Pearson correlation coefficient (corr-coef), and considering dif-
ferent sets of features employed by each predictor. Specifically,
we consider three different feature sets: S – minimal set with
only the basic features (c.f. Section III-D); M – medium set,
which includes the basic features and output characteristics; L
– encompasses the features of the previous sets and the input
characteristics. Table II displays these results. Interestingly,
we see that an increase in the size and complexity of the
feature set does not yield better AIPs. Additionally, the results
also show that the models responsible for predicting the future
TPR and TNR when the model is retrained achieve a higher
accuracy (lower MAE and higher correlation) than their NOP
counterparts (which predict the future TPR and TNR when the
model is not retrained). Overall, on the one hand, the accuracy
of the AIPs proposed in this work is, as shown in Fig. 3, good
enough to allow implementing effective adaptation strategies.



Total Total PRISM PRISM
(mean) (stdev) (mean) (stdev)
3.459 0.070 3.113 0.061

TABLE III: Time overhead (secs) of the process of generating
the adaptation strategy. The columns named ‘PRISM’ encom-
pass only the time overhead due to verifying the formal model.
The remaining columns display the total time overhead due to
the AIPs and to the probabilistic model checking.

On the other hand, the absolute accuracy metrics reported in
Table II confirm that predicting the future performance of ML
models is far from trivial and that the proposed predictive
methodology has still significant margins of improvement
(e.g., by identifying different features, blackbox predictors or
possibly combining white-box methods [35]).

D. Time Complexity

Since the purpose of the framework is to enable run-time
adaptation of ML components in order to improve system
utility, we evaluate the time complexity of the process of
generating the adaptation strategy. This process corresponds to
querying the AIPs and having PRISM verify the property of
interest for the formal model of the system. Table III shows the
average and standard deviation of the time overhead due to the
whole process and also of the formal model verification alone.
These values correspond to the execution context defined in
Section V-A and were obtained by running the experiments
on a machine with an AMD EPYC 7282 CPU@2.8GHz, with
16 cores and 128GB RAM. As can be seen, the process of
generating the adaptation strategy takes around 3.5 seconds,
which is perfectly affordable considering that retraining ML
components has a much higher time overhead. This answers
RQ4 and shows that it is feasible to employ the proposed
framework on an online scenario.

E. Threats to Validity

The findings regarding the predictability of the impacts of
retrain are dataset- and domain- dependent and so they cannot
be generalized to other domains or datasets (external validity).
This also applies to the time complexity of the approach,
which depends on the complexity of the formal model. Thus,
further research is required to understand how the proposed
framework and architecture fare in different domains. Also,
we have evaluated the use-case for specific execution contexts
(regarding system SLAs, tactic cost and latency) which impact
the difficulty of the problem (internal validity).

The label assumption required for evaluating the impact
of retrain also affects external validity. In fact, real-time
performance monitoring is a complex and orthogonal problem.
However, it is always possible to get some labels, even if with
some delay or at some cost (e.g. via human labeling).

VI. RELATED WORK

ML component retrain. ML model retrain approaches have
gained relevance and are being studied by different research

fields. In the ML literature, DeltaGrad [36] proposes a method
to accelerate the retraining of ML models leveraging informa-
tion saved during initial model training. Similarly, in the self-
adaptive systems literature, T. Chen [37] studies two different
types of model retrain (full retrain versus incremental retrain),
comparing them in terms of quality and latency. Work on the
fraud detection domain has also researched the tradeoffs of
full model retrains vs incremental retrains and at different
periodicities [38]. Our work differs from these as our goal is
to reason on the cost/benefits of generic adaptation tactics tar-
geting ML components (including model retrains) to generate
adaptation strategies that maximize an application dependent
system utility function. Further, our work can incorporate,
in its repertoire of adaptation tactics, incremental retraining
techniques such as DeltaGrad. This is achieved by exploiting
the proposed AIP construction approach to derive specialized
AIPs capable of predicting the benefits (and costs) of this
alternative training technique.

Data shift and ML misprediction detection. Recent research
work that address the problem of data shift [1], [5]–[8], [39]
as well as work that address the problem of detecting ML
mispredictions [3], [4], [40], [41] are complementary to our
work and provide useful solutions that can be employed to
improve our framework, for instance by querying the AIPs
and the model checker only when shift or mispredictions have
been detected by these approaches.

