
Architectural Abstractions for Hybrid Programs

Ivan Ruchkin, Bradley Schmerl, David Garlan
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA, USA

{iruchkin, schmerl, garlan}@cs.cmu.edu

ABSTRACT
Modern cyber-physical systems interact closely with contin-
uous physical processes like kinematic movement. Software
component frameworks do not provide an explicit way to
represent or reason about these processes. Meanwhile, hy-
brid program models have been successful in proving crit-
ical properties of discrete-continuous systems. These pro-
grams deal with diverse aspects of a cyber-physical sys-
tem such as controller decisions, component communication
protocols, and mechanical dynamics, requiring several pro-
grams to address the variation. However, currently these
aspects are often intertwined in mostly monolithic hybrid
programs, which are difficult to understand, change, and or-
ganize. These issues can be addressed by component-based
engineering, making hybrid modeling more practical. This
paper lays the foundation for using architectural models to
provide component-based benefits to developing hybrid pro-
grams. We build formal architectural abstractions of hy-
brid programs and formulas, enabling analysis of hybrid pro-
grams at the component level, reusing parts of hybrid pro-
grams, and automatic transformation from views into hybrid
programs and formulas. Our approach is evaluated in the
context of a robotic collision avoidance case study.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

Keywords
architectural view, hybrid program, cyber-physical system

1. INTRODUCTION
Component-based software engineering has been success-

ful at reaping numerous benefits of designing systems with
clear components and interfaces. Approaches to reuse com-
ponents with contracts [?] and reason about dynamic as-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

semblies [6] have advanced engineering to build larger, more
complex systems cheaper, faster, and with fewer errors. For-
mal and verified composition mechanisms help design, re-
fine, and verify large safety-critical embedded systems with
reduced complexity [?, 3, 24].

For a class of systems, often called cyber-physical systems
(CPS) [15] or mechatronics, the progress of compositional
engineering has been somewhat slower. Software in such
systems interacts very closely with complex continuous phys-
ical processes, like mechanical movement or heat exchange,
which are poorly represented by typical discrete software
languages and tools [15]. Lacking a way to form coherent
abstractions of these physical phenomena, software engineer-
ing methods have to abstract continuous physics out, which
leads to unsatisfying results. For example, software engi-
neers have to indirectly rely on hard deadlines to not “miss”
too much time instead of explicitly reasoning about pro-
cesses that take place during this time [9].

The field of hybrid systems, on the other hand, has been
developing ways to model CPS with direct representation of
physical dynamics. In particular, models that combine dis-
crete and continuous state changes, like hybrid automata [2]
and hybrid programs (HP) [19], give an ability to verify crit-
ical system properties without abstracting away physicality.
Differential dynamic logic (dL) [20] is an approach to de-
scribe and prove logical statements over HPs. dL relies on
semi-automated theorem proving to produce a proof certifi-
cate that establishes that a system satisfies a property.

Despite the successes of hybrid systems in tackling con-
tinuous phenomena, it is still a challenge to incorporate hy-
brid models into scalable and cost-efficient model-driven en-
gineering (MDE) for modern CPS. Many hybrid models are
monolithic blocks where diverse aspects like controller de-
sign, component communication protocol, and mechanical
dynamics are intertwined and cannot be easily separated,
as exemplified by many programs in [20]. At the same
time, multiple models are required to represent a system ad-
equately, and it is difficult to separate parts of each model,
reuse them, and analyze new models for correct integration
of parts. These issues lead to hybrid approaches like dL
being impractical for MDE.

MDE of large-scale safety-critical CPS needs to both for-
mally guarantee properties of discrete-continuous interac-
tion and reduce engineering costs through composition and
reuse. This paper shows how architectures for hybrid pro-
grams can be used to address both of these needs. Logical
verification with dL specifies and proves properties of hybrid
systems, and the architectural abstractions provide benefits

schmerl
Typewritten Text
Submitted for publication

of component-based engineering: reuse of complex specifica-
tions across multiple models and high-level analysis of these
models. The approach allows logical reasoning about hybrid
programs at a component level. We demonstrate our ap-
proach on an existing case study [17] of collision avoidance,
which is a problem commonly addressed in CPS [5,16].

