
Eliminating Inter-Domain Vulnerabilities in Cyber-Physical
Systems: An Analysis Contracts Approach

Ivan Ruchkin*, Ashwini Rao*, Dionisio De Nizˆ, Sagar Chakiˆ, and David Garlan*
*{iruchkin, agrao, garlan}@cs.cmu.edu, ˆ{dionisio, chaki}@sei.cmu.edu

*Institute for Software Research, ˆSoftware Engineering Institute
Carnegie Mellon University

ABSTRACT
Designing secure cyber-physical systems (CPS) is a partic-
ularly difficult task since security vulnerabilities stem not
only from traditional cybersecurity concerns, but also phys-
ical ones as well. Many of the standard methods for CPS
design make strong and unverified assumptions about the
trustworthiness of physical devices, such as sensors. When
these assumptions are violated, subtle inter-domain vulner-
abilities are introduced into the system model. In this paper
we propose to use formal specification of analysis contracts
to expose security assumptions and guarantees of analyses
from reliability, control, and sensor security domains. We
show that this specification allows us to determine where
these assumptions are violated or ignore important failure
modes that open the door to malicious attacks. We demon-
strate how this approach can help discover and prevent vul-
nerabilities in a self-driving car example.

1. INTRODUCTION
High-quality cyber-physical systems (CPS) require the con-

sideration of a broad range of system qualities. A substan-
tial body of literature has proposed methods and tools to
address traditional engineering qualities like performance of
heterogeneous control [13] [48], correctness[11] [53], fault tol-
erance [55] [31] [1], and safety [21] [47] [17]. This is partially
due to the fact that control theory, theoretical computer
science, and mechanical engineering have been seen as the
“core” foundations for CPS research [49] [37] [2].

Security, however, has received relatively little attention
as a systemic quality of CPS. As Lee put it in [35], “the
term CPS is sometimes confused with “cybersecurity,” which
concerns the confidentiality, integrity and availability of data
and has no intrinsic connection with physical processes.” In-
deed, physical processes in CPS complicate reasoning be-
cause of the cross-cutting nature of security: sensors and
actuators that interact with the physical world may con-
tribute to a composite cyber-physical vulnerability. For ex-
ample, security assurance for a car cannot be confined to its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

cyber part: the software relies on physical elements, which
may be vulnerable to attacks in the physical realm, such as
disabling the sensors [7]. As recent results show, a sensor
failure can lead to a larger attack surface since the sensor
set produces a larger proportion of compromised data [18].
These failures can lead to vulnerabilities in life-critical sys-
tems like modern automobiles, which may be exploited with
serious consequences [33].

A major barrier to achieving up-front systematic security
engineering in CPS is incompatibility between traditional
CPS engineering analyses and sensor security [49] [37]. For
example, analyses for reliability engineering, such as Failure
Modes and Effects Analysis (FMEA) [54], which determines
probable failure configurations (”modes”) that can arise from
sensor malfunction, make an implicit assumption that sen-
sor data received from a non-failed sensor is trustworthy,
but do not model or verify this assumption [38]. Conversely,
control safety analysis [18] typically considers data trust-
worthiness in the normal operation mode, but often ignores
trustworthiness in the failure modes that are provided by
FMEA. Thus, both of these forms of analysis make assump-
tions may be inconsistent with, or ignore modes determined
by, the other. Incompatibilities such as these may result in
a system design that is not secure in all of its likely modes.

CPS developed with incompatible analyses, such as those
just mentioned, are vulnerable to attacks through what we
call inter-domain vulnerabilities – vulnerabilities that arise
on the boundary of engineering domains and analyses. State
estimation methods for control implicitly assume that sen-
sor configuration does not change over time, and that at
least half of the sensors are trustworthy [18]. Unfortunately,
the available sensors may change during operation, e.g., a
sensor can malfunction or fail entirely, become unavailable
(e.g., GPS in a tunnel or lidar during rain and fog [30]), or be
subverted by an attacker. In contrast, analyses like FMEA
may consider scenarios in which the set of sensors changes,
breaking the sensor invariance assumption of other analyses,
and potentially also the sensor trustworthiness assumptions.
As a consequence, advanced control systems, such as adap-
tive cruise control, smart braking, and smart steering may
have a vulnerability that can be exploited.

In this paper we propose a design-time approach to elim-
inate inter-domain vulnerabilities by systematically embed-
ding security analyses and assumptions into the CPS engi-
neering process. This approach builds on the analysis con-
tracts framework that has been validated on the domains
of thread scheduling and electrothermal battery design [52].
An analysis contract is a formal specification of an analy-

sis interface consisting of inputs, outputs, assumptions, and
guarantees. Verification using contracts can detect situa-
tions in which an analysis produces an unsound result or
violates an assumption of another analysis, thus introducing
a bug or a vulnerability. Here we extend this prior work by
demonstrating how the use of analysis contracts for sensor
trustworthiness analysis, FMEA, and control safety analysis
can lead to a more secure CPS design.

More specifically, this paper makes four contributions:

• A description of interactions and dependencies between
the domains of reliability, sensor security, and control
that could lead to a system failure via successful ex-
ploitation of a vulnerability.

• A formal specification of these dependencies and inter-
actions in the form of deterministic and probabilistic
analysis contracts.

• An algorithm for verification of deterministic assump-
tions for sensor trustworthiness, FMEA, and control
safety and the specified contracts.

• Demonstration of the feasibility and utility of the anal-
ysis contracts approach on a self-driving car system
model.

The rest of the paper is organized as follows. The next
section gives the necessary background on the domains and
tools we use in this paper, as well as a brief overview of re-
lated work. Section 3 explains the vulnerability and multi-
domain attack in detail. Then in Section 4 we present our
approach of specifying and verifying analysis contracts. Fi-
nally Sections 5 and 6 discuss respectively the limitations
and implications of the analysis contracts approach, thus
concluding the paper.

2. BACKGROUND AND RELATED WORK
This section describes the domains of security, reliabil-

ity, and control, whose cross-domain interaction can lead to
security vulnerabilities. It also presents prior work on mod-
eling and verification via analysis contracts that we build
upon, as well as related approaches that address similar
inter-domain issues.

2.1 Sensor Security
Sensors enable the exchange between cyber and physical

worlds: they interact with the physical world and provide
inputs to the controller. By compromising the sensors, an
attacker can send erroneous inputs to the controller, which
depends on sensor inputs to estimate the state of the system.
Malicious inputs from sensors can then result in deception
attacks, which may compromise the integrity of the cyber-
physical system [5].

Cyber-physical systems can have different types of sensors
for measuring physical variables. For example, a car can
have sensors for measuring distance (lidar or sonar [29]),
velocity (a magnetic speedometer), and tire pressure. In
order to handle faults and malfunctions in sensors, CPS can
use different technologies to measure the same variable. For
example, cars can use Sonar in addition to Lidar to measure
distance, since Lidar can fail under foggy conditions [30].