ML in self-adaptive systems. Recent work in the field of
self-adaptive systems has shown an ever-growing trend for
the use of ML techniques in self-adaptive systems’ man-
agers to improve their self-adaptation capabilities [42]–[44].
Researchers have also argued for the need for a tighter
relationship between self-adaptation and AI, such that they can
“benefit from and improve one another” [45]. Recent work has
started to explore the area with Gheibi et al. [46] proposing a
framework for lifelong self-adaptation that allows a ML-based
self-adaptation manager to react to drifts in the data and learn
new tasks. Similarly, the work of Langford et al. [47] proposes
a framework to monitor learning enabled systems and evaluate
their compliance with the required objectives. Differently from
these works, our framework aims to decide whether to adapt a
ML component by reasoning about the cost-benefit tradeoffs
of the available tactics.

In our previous work, we have identified a set of ML
adaptation tactics to deal with ML mispredictions [22]. Also,
a sketch of the framework presented in Section III has been
outlined in [48]. This paper builds on previous work and ex-
tends them in a number of ways. First, we redefine several key
aspects of the framework, including redesigning the interface
of the ML component, and introduce a methodology to build
blackbox predictors of the impact of adaptations targeting ML
components. Further, this work validates the effectiveness of
the framework with a use-case based on a realistic data set
and complex ML models.



VII. CONCLUSION

This work proposes a self-adaptation framework for ML-
based systems. We proposed a strategy for formally modeling
the behavior and state evolution of ML components in order
to leverage probabilistic model checking techniques and syn-
thesize optimal adaptation strategies. We presented a general
approach for generating blackbox predictors that estimate the
impact of adaptation strategies on the ML component. We
instantiated the proposed framework on a use-case from the
credit card fraud detection domain and showed that reasoning
about the cost-benefit tradeoffs of retraining ML components
allows for better adaptation decisions when compared against
model-free baselines. As future work, we plan to: validate the
framework in a broader range of domains; study the impact
of resorting to different model types to instantiate the AIPs;
and investigate the use of alternative modeling techniques and
feature engineering approaches to develop more accurate AIPs.

REFERENCES

[1] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution
detection: A survey,” arXiv preprint arXiv:2110.11334, 2021.

[2] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence,
Dataset shift in machine learning. The MIT Press, 2009.

[3] J. Cito, I. Dillig, S. Kim, V. Murali, and S. Chandra, “Explaining
mispredictions of machine learning models using rule induction,” in
Procs. of ESEC/FSE, 2021.

[4] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” arXiv preprint
arXiv:1610.02136, 2016.

[5] A. Rabanser, S. Günneman, and Z. Lipton, “Failing loudly: An empirical
study of methods for detecting dataset shift,” in Procs. of NIPS, 2019.

[6] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,
B. Lakshminarayanan, and J. Snoek, “Can you trust your model's
uncertainty? evaluating predictive uncertainty under dataset shift,” in
Procs. of NIPS, 2019.

[7] I. Žliobaitė, “Learning under concept drift: an overview,” arXiv preprint
arXiv:1010.4784, 2010.

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM CSUR, vol. 46, no. 4, 2014.

[9] B. Cheng et al., Software Engineering for Self-Adaptive Systems: A
Research Roadmap. Springer, 2009.

[10] R. de Lemos et al., “Software engineering for self-adaptive systems: A
second research roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013.

[11] G. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive self-
adaptation under uncertainty: A probabilistic model checking approach,”
in Procs. of ESEC/FSE, 2015.

[12] R. Calinescu et al., “Synthesis and verification of self-aware computing
systems,” in Self-Aware Computing Systems. Springer, 2017.

[13] J. Cámara, W. Peng, D. Garlan, and B. Schmerl, “Reasoning about sens-
ing uncertainty and its reduction in decision-making for self-adaptation,”
Science of Computer Programming, vol. 167, 2018.

[14] G. Moreno, J. Cámara, D. Garlan, and M. Klein, “Uncertainty reduction
in self-adaptive systems,” in Procs. of SEAMS, 2018.

[15] M. Casimiro, D. Didona, P. Romano, L. Rodrigues, W. Zwaenepoel,
and D. Garlan, “Lynceus: Cost-efficient tuning and provisioning of data
analytic jobs,” in Procs. of ICDCS, 2020.

[16] N. Yadwadkar, B. Hariharan, J. Gonzalez, B. Smith, and R. Katz,
“Selecting the best vm across multiple public clouds: A data-driven
performance modeling approach,” in SoCC, 2017.

[17] (2019) Ieee-cis fraud detection winner solution. [Online]. Available:
https://www.kaggle.com/code/cdeotte/xgb-fraud-with-magic-0-9600

[18] (2019) Ieee-cis fraud detection. [Online]. Available: https://www.kaggle.
com/competitions/ieee-fraud-detection/overview

[19] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Procs. of CAV’11, ser. LNCS, vol.
6806. Springer, 2011.

[20] ——, “Probabilistic model checking and autonomy,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 5, 2022.