This work makes several significant contributions. First, a
formal definition and semantics of an HP architecture views
and formulas, which enables design and fully automated gen-
eration of HPs using higher-level abstractions. Second, ap-
plications of HP architectures: type-based reuse and infor-
mation flow analysis for HP architectures that advance prac-
tical MDE with hybrid models. Third, an implementation
of an HP architecture plugin in AcmeStudio [22] to support
manipulation and analysis of HP views, and generation of
HPs from the views.

The next section introduces the robotic collision avoid-
ance case study, which we will use throughout the paper for
illustration. Sec. 3 and 4 describe, respectively, basic dL
constructs and motivating issues for componentizing with
HPs. Addressing these issues, in Sec. 5 we propose ar-
chitectural abstractions that represent hybrid programs and
formulas. In Sec. 6 we describe how our approach supports
model-based engineering with HP. Afterwards, we evaluate
our approach on the robotic collision avoidance case study
in Sec. 7, survey the related work and conclude the paper.

2. ROBOTIC COLLISION AVOIDANCE
Vehicle collision avoidance is a classic CPS problem, used

to illustrate the needs of hybrid modeling [5, 14, 16]. With
even the most sophisticated autonomous vehicle systems like
those from Cornell or MIT not achieving practical safety
[10], collision avoidance remains a challenge for design and
verification. This is in large part due to absence of MDE
methods that combine formal safety guarantees with means
to cope with the system’s complexity.

To help motivate the problem and illustrate our approach,
consider MDE of an autonomous wheeled robot moving in
a 2D space with other obstacles [17]. The robot can sense
obstacles in its vicinity (e.g., with a camera, laser scanner,
or a sonar) and determine its own position (GPS or sonar).
A planning algorithm determines a sequence of waypoints
that lead to a global goal, and then a tactical planner se-
lects the best tactic to the next waypoint depending on the
environment, e.g., an intersection or a corridor. The robot’s
movement controller then executes this tactic. The goal is
creating a robot that avoids collisions and dangerous navi-
gation. In this discussion, we will concentrate on modeling
systems most relevant to collision avoidance: tactical plan-
ning, movement control, and movement itself.

Collision safety requirement may have a different inter-
pretation, from passive safety (collisions are allowed when
the robot is stopped) to passive friendly safety (a moving
obstacle needs to be given an opportunity to stop) [14] to
absolute safety (collisions should not occur under any cir-
cumstances) [5]. A fundamental tradeoff is that stricter no-
tions of safety lead to unnecessarily conservative behaviors
or unrealistic assumptions. For example, a robot may re-
main stationary forever in a crowded area if it uses absolute
safety. It is essential for a modeler to experiment with com-
binations of acceptable safety notions, reasonable assump-
tions, and verifiable algorithms. Thus, several models are
used to address variation in the safety notion.

Concern Variations
Tactic Avoiding obstacles, passing intersec-

tion, arriving at goal.
Physical space Unconstrained, constrained box, in-

tersection.
Desired prop-
erty

Passive safety, passive friendly
safety, liveness.

Robot trajec-
tory

Grid, lines, arcs, spirals.

Obstacle
behavior

Stationary, moving non-
deterministically, moving friendly.

Obstacle
knowledge

Bounded speed, bounded accelera-
tion.

Sensing preci-
sion

Precise, bounded error.

Sensing tim-
ing

Immediate, bounded delay.

Actuation Precise, bounded error.
Dimensionality 1D (line), 2D (plane).

Table 1: Concerns and variations in robotic collision
avoidance modeling.

Safety definition isn’t the only varying concern that af-
fects modeling of robotic collision avoidance. Another one
is a set of assumptions about the robot’s mechanical and
embedded systems: What kind of trajectories can the robot
move in? How well can acceleration be controlled? How
precise and immediate is sensing of obstacles? Yet another
concern is obstacles’ behavior: Can obstacles move with ar-
bitrary speed or acceleration? Can obstacles switch between
stationary and moving? Are obstacles trying to avoid a col-
lision? Variability in answering these questions affects the
robot’s decisions and guarantees that can be obtained from
models. Therefore, an engineer has a large modeling space
to explore when developing these systems. We summarize
the high-level concerns that underly modeling of robotic col-
lision avoidance in Tab 1.