By targeting different types of sensors, an attacker can
cause specific types of failures. For instance, by sensing

incorrect distance readings, an attacker could compromise
braking functionality [33]. The placement of sensors (inside
versus outside the car), communication mechanisms (physi-
cal network access versus remote access via WiFi), and other
aspects, affect the ease with which an attacker can compro-
mise the sensors [7].

In addition to malicious inputs, sensor inputs can be un-
reliable due to noise, packet loss, and faults [46]. Various
CPS control algorithms either make assumptions regarding
the reliability or trustworthiness of sensor inputs, or incor-
porate mechanisms like filters and decoders to to prevent,
detect and survive unreliable sensor inputs [5]. Assumptions
typically concern the amount of reliable data: consensus al-
gorithms used require at least some number of sensor inputs
to be reliable [5], and compressed sensing algorithms require
approximately half of sensors to be trustworthy [18]. To
evaluate trustworthiness of sensor input data one may use
methods from literature on wireless sensor networks [38]
[57].

2.2 Reliability and Fault Tolerance
Embedded and safety-critical systems have a long tra-

dition of creating designs that survive random mechanical
and hardware faults due to manufacturing imperfections and
random events such as cosmic rays [55]. This field is largely
motivated by the imperfect reality of material world, thus lo-
cated more on towards physical side of CPS. One of the ma-
jor design-time techniques to achieve higher fault-tolerance
is redundancy – adding functionally identical components in
order to preserve system’s operation in case one of compo-
nents fails.

One of the well-established analytic operations in reli-
ability engineering is Failure Modes and Effects Analysis
(FMEA) [54]. The goal of this analysis is to evaluate the
system’s reliability in terms of the impact (”effects”) that
failing components have on other components and the whole
system. Such evaluation often presupposes random indepen-
dent failures, such as mechanical malfunctions or hardware
defects, in order to stochastically investigate the most likely
failure states of the system (also known as modes). Some-
times FMEA is applied manually as a design process [6],
but over the last two decades multiple tools have emerged
to fully automate FMEA [25] [60].

For this work we consider a generalized version of FMEA
that not only calculates system failure modes and their prob-
abilities, but also adds cost-constrained redundancy in sen-
sors and controllers to reduce failure probability to an ac-
ceptable domain-specific value. This analysis can be seen
as an abstraction of a semi-automated design process that
arrives at a sufficiently redundant and acceptably cheap ar-
chitecture.

2.3 CPS Control
Control engineering focuses on designing an algorithm to

impose actuation on a system, state of which is being mon-
itored, in order to bring the system to a desired state [45].
Control design is often model-based where the plant (the sys-
tem and environment under control) and the controller (the
algorithm) are represented as state transfer functions. For
complex systems control engineering typically includes ex-
tensive simulation of the system with mixed qualitative and
quantitative judgment, using tools like MATLAB/Simulink
[9]. Smaller systems may be analyzed with more theoret-

ical and stronger-guarantee approaches such as Lyapunov
functions [23].

Regardless of what kind of analysis is done on a control
system, this analysis needs to consider many design param-
eters such as the system equations, type of controller (reac-
tive, predictive, adaptive), control gains, and control perfor-
mance requirements (rise time, time-to-peak, settling time,
and percent overshoot) [8]. For this paper we adopt a black-
box view on these parameters, and represent them as a single
control safety analysis with inputs and outputs. The goal
of such analysis is to ensure that the controller meets the
requirements given the system model.

Applying the classic control methods to cyber-physical
systems faces a number of obstacles. Some of them are the
uncertainty of the environment [49], importance of timing
(which is often abstracted out of control models) [36], and
need to explicitly consider security that can be compromised
through sensors and actuators [5]. Overcoming these obsta-
cles often leads to challenging integration with other model-
ing approaches, such as state machines and hybrid systems
[4]. Our paper takes steps towards this integration with re-
liability and security domains.

Recent work on secure CPS control addresses on sensor
and actuator security for various domains (e.g., smart grids
[41]) and types of attacks (e.g., replay attacks [40]). One
of important results is a set of robust state estimation al-
gorithms that have theoretical guarantees in face of sensor
attacks such as spoofing and replay [18] [46]. We build upon
this body of research in our paper, and specify the important
sensor trustworthiness assumptions behind this work.

2.4 Architectural Modeling in AADL
The Architecture Analysis and Design Language (AADL)

[19] is a Society of Automotive Engineers (SAE) standard
aimed at describing the software and hardware architecture
of real-time embedded systems. AADL provides constructs
focused on describing the runtime software architecture in
terms of processes, threads, and data, and the executing
platform in terms of processors, networks, memory storage
units, etc, and their relationship based on binding proper-
ties. AADL is designed to host the multiple analysis algo-
rithms used to verify different critical properties of embed-
ded real-time systems and CPS in general. These properties
include timing requirements (e.g., an airbag inflates within
0.1 seconds), logical correctness (e.g., absence of deadlocks),
thermal safety (e.g., no overheating), fault tolerance (e.g.,
tolerate failure of one processor), and many others.

To support the ever-increasing number of analysis algo-
rithms used in CPS, AADL allows the definition of sub-
languages in the form of an annex and the corresponding
compiler submodule. An annex allows the designer to add
detailed descriptions to part of the model to be used in a
particular analysis. For instance, the Behavioral Annex [20]
allows a component’s detailed discrete-state behavior to be
analyzed by model checkers. Annexes are a powerful ex-
tension mechanism that allows AADL to become the lingua
franca of model-based engineering research with an increas-
ing acceptance in beyond the automotive industry.

Another important feature of AADL is a mode – a config-
uration of a system with different components, connections,
and values of properties. For example, a car may be in the
cruise control mode or the manual mode, which differ in
whether a cruise controller actuates the accelerator. AADL

modes allow specification of discrete switching behavior that
is formally equivalent to timed abstract state machines [59].
Modes have been a feature of architectural languages since
the MetaH language [58], and AADL unites other advanced
features with modes to enable expressive and flexible system
modeling. In this paper we will use modes to represent more
likely failure configurations of a system, e.g., if a sensor is
malfunctioning.

2.5 Analysis Contracts Approach
The capacity of AADL to host an unlimited number of

analysis algorithms with custom annexes has positioned it
as a powerful tool to tackle the heterogeneity of CPS en-
gineering. Unfortunately, these algorithms are traditionally
developed within a specific scientific domain, making their
implicit assumptions and creating specialized abstractions
that ignore potential interactions with other analyses. As
a result, analyses may contradict each other’s assumptions
about the system and its environment, thus invalidating
their own outputs. To deal with this problem we developed
a methodology of analysis contracts [42] [52] that enables
the description of the contracts between analysis and the
system model in the form of inputs, outputs, assumptions,
and guarantees. These specifications are described in the
contracts annex with formalized syntax and semantics. The
active toolset was developed to support automated analytic
integration [51].