[21] S. Andova, H. Hermanns, and J.-P. Katoen, “Discrete-time rewards
model-checked,” in In Procs. of FORMATS. Springer, 2003.

[22] M. Casimiro, P. Romano, D. Garlan, G. Moreno, E. Kang, and M. Klein,
“Self-adaptation for machine learning based systems.” in ECSA (Com-
panion), 2021.

[23] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, 2003.

[24] B. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. Al Sallab, S. Yogamani,
and P. Pérez, “Deep reinforcement learning for autonomous driving: A
survey,” IEEE T-ITS, 2021.

[25] F. Pinto, M. Sampaio, and P-Bizarro, “Automatic model monitoring for
data streams,” arXiv preprint arXiv:1908.04240, 2019.

[26] Y. Lucas and J. Jurgovsky, “Credit card fraud detection using machine
learning: A survey,” CoRR, vol. abs/2010.06479, 2020.

[27] B. Erickson, P. Korfiatis, Z. Akkus, and T. Kline, “Machine learning for
medical imaging,” Radiographics, vol. 37, no. 2, 2017.

[28] J. Townsend, “Theoretical analysis of an alphabetic confusion matrix,”
Perception & Psychophysics, vol. 9, no. 1, 1971.

[29] R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns, “Un-
derstanding uncertainty in self-adaptive systems,” in Procs. of ACSOS,
2020.

[30] S. Hezavehi, D. Weyns, P. Avgeriou, R. Calinescu, R. Mirandola, and
D. Perez-Palacin, “Uncertainty in self-adaptive systems: A research
community perspective,” ACM TAAS, vol. 15, no. 4, 2021.

[31] D. Keefer, “Certainty equivalents for three-point discrete-distribution
approximations,” Management science, vol. 40, no. 6, 1994.

[32] M. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The jensen-shannon
divergence,” Journal of the Franklin Institute, vol. 334, no. 2, 1997.

[33] C. Bishop and N. Nasrabadi, Pattern recognition and machine learning.
Springer, 2006, vol. 4, no. 4.

[34] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[35] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing per-
formance prediction robustness by combining analytical modeling and
machine learning,” in Procs. of ACM/SPEC ICPE, 2015.

[36] Y. Wu, E. Dobriban, and S. Davidson, “DeltaGrad: Rapid retraining of
machine learning models,” in Procs. of ICML, 2020.

[37] T. Chen, “All versus one: An empirical comparison on retrained and
incremental machine learning for modeling performance of adaptable
software,” in Procs. of SEAMS, 2019.

[38] B. Lebichot, G. Paldino, W. Siblini, L. He-Guelton, F. Oblé, and
G. Bontempi, “Incremental learning strategies for credit cards fraud
detection,” International Journal of Data Science and Analytics, vol. 12,
no. 2, pp. 165–174, 2021.

[39] J. Perdomo, T. Zrnic, C. Mendler-Dünner, and M. Hardt, “Performative
prediction,” in Procs. of ICML, 2020.

[40] Y. Xiao, I. Beschastnikh, D. S. Rosenblum, C. Sun, S. Elbaum, Y. Lin,
and J. S. Dong, “Self-checking deep neural networks in deployment,”
in Procs. of ICSE, 2021.

[41] P. Kourouklidis, D. Kolovos, J. Noppen, and N. Matragkas, “A model-
driven engineering approach for monitoring machine learning models,”
in Procs. of MODELS-C. IEEE, 2021.

[42] T. Saputri and S.-W. Lee, “The application of machine learning in self-
adaptive systems: A systematic literature review,” IEEE Access, vol. 8,
2020.

[43] O. Gheibi, D. Weyns, and F. Quin, “Applying machine learning in self-
adaptive systems: A systematic literature review,” ACM TAAS, vol. 15,
no. 3, 2021.

[44] D. Weyns, B. Schmerl, M. Kishida, A. Leva, M. Litoiu, N. Ozay,
C. Paterson, and K. Tei, “Towards better adaptive systems by combining
mape, control theory, and machine learning,” in Procs. of SEAMS, 2021.

[45] T. Bureš, “Self-adaptation 2.0,” in Procs. of SEAMS, 2021.
[46] O. Gheibi and D. Weyns, “Lifelong self-adaptation: Self-adaptation

meets lifelong machine learning,” in Procs. of SEAMS, 2022.
[47] M. Langford, K. Chan, J. Fleck, P. McKinley, and B. Cheng, “Modalas:

Model-driven assurance for learning-enabled autonomous systems,” in
Procs. of MODELS, 2021.

[48] M. Casimiro, D. Garlan, J. Cámara, L. Rodrigues, and P. Romano, “A
probabilistic model checking approach to self-adapting machine learning
systems,” in Procs. of ASYDE, Co-located with SEFM 2021, 2021.