In order to define an analysis contract we first need to
define a formal structure behind a set of domains, such as
reliability and control. Each domain needs to capture the
semantics in which the effects of the interacting analyses
can be given meaning that can be automatically verified.
The prior work incorporated a number of special verifica-
tion tools: Spin for Promela language [27] and Z3 for Sat-
isfiability Modulo Theories (SMT) v2 language [12]. So far
the contract language is composed of a first-order and linear
temporal logic fragments. We utilize the former in this pa-
per and explore the possible second-order and probabilistic
extensions.

2.6 Related Work
There is a growing body of literature on integrating het-

erogeneous models and domains at runtime. For example,
in [16] the authors present a model-based methodology for
designing a car’s control system. Such methodologies, imple-
mented in frameworks like OpenMETA [56] and METROII
[10], integrate a set of models through formal relations of
abstraction, transformation, and composition, typically pro-
viding strong theoretical guarantees. However, these guar-
antees often do not extend beyond the traditional concerns
such as correctness and safety. In particular to embed such
a cross-cutting concern as security into these methodolo-
gies, one would likely have to change almost all modeling
formalisms, which may be not feasible or scalable.

Assume-guarantee reasoning originates in Hoare’s logic
[26] and is widely used today in component-based modeling
for CPS [53]. Multiple methodologies and frameworks asso-
ciate contracts with components of the system and strive to
demonstrate system-wide guarantees given local component
contracts [3] [43] [44]. Unfortunately, most security concerns
are inherently not isolated to a single component or sub-
system, and propagate across most components’ contracts
[5]. Such global security specification takes away the com-

positional power of contracts, and often leads to the state
explosion in verification [39]. On the contrary, analysis con-
tracts change the perspective to the algorithms that design
and verify the model, creating opportunities to specify secu-
rity concerns that cannot be associated with any particular
component.

3. INTER-DOMAIN VULNERABILITIES
In this section we describe a realistic example of an inter-

domain vulnerability that can occur in cyber-physical sys-
tems. We consider the example of a self-driving car equipped
with sensors for braking functionality. We explain the in-
terdependencies between analyses at design time that can
result in vulnerabilities, and adversary models and attacks
that can exploit such vulnerabilities at runtime.

Figure 1: An autonomous car driving behind a lead-
ing car uses its distance and velocity sensors to make
a braking decision.

3.1 Scenario Description
Consider a braking scenario for self-driving cars. Fig. 1

shows two cars traveling in the same direction. The follower
car is equipped with adaptive cruise control. The leading
car is about to stop, and the follower needs to make a de-
cision: at what point and how hard to actuate the brakes.
The decision to brake is based on a number of sensors that
estimate velocity and position relative to the leading car.
Such a decision is critical since any mistake can endanger
lives.

The autonomous car systems in Fig. 1 use velocity and dis-
tance sensors for braking. There are two distance sensors,
and each uses a different technology to measure distance: a
lidar for laser ranging and a car-to-car (C2C) communica-
tion network 1 to exchange position information. Further,
the lidar is internal to the car, and the network be accessed
from the outside. There are two velocity sensors, and each
uses a different technology to measure velocity: a GPS and a
traditional magnetic speedometer. Similar to distance sen-
sors, the speedometer is inside the car, and the GPS is out-
side. Table 1 shows the sensed variable, technology, and
placement for the distance and velocity sensors used in self-
driving cars.

The sensors send their data to the braking controller through
the widespread CAN (Controller Area Network) bus. Based
on the data the controller decides the moment and power of
braking at every periodic execution. Since the controller has
no other perception the physical world except the sensors, it
is important which sensors are more trustworthy than oth-
ers. Here we come to another important sensor parameter
– trustworthiness – that indicates whether a sensor can be
compromised by an attacker. A sensor’s trustworthiness de-
pends not only on the sensor itself, but also on the adversary
model.

1www.car-2-car.org

Sensor variable Technology Placement
Distance Lidar Internal
Distance C2C External
Velocity Speedometer Internal
Velocity GPS External

Table 1: Sensor type, technology and placement

3.2 Adversary Model
An adversary model can consider different properties of

a cyber-physical system that an adversary can attack. For
example, an adversary could attack the sensors, actuators,
controllers, or communication networks. In our scenario we
consider the case where an adversary can attack the sensors,
but not other components. We assume that other compo-
nents are trustworthy. Note that we make this assumption
to demonstrate inter-domain vulnerabilities, and there is no
loss of generality.

A powerful adversary could attack any sensor, no matter
whether internal or external. Further, such an adversary
could attack a sensor either through physical access or re-
motely via network access. As we will discuss shortly, such
a powerful adversary could trivially break the system and
cause system failures. In a more realistic case, an adver-
sary is less powerful, but intelligently manages to exploit
a vulnerability and causes a system failure. We consider
an adversarial model with an intelligent adversary who can
only attack external sensors via physical access. We describe
below the ways in which such an adversary could exploit
inter-domain vulnerabilities.

3.3 Analyses
To design the braking system for a self-driving car, engi-

neers carry out several analyses at design time. We consider
three analyses: FMEA analysis, sensor trustworthiness anal-
ysis, and control safety analysis. These analyses are carried
out by engineers from different domains who generally work
independently of each other. When analyses from differ-
ent domains work on the same system and make different
assumptions, it can be difficult for engineers to coordinate
and account for such assumptions.

3.3.1 FMEA
FMEA considers the probabilities of sensors malfunction-

ing due to random failures. It further assumes that failures
of different sensors are independent. The goal of FMEA
analysis is to incorporate redundancy into the design to han-
dle random failures. For example, in our scenario with dis-
tance and velocity sensors, FMEA could output the three
configurations shown in Table 2. The nominal mode indi-
cates the default situation when all sensors function prop-
erly. Consider the example of ”Fail mode 1” configuration.
FMEA outputs this configuration after considering foggy
conditions. Since lidar may not work under foggy and rainy
conditions, the configuration indicates that the lidar sensor
may not function properly. The remaining sensors func-
tion properly. The system may have several probable failure
modes depending on the technologies used. FMEA may also
change the sensor set if the probability of random system
failure is too high. We consider this situation in detail in
Sec 4.

3.3.2 Sensor Trustworthiness Analysis

www.car-2-car.org

Sensor Available in mode
nominal fail 1 (fog) fail 2 fail 3

Lidar X X X X
C2C X X X X
Speedometer X X X X
GPS X X X X

Table 2: Configurations output by the FMEA anal-
ysis. X indicates that the sensor is functioning prop-
erly. X indicates that the sensor is malfunctioning
and not providing data.

Sensor trustworthiness analysis determines whether a sen-
sor can be compromised by an attacker. It could consider
sensor placement and adversary model as inputs. Note that,
unlike FMEA analysis, it does not consider the probabilities
of sensors malfunctioning due to random failures. Instead,
it could take into account the fact that the probability of
an adversary attacking two similar sensors could be interde-
pendent.

In the case of a powerful adversary that can attack both
external and internal sensors, trustworthiness analysis would
determine that all four sensors in our scenario are not trust-
worthy. In the case of an adversary that can attack only
external sensors, it will determine that only the external
sensors are not trustworthy. Table 3 shows the output of
the trustworthiness analysis for three adversary models.

3.3.3 Control Safety Analysis
Control safety analysis generally decides whether control

is functionally correct, stable and meets the required perfor-
mance level. Similar to FMEA and trustworthiness analy-
sis, it can make assumptions regarding sensors. According
to [18] it assumes that at least half of all the sensors are
trustworthy.

3.4 Exploiting Inter-Domain Vulnerabilities
Unsatisfied assumptions behind analyses can lead to vul-

nerabilities, which could be exploited by an adversary. In
our scenario, control safety analysis makes an assumption
that at least half of sensors are sending trustworthy data.
This assumption can be broken in two ways. The first one
may happen during when the most error-prone sensors are
also the ones that are less trustworthy. In this case at de-
sign time FMEA will try to replicate these sensors to in-
crease reliability, and simultaneously decrease the propor-
tion of trustworthy sensors below 50%.

The second possibility for this assumption to be broken
is at runtime. Even if an external attacker isn’t powerful
enough to overcome all sensors in the nominal mode, it is
possible to exploit the system when one of sensors is not
available, e.g., due to fog. The cause of this vulnerability is
that the assumption doesn’t hold in all likely failure modes.

Table 4 illustrates an external adversary using the dissat-
isfied assumption failure modes to cause system failure in
two out of four modes. In the nominal mode both distance
and velocity sensors have the trustworthiness proportion of
50%. In fail mode 1 distance sensing is compromised because
the only distance sensor C2C is untrustworthy. Fail mode
2 has the required proportion of trustworthy sensors. Fail
mode 3 violates the assumption because the only available
velocity sensor is compromised.

To summarize, an external attacker who can attack only
external sensors and is harmless in the nominal mode, is still
capable of exploiting the vulnerability that comes from not
considering failure modes. This example shows that inter-
domain vulnerabilities may occur if analytic assumptions are
unsatisfied. In the next section we address this problem in a
more general way, logically targeting all possible situations
when the assumptions can be violated.

4. ANALYSIS CONTRACTS APPROACH
In this section we present a detailed formalization of the

self-driving car and its analyses to expose and eliminate vul-
nerabilities.

Figure 2: System architecture for braking in a self-
driving car.

System architecture for braking in a self-driving car.

4.1 System Model
We model the system design (in Fig. 2) using the AADL

architecture description language (see Sec. 2.4 for back-
ground on AADL). We build our model upon a collision
detection and avoidance model for an autonomous vehicle
created by McGee et al. [14]. The original model contains a
number of sensors, processing units (hardware devices and
control threads), actuators, and other car components, or-
ganized into several functional subsystems: collision predic-
tion/avoidance/response, networking, user interaction, and
physical devices (various sensors, brakes, airbags, radio, and
so on). We enhance this model by adding a lidar and C2C
sensors for distance and a magnetic speedometer with GPS
for velocity measurement 2.

The first step in modeling is to formalize the elements
and properties of the automobile system that are relevant
to the FMEA, safe control, and sensor trustworthiness anal-
yses. AADL allows its users to define data types, compo-
nent types, and new properties, and we use this flexibility
to represent the aspects of the system that may lead to a
vulnerability.

AADL modes encode the probable failures of the system.
A mode example is given in rows of Table ?? (from Sec 4).
Each mode m contains a full system architecture: sensors
(m.S), controllers (m.R), and actuators 3. In our prior work
the analysis contracts methodology considered a single mode
of the system, and we now extend it to several modes.
2Our AADL model for a self-driving car can be downloaded
at [website URL will be added in the final version].
3Although actuators are critical components of the system,
we do not model them explicitly because our focus is on
interaction between sensors and controllers.

Sensor Placement Powerful adversary External Adversary Internal Adversary
Lidar Internal X X X
C2C External X X X
Speedometer Internal X X X
GPS External X X X

Table 3: Sensor trustworthiness for three adversary models.

Available in mode
Variable Sensor Trustworthiness nominal fail 1 (fog) fail 2 fail 3
Distance Lidar X X X X X
Distance C2C X X X X X
Velocity Speedometer X X X X X
Velocity GPS X X X X X
Control safety assumption X X X X

Table 4: External attacker exploiting inter-domain vulnerabilities.

We specify AADL elements and properties as follows:

• Sensors S have the following properties:

– Sensed variables VarsS ⊆ V: the variables for
which the sensor can provide series of values. For
example, a speedometer provides values for veloc-
ity. Some sensors may provide several variables,
e.g., GPS values can be used to compute both the
absolute position and distance to an obstacle.

– Power status Pow (boolean values: B ≡ {>,⊥}):
whether the sensor is turned on by the user or
engineer.

– Availability Avail (B): whether the sensor is pro-
viding data. This property does not presuppose
that the data is trustworthy or compromised.

– Trustworthiness Trust (B): whether the sensor has
been compromised by the attacker and is sending
untrustworthy data.

– Probability of mechanical failure Pfail (%): the
probability of a sensor mechanically malfunction-
ing and remaining broken (Avail = ⊥) within a
unit of operation time (e.g., an hour or a day).

– Sensor placement Place (internal or external): the
sensor may be located on the outer perimeter
of the car and facing outwards, or on the inside
perimeter and not exposed to the outside world.

• Controllers R have the following properties:

– Required variables VarsR ⊆ V: the variables for
which the controller should receive values from
sensors. For example, the automated braking con-
troller should receive velocity and distance to the
closest obstacle on the course.

– Power status Pow (B): analogous to sensors, whether
the controller is turned on by the user or engineer.

– Availability Avail (B): whether the controller is
functioning and providing output to actuators.
This property does not presuppose that the con-
trol is safe or uncompromised.

– Safety of control CtrlSafe (B): whether the con-
troller meets the control performance, safety, and
stability requirements.

• System modes M (i.e., different configurations) have
the following properties:

– Required fault-tolerance α (%): the maximum ac-
ceptable probability of the system’s mechanical
failure. The final design is expected have a prob-
ability of random malfunction no more than α.

– Attacker model AttackM (internal or external):
the type of the attacker considered in the system
design. For simplicity, we consider only one di-
mension, that is, internal or external attacker. If
required, we could model other dimensions such
as local or remote attacker. Each attacker model
contains a sensor vulnerability evaluation func-
tion IsVuln : S → B that determines whether a
particular sensor can be attacked by this attacker.

Each property P is formally a function of the component
set S that maps each component to a value in a set T of
the property’s type values, P : S → T. Same applies to
controller and mode properties. We will denote it in an
object-oriented style: Sonar.Pfail = 0.01% means that the
sonar sensor has a probability of random failure equal to
0.01%.

AADL connections and ports describe how data flows be-
tween sensors S and actuators (located in the physical sub-
system) through controllers R (located in other subsystems)
by the means of the car’s CAN bus. Although assumptions
and guarantees can be formulated in terms of connections
and ports, we do not use these elements in our contracts for
this paper. Instead we encode the data flows between S and
R in terms of sensed variables VarsS and required variables
VarsR.

The described properties do not reference each other or
depend on each other, so not every AADL instance is con-
sistent: for instance, only powered sensors can provide data:
∀s ∈ S · s.Avail =⇒ s.Pow. Checking satisfaction of such
conditions is a relatively well-explored problem and can be
solved using constraint-based solving for every mode. Lan-
guages and tools for such problems had been previously de-
veloped for UML/OCL [15], Acme [22], AADL [28], and
other architecture description languages.

We, on the contrary, investigate a more challenging prob-
lem: how to support analysis-driven change that preserves
model consistency beyond constraints. It is important to

verify each analysis operation and their order to assure that
the resulting design is sound. To this end, it is essential to
capture the interactions between analyses and the model,
which we do in the next subsection.

4.2 Specification of Contracts
FMEA AnFMEA. The goal of the FMEA analysis is to

find a component redundancy structure 4 that is capable
of withstanding the expected random failures of individual
components and provide a system with a probability of fail-
ure no larger than α. Hence one output of FMEA is the
selection of sensors and controllers.

Another output of FMEA is a set of likely5 failure modes.
The output will contain failure modes (i.e., system configu-
rations with some sensors Avail = ⊥) that need to be con-
sidered for the system to be safe.

A typical FMEA assumption is that the random mechan-
ical failures are independent among all of the system’s com-
ponents. That is, a failure of one sensor does not increase
the probability of another sensor failing. This assumption
allows for simpler reasoning about failure propagation and
failure modes during the analysis. Since the probabilities of
failure are usually generalized from empirical data, we add
a correlation tolerance bound εfail to the assumption.

A guarantee of FMEA is that the controllers have all the
required variable series to actuate the system. This guar-
antee does not ensure the full correctness of the analysis
(the system may still not be fault-tolerant), but it allows to
verify that the analysis has not rendered the system non-
functional.

Thus we arrive at the contract for AnFMEA:

• Inputs: Pfail, α.

• Outputs: S, R, M.

• Assumption. Component failure independence – if one
component fails, another component is not more likely
to fail:

∀c1, c2 ∈ S ∪ R : P (¬c1.Avail | ¬c2.Avail) ≤ P (¬c1.Avail) +
εfail.

• Guarantee. Functioning controllers – some sensor pro-
vides each variable that some controller expects:

∀m ∈ M · ∀c ∈ m.R · ∀v ∈ c.VarsR · ∃s ∈ m.S · v ∈ s.VarsS

Sensor trustworthiness AnTrust. This analysis determines
the possibility of each sensor being compromised (which we
represent with boolean Trust) potential given their place-
ment, power status, availability, and an attacker model. To
avoid ambiguity we assume that unpowered and unavailable
sensors cannot be compromised.

The sensor trustworthiness analysis views failures funda-
mentally differently from FMEA. It is expected that some
sensors may go out of order together because of a coordi-
nated physical attack or an adverse environment like fog.
This leads to the failure dependence assumption with an

4This analysis is constrained by cost (in terms of funds and
available space) of components: the trivial solution of repli-
cating each sensor a large number of times would typically
not be acceptable.
5The definition of likelihood for failure modes may differ
depending on the system requirements. For example, one
may consider failure modes with probabilities ≥ 0.1α.

error bound εtrust. While not being a direct negation of
FMEA’s assumption, failure dependence makes analysis ap-
plicable in a different scope of designs. Whether the analyses
can be applied together on the same system depends on cal-
ibration of the error bound parameters εfail and εtrust.

The correctness of the sensor trustworthiness analysis can
be expressed declaratively: untrustworthy sensors are the
ones that can be attacked by the selected attacker model.
We put this statement in the contract as a guarantee to
create a sanity check on the analysis implementation, which
may contain unknown bugs.

Given the above, we specify the contract for AnTrust:

• Inputs: S, Place, Pow, Avail, AttackM.

• Output: Trust.

• Assumption. Component failure dependence – some
components are likely to fail together:

∃c1, c2 ∈ S ∪ R : P (¬c1.Avail | ¬c2.Avail) ≥ P (¬c1.Avail) −
εtrust.

• Guarantee. Correct trustworthiness assignment – a
sensor is not trustworthy if and only if it is vulner-
able for the considered attacker model:

∀m ∈ M, s ∈ m.S · s.Trust = ⊥ ⇐⇒ m.AttackM.IsVuln(s).

Control safety AnCtrl. This analysis determines whether
the control has a required performance, is stable and ro-
bust(or, in short, safe). We abstract away the details of this
analysis and specify that it requires the control model (sen-
sors, controllers, actuators and their variables) and outputs
whether the control is safe. More details can be added as
necessary for potentially more refined contracts.

A common feedback controller architecture includes a state
estimator (e.g., a Kalman filter or a decoder) and a control
algorithm, such as PID. A decoder is used to estimate the
genuine system state when an attacker may have falsified
some sensor data. According to Propositions 2 and 3 [18],
it is required that at least half of sensors that sense the
same variable are trustworthy. Otherwise a decoder cannot
discover or correct an intentional sensor attack, leading to
the system being compromised. Powered off and unavailable
sensors are considered trustworthy, but do not contribute to
the trustworthiness estimate.

We specify the assumption about a half of sensors being
trustworthy by establishing a mapping function f (for each
variable) between trustworthy and untrustworthy sensors.
Existence and surjectivity6 of f mean that for each untrust-
worthy sensor there exists at least one unique trustworthy
sensor. Therefore, the proportion of trustworthy sensors is
at least 50%.

We thus arrive at the following contract for AnCtrl:

• Inputs: S, VarsS, R, VarsR.

• Output: CtrlSafe.

• Assumption. Minimal sensor trust – for each untrusted
sensor there is at least one different trusted sensor:

6A surjective function covers its full range of values.

∀m ∈ M ∀c ∈ m.R, v ∈ c.VarsR · ∃f : S→ S · ∀su ∈ m.S · v ∈
su.VarsS ∧ su.Trust = ⊥ =⇒ ∃st ∈ m.S · v ∈ st.VarsS ∧
st.Trust = > ∧ f(st) = su.

7

• Guarantee: none.

This concludes the specification of analysis contracts. We
remind the reader that the ultimate design goal is to apply
the analyses in a way that guarantees that the sensors trust-
worthiness is adequate for the considered attacker model
(s.Trust = ⊥ ⇐⇒ AttackM.IsVuln(s)), the system’s con-
trol is safe (CtrlSafe = >), and that the system’s failure
probability is not greater than α. In the next subsection we
demonstrate how we achieve this goal.

4.3 Contract verification
We first discuss the dependency resolution between anal-

yses. After that we separately describe verification of three
types of contracts: logical statements within first-order SMT,
logical statements beyond first-order SMT, and probabilistic
statements.

4.3.1 Dependency Resolution

Figure 3: Dependencies of analyses.

As it follows from the contracts, the analyses under con-
sideration have the following input-output dependencies (see
Fig. 3 for illustration):

• AnFMEA does not depend on any analyses considered
in this paper.

• AnTrust depends on AnFMEA that outputs S – an in-
put for AnTrust.

• AnCtrl depends on AnFMEA that outputs S and R –
inputs for AnCtrl.

• AnCtrl depends on AnTrust that outputs Trust – part
of an assumption for AnCtrl.

The active tool contains an algorithm to determine these
dependencies and sequence the analyses in a way that re-
spects the dependencies [51] [52]. For example, if a user

7We could have written this assumption in a simpler form,
”at least half of sensors are trustworthy”: ∀m ∈ M ·
|m.Strustworthy|/|m.S| ≥ 0.5. Unfortunately such state-
ments cannot be verified in classic SMT, and theories with
set cardinalities have not been implemented for SMT yet.

changes AttackM and tries to execute AnCtrl, AnTrust has
to be executed first so that the assumption of AnCtrl can be
verified on values of Trust that are consistent with AttackM.
Moreover, before AnTrust can be executed, AnFMEA also
has to be executed since AnTrust (and indeed AnCtrl) de-
pends on it as well.

4.3.2 Deterministic Contracts
Some deterministic contracts in this paper have an exist-

ing algorithmic solution for verification. In particular, the
deterministic contracts written using only first-order quan-
tification over bounded sets can be translated into SMT pro-
grams and verified using the Z3 SMT solver with the exist-
ing implementation of the active tool [51]. These contracts
are the guarantees of AnFMEA and AnTrust because they
quantify over sets M, S, and R, all of which are bounded.

The second-order quantification means quantifying over
functions, like the sensor mapping function f in the assump-
tion of AnCtrl. Such statements can also be translated di-
rectly to SMT programs. If the quantified functions have
bounded domain and range sets, these statements are de-
cidable by existing SMT solvers. This second-order trans-
lation and verification have not yet been implemented in
active, and we leave this for future work. Achieving this
goal would require three steps: (i) incorporating second-
order clauses into the contract language syntax, (ii) defining
the clauses’ semantics, and (iii) augmenting the implemen-
tation of the active verifier – a module of active that
translates contracts into SMT and manages their verifica-
tion. Once the second-order quantification is implemented
in active, it would be possible to obtain the results in Table
4 automatically by invoking active verifier on an assump-
tion and a system model.

4.3.3 Probabilistic Contracts
The assumptions of AnFMEA and AnTrust are specified in

terms of probabilities of events like a sensor being unavail-
able. The probabilistic specification is convenient to capture
statements that go beyond boolean logic, which happens of-
ten in domains related to rare or uncertain events and be-
haviors. Fault tolerance, cryptography, and wireless ad hoc
networks are examples of such domains.

A big challenge in verifying probabilistic statements is
finding an appropriate model to express their semantics.
Finding an axiomatic logical interpretation such as SMT
is not practical unless a contract leads to a contradiction
via theorems without considering the actual distributions,
which is not a general case. Therefore we need to go beyond
SMT in this verification.

One approach may be mapping an AADL model into a
probabilistic semantic space. This would entail firstly incor-
porating some probabilistic logic like PCTL (Probabilistic
Computation Tree Logic) [24] into the contracts language.
Secondly and most importantly, one would need to create
a AADL-based probabilistic state space models with such
formalisms as Markov chains or Markov rewards [50]. The
role of these models would be to capture the behavior in
a certain domain or subsystem, as we did with Promela
models in [52]. Whether such models can be generalized
beyond a single domain is another open research question.
Finally, probabilistic model checking tools like PRISM [34]
or MRMC (Markov Reward Model Checker) [32] would need
to be integrated with the verification algorithms of the ac-

tive verifier.
A less general alternative is building a custom verification

solution for specific domains and contracts. For example,
one could implement an algorithm in a general-purpose pro-
gramming language to verify the assumptions of AnFMEA

and AnTrust. This method would not provide the guaran-
tees and generality of model-based approaches. However,
it may be more practical in case general solutions are not
scalable or even feasible. To summarize, the investigation of
verification for probabilistic contracts is a major direction
that we envision for future work.

5. LIMITATIONS
Formal methods face a number of threats in terms of prac-

tical adoption. The analysis contracts approach captures the
interactions between analyses using formal logic and replies
upon automated verifiers. Both require up-front effort in
building the formal methods expertise and tools for their
verification. However, formal specification and verification
are successfully used in domains, for example avionics, where
the cost of ensuring safety and security of human lives justi-
fies the additional effort. Hence, the task of carrying out the
contracts methodology can be assigned to a dedicated team
of integration engineers to overcome the practical adoption
obstacles.

There are also several technical challenges to the analysis
contracts approach. Scalability of verification can be an is-
sue depending on the type of contract and model involved.
In our prior work, we showed the viability of our approach
for moderate-size behavioral problems [52]. Expressiveness
of the contracts relies on the logical theories and tools we
employ, so absence of theories may be a roadblock. One such
instance is the assumption of AnCtrl that could’ve been ex-
pressible in SMT if not for the lack of operators for set cardi-
nality or array counting. We could incorporate more general
theories to enhance expressiveness. However, increasing ex-
pressiveness is associated with additional challenges such as
decidability. For example, first-order predicate logic is de-
cidable with quantification over bounded sets, but not over
unbounded sets. Hence, we have to carefully balance ex-
pressiveness with feasibility and decidability. Lastly, as we
continue to evaluate our approach on other domains, we may
uncover additional challenges to the contracts methodology.

6. DISCUSSION AND CONCLUSIONS
The goal of this work was to improve security engineering

for cyber-physical systems. We described inter-domain vul-
nerabilities on an example of domains of reliability, sensor
security, and control. Towards the end of detecting and pre-
venting such vulnerabilities we employed a methodology of
analysis contracts to specify and verify implicit assumptions
and dependencies between analyses. This work has exposed
a number of intriguing research directions in CPS modeling
and verification.

One interesting direction for future work is extending the
described analyses towards richer contracts. A control as-
sumption that we did not consider is invariance of the set
of attacked nodes and the attacker model during runtime.
As stated in [18], ”we will assume [...] that the set of at-
tacked nodes [i.e., sensors] does not change over time.” Prac-
tically this is a fairly limiting assumption for CPS like self-
driving cars that move through a highly dynamic environ-

ment. To verify this assumption, we’d need to model factors
that change sensors over time (attacks, failures), as well as
an evolutionary attacker model that may react to the sys-
tem’s responses. Stochasic multiplayer games in PRISM [34]
is a potential approach for verification. The analysis would
then be constrained to designs where the set of attacked
sensors does not change, or at least grow. Another example
of contract refinement is more complex notions of trustwor-
thiness that may have numeric values, and sensors would
have different weights based on their a priori error margins.
Such notions would nudge our verification more towards op-
timization problems.

Another future work opportunity is incorporating more
analyses from the domains of this paper. So far we have
explored the control analysis for decoding potentially un-
trustworthy sensor readings. Other possibilities are stealth
attack detection [41] or robustness for systems with noise
[46]. Incorporating these analyses would allow us to move
beyond the black-box approach to control analyses, thus im-
proving the depth and quality of verification.

Finally, one can integrate other domains with the ones in
this paper. For example, one may use logical hybrid pro-
grams [47] to analyze safety of braking behavior. But what
are the theoretical guarantees if a number of sensors are
compromised? Answering this question would require inter-
action between domains of sensor security, control, schedul-
ing, and hybrid systems. For example, if the braking deci-
sion is made by voting among several controllers, it is critical
to know the last moment to submit a vote, in order to not
miss the braking deadline. Can compromised voters sway
the decision and cause a collision? The advantage of ex-
ploring hybrid programs is that they allow modeling safety-
critical behavior in continuous time, unlike many discrete
approximations.

To conclude, we established that there are important yet
implicit interactions between traditional CPS domains and
sensor security. If not handled carefully, such vulnerabilities
may be exploited towards devastating consequences. The
analysis contracts methodology showed promise for elimi-
nating such vulnerabilities, and we plan to develop it fur-
ther.

Acknowledgments
Copyright 2015 ACM. This material is based upon work
funded and supported by the Department of Defense un-
der Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering In-
stitute, a federally funded research and development center.
This material has been approved for public release and un-
limited distribution. DM-0002551.

This work was also supported in part by the National
Science Foundation under Grant CNS-0834701, and the Na-
tional Security Agency.

The authors thank Javier Camara for his help in exploring
the body of research on probabilistic model checking.

7. REFERENCES
[1] P. Axer and R. Ernst. Designing an Analyzable and

Resilient Embedded Operating System. In Informatik
2012, 42. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), 16.-21.09.2012, Braunschweig, 2012.

[2] R. Baheti and H. Gill. Cyber-Physical Systems.
Technical report, 2011.

[3] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi,
R. Passerone, and C. Sofronis. A contract-based
formalism for the specification of heterogeneous
systems. In 2008 Forum on Specification Verification
and Design Languages. IEEE, sep 2008.

[4] D. Broman, E. A. Lee, S. Tripakis, and M. Törngren.
Viewpoints formalisms, languages, and tools for
cyber-physical systems. In Proceedings of the 6th
International Workshop on Multi-Paradigm Modeling -
MPM '12. ACM Press, 2012.

[5] A. A. Cardenas, S. Amin, and S. Sastry. Secure
control: Towards survivable cyber-physical systems. In
The 28th International Conference on Distributed
Computing Systems Workshops. IEEE, 2008.

[6] C. S. Carlson. Effective FMEAs. John Wiley & Sons
Inc., 2012.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis,
F. Roesner, and T. Kohno. Comprehensive
Experimental Analyses of Automotive Attack
Surfaces. In Proceedings of the 20th USENIX
Conference on Security, SEC’11, Berkeley, CA, USA,
2011. USENIX Association.

[8] D. W. S. Clair. Controller Tuning and Control Loop
Performance. Straight-Line Control Co., Newark,
second edition edition edition, 1990.

[9] J. Dabney and T. L. Harman. Mastering SIMULINK
2. Prentice Hall, Upper Saddle River, N.J., 1998.

[10] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L.
Sangiovanni-Vincentelli, A. Simalatsar, and Q. Zhu.
metro II. ACM Trans. Embed. Comput. Syst.,
12(1s):1, mar 2013.

[11] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto,
A. Sangiovanni-Vincentelli, G. Yang, H. Zeng, and
Q. Zhu. A Next-Generation Design Framework for
Platform-based Design. In DVCon 2007, 2007.

[12] L. de Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In Lecture Notes in Computer Science, pages
337–340. Springer Science Business Media, 2008.

[13] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity - the Ptolemy approach. Proc. IEEE,
91(1), 2003.

[14] Ethan McGee, Mike Kabbani, and Nicholas Guzzardo.
Collision Detection AADL, 2013.
https://github.com/mikekab/collision detection aadl.

[15] A. Evans, S. Kent, and B. Selic. UML 2000 - The
Unified Modeling Language. Advancing the Standard.
Springer, New York, 2000.

[16] E. Eyisi, Z. Zhang, X. Koutsoukos, J. Porter,
G. Karsai, and J. Sztipanovits. Model-Based Control
Design and Integration of Cyberphysical Systems: An
Adaptive Cruise Control Case Study. Journal of
Control Science and Engineering, 2013, 2013.

[17] J. Faber. Verification Architectures: Compositional
Reasoning for Real-Time Systems. In Integrated
Formal Methods. Springer Science Business Media,
2010.

[18] H. Fawzi, P. Tabuada, and S. Diggavi. Secure
Estimation and Control for Cyber-Physical Systems
Under Adversarial Attacks. IEEE Transactions on
Automatic Control, 59(6), 2014.

[19] P. H. Feiler, B. Lewis, S. Vestal, and E. Colbert. An
Overview of the SAE Architecture Analysis & Design
Language (AADL) Standard: A Basis for
Model-Based Architecture-Driven Embedded Systems
Engineering. In Architecture Description Languages.
Springer Science Business Media, 2005.

[20] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland,
D. Chemouil, and D. Thomas. The AADL behaviour
annex – experiments and roadmap. In 12th IEEE
International Conference on Engineering Complex
Computer Systems (ICECCS 2007). IEEE, 2007.

[21] G. Frehse. PHAVer: Algorithmic Verification of
Hybrid Systems Past HyTech. In Hybrid Systems:
Computation and Control. Springer Science Business
Media, 2005.

[22] D. Garlan, R. Monroe, and D. Wile. Acme:
Architectural Description of Component-Based
Systems. Foundations of component-based systems,
2000.

[23] I. Goldhirsch, P.-L. Sulem, and S. A. Orszag. Stability
and Lyapunov stability of dynamical systems: A
differential approach and a numerical method. Physica
D: Nonlinear Phenomena, 27(3), 1987.

[24] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. Formal Aspects of
Computing, 6(5), 1994.

[25] M. Hecht, A. Lam, and C. Vogl. A Tool Set for
Integrated Software and Hardware Dependability
Analysis Using the Architecture Analysis and Design
Language (AADL) and Error Model Annex. In 2011
16th IEEE International Conference on Engineering of
Complex Computer Systems. IEEE, 2011.

[26] C. A. R. Hoare. An Axiomatic Basis for Computer
Programming. In Programming Methodology, pages
89–100. Springer New York, 1978.

[27] G. J. Holzmann. The Model Checker SPIN. IEEE
Trans. Softw. Eng., 23(5):279–295, may 1997.

[28] J. Hugues and S. Gheoghe. The AADL Constraint
Annex. 2013.

[29] A. Iliaifar. LIDAR, lasers, and logic: Anatomy of an
autonomous vehicle, 2013.

[30] W. Jones. Keeping cars from crashing. IEEE Spectr.,
38(9), 2001.

[31] G. Karsai and J. Sztipanovits. Model-Integrated
Development of Cyber-Physical Systems. In Software
Technologies for Embedded and Ubiquitous Systems.
Springer Science Business Media, 2008.

[32] J.-P. Katoen, M. Khattri, and I. Zapreevt. A Markov
reward model checker. In Second International
Conference on the Quantitative Evaluation of Systems
(QEST'05). IEEE, 2005.

[33] K. Koscher, A. Czeskis, F. Roesner, S. Patel,
T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage.
Experimental Security Analysis of a Modern
Automobile. In 2010 IEEE Symposium on Security
and Privacy. IEEE, 2010.

[34] M. Kwiatkowska, G. Norman, and D. Parker.
Stochastic Model Checking. In Formal Methods for
Performance Evaluation. Springer Science Business
Media, 2007.

[35] E. Lee. The Past Present and Future of
Cyber-Physical Systems: A Focus on Models. Sensors,
15(3), 2015.

[36] E. A. Lee. Cyber Physical Systems: Design
Challenges. In 2008 11th IEEE International
Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). IEEE,
2008.

[37] E. A. Lee. CPS foundations. In Proceedings of the 47th
Design Automation Conference. ACM Press, 2010.

[38] F. G. Mármol and G. M. Pérez. Towards
pre-standardization of trust and reputation models for
distributed and heterogeneous systems. Computer
Standards & Interfaces, 32(4), 2010.

[39] R. Mateescu. Model Checking for Software
Architectures. In Software Architecture, pages
219–224. Springer Science Business Media, 2004.

[40] F. Miao, M. Pajic, and G. J. Pappas. Stochastic game
approach for replay attack detection. In 52nd IEEE
Conference on Decision and Control. IEEE, 2013.

[41] Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson,
H. Lee, A. Perrig, and B. Sinopoli. Cyber Physical
Security of a Smart Grid Infrastructure. Proc. IEEE,
100(1), 2012.

[42] M.-Y. Nam, D. de Niz, L. Wrage, and L. Sha.
Resource allocation contracts for open analytic
runtime models. In Proceedings of the ninth ACM
international conference on Embedded software -
EMSOFT '11. ACM Press, 2011.

[43] G. Nitsche, K. Gruttner, and W. Nebel. Power
contracts: A formal way towards power-closure?! In
2013 23rd International Workshop on Power and
Timing Modeling Optimization and Simulation
(PATMOS). IEEE, sep 2013.

[44] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L.
Sangiovanni-Vincentelli, R. M. Murray, A. Donze, and
S. A. Seshia. A Contract-Based Methodology for
Aircraft Electric Power System Design. IEEE Access,
2:1–25, 2014.

[45] K. Ogata and J. W. Brewer. Modern Control
Engineering. J. Dyn. Sys. Meas., Control, 93(1), 1971.

[46] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada,
O. Sokolsky, I. Lee, and G. J. Pappas. Robustness of
attack-resilient state estimators. In 2014 ACM/IEEE
International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2014.

[47] A. Platzer. Logical Analysis of Hybrid Systems.
Springer Berlin Heidelberg, 2010.

[48] Rajhans, Akshay. Multi-Model Heterogeneous
Verification of Cyber-Physical Systems. PhD thesis,
Carnegie Mellon University, 2013.

[49] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic.
Cyber-physical systems. In Proceedings of the 47th
Design Automation Conference. ACM Press, 2010.

[50] J. E. Rolph and R. A. Howard. Dynamic Probabilistic
Systems Volume I: Markov Models and Volume II:
Semi- Markov and Decision Processes. Journal of the
American Statistical Association, 67(340), 1972.

[51] I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan.
ACTIVE: A Tool for Integrating Analysis Contracts.
In The 5th Analytic Virtual Integration of

Cyber-Physical Systems Workshop, Rome, Italy, 2014.

[52] I. Ruchkin, D. D. Niz, D. Garlan, and S. Chaki.
Contract-based integration of cyber-physical analyses.
In Proceedings of the 14th International Conference on
Embedded Software - EMSOFT '14. ACM Press, 2014.

[53] A. Sangiovanni-Vincentelli, W. Damm, and
R. Passerone. Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical
Systems∗.EuropeanJournalofControl, 18(3), 2012.

[54] H. Schneider. Failure Mode and Effect Analysis:
FMEA From Theory to Execution. Technometrics,
38(1), 1996.

[55] D. P. Siewiorek and P. Narasimhan. Fault-Tolerant
Architectures for Space and Avionics Applications.
2005.

[56] J. Sztipanovits, T. Bapty, S. Neema, L. Howard, and
E. Jackson. OpenMETA: A Model- and
Component-Based Design Tool Chain for
Cyber-Physical Systems. In From Programs to
Systems. The Systems perspective in Computing.
Springer Science Business Media, 2014.

[57] L.-A. Tang, X. Yu, S. Kim, Q. Gu, J. Han, A. Leung,
and T. La Porta. Trustworthiness analysis of sensor
data in cyber-physical systems. Journal of Computer
and System Sciences, 79(3), 2013.

[58] S. Vestal. Mode changes in a real-time architecture
description language. In Proceedings of 2nd
International Workshop on Configurable Distributed
Systems. IEEE, 1994.

[59] Z. Yang, K. Hu, D. Ma, L. Pi, and J.-P. Bodeveix.
Formal semantics and verification of AADL modes in
Timed Abstract State Machine. In 2010 IEEE
International Conference on Progress in Informatics
and Computing. IEEE, 2010.

[60] J. Zhang and G. Li. A Novel Model-Based Method for
Automatic Generation of FMEA. In Proceedings of the
2nd International Symposium on Computer
Communication, Control and Automation. Atlantis
Press, 2013.

	Introduction
	Background and Related Work
	Sensor Security
	Reliability and Fault Tolerance
	CPS Control
	Architectural Modeling in AADL
	Analysis Contracts Approach
	Related Work

	Inter-Domain Vulnerabilities
	Scenario Description
	Adversary Model
	Analyses
	FMEA
	Sensor Trustworthiness Analysis
	Control Safety Analysis

	Exploiting Inter-Domain Vulnerabilities

	Analysis Contracts Approach
	System Model
	Specification of Contracts
	Contract verification
	Dependency Resolution
	Deterministic Contracts
	Probabilistic Contracts

	Limitations
	Discussion and Conclusions
	References