Existing modeling approaches used in practice fall short of
providing both high formal assurance and component-based
structure for robotic collision avoidance. Classic embedded
software modeling, like SysML, fails to take into account the
physical implications of each variant in Tab. 1 and the effect
they take on software. Simulation [21] of various sensing,
movement, and actuation designs are often used to gain con-
fidence in and compare designs. However, these simulations
are not exhaustive, and the large number of potential states
given the variation above means that higher-confidence al-
ternatives to simulations are required.

The hybrid CPS modeling approaches like dL [19] allow
for formal proofs of safety properties, but struggle with large
model spaces: even for the relatively simple case of a robot
and an obstacle, there is a number of concern combina-
tions that a modeler has to address by creating several in-
dependent model variants. For example, one model variant
may tackle liveness in an intersection with imprecise sens-
ing, while another may model safely avoiding obstacles using
precise sensing. Currently, modelers copy and change vari-
ants manually. For large numbers of concerns, this variation
becomes difficult to cope with: modelers have limited or no
support to create and differentiate model variants, or ana-
lyze proper fit between parts of the model.

Thus, a successful collision avoidance modeling approach
requires, (i) an explicit formal representation of continuous
physics; (ii) a way to compose and reuse model parts that re-
late to a particular concern, such as sensing with bounded er-
ror; and (iii) a higher-level analysis of model parts to ensure
correct composition. We introduce an approach of hybrid
program architectures that satisfies all these requirements.
Our approach rests upon the logical foundation of hybrid
programs and dL, which we describe in the next section.

3. BACKGROUND: HP AND DDL
The robot collision avoidance system is Sec. 2 has a

blend of continuous (robot movement) and discrete (con-
troller software) parts. Classically, software models like state
machines [13] discretize time and state space. Although this
gives relative simplicity and power to automated verification
techniques like model checking, discretization makes reason-
ing about continuous processes cumbersome [15]. Hence,
there is a need for modeling formalisms that embrace con-
tinuous dynamics instead of abstracting it away.

Differential dynamic logic (DDL, or dL) [19] is a one such
promising verification approach for cyber-physical systems.
dL incorporates discrete transitions and continuous evolu-
tions into its semantic model, making it very convenient to
represent robotic decisions and movement [17]. dL relies
on hybrid programs (HPs)1 to encode system state changes
over variables. To cover broader classes of systems and ab-
stract away irrelevant details (e.g., the exact behavior of
robot surroundings or the exact timing moments, which may
be unpredictable), HPs feature non-determinism in variable
values and control transitions.

The basic syntax of HPs is shown in Tab. 2. The control
flow of programs is controlled by the sequential composition
(;), nondeterministic choice (∪), and non-deterministic rep-
etition (∗). The semantics of a HP is formally defined over
the state represented by its variables. The state is changed
through value assignments and continuous evolutions. Con-
tinuous evolutions advance variable values along differential
equations within an evolution domain F , continuing for an
arbitrary amount or stop immediately. A test operator cuts
off execution branches; it is commonly used in conjunction
with non-deterministic assignment: x := ∗; ?x > 0 cuts off
all non-positive values of variable x.

Given a hybrid program α, one can write logical assertions
with a dL formula φ:

φ ::== θ1 ∼ θ2 | φ1 ∨ φ2 | ¬φ | ∀xφ | [α]φ | 〈α〉φ, (1)

where θ1 and θ2 are real arithmetic expressions and ∼ ∈
{<,≤,=,≥, >}. Other operators like ∧ and → are derived
from the operators in (1). The meaning of [α]φ is that prop-
erty φ holds for every possible execution of α. 〈α〉φ means
that there is at least one execution of α that satisfies φ.

Simple dL formulas take a form of ϕ→ [α]φ or ϕ→ 〈α〉φ.
Consider a robot with position x, velocity v, and accelera-
tion a trying to reach its goal g in a 1D space. The robot
can arbitrarily choose an acceleration (a := ∗) between full
throttle (a ≤ A, where A is the maximum possible accel-
eration) and full braking (−b ≤ a, where b is the maxi-
mum possible braking power), but cannot drive backwards

1The hybrid underlines a combination of discrete and con-
tinuous semantics.

Statement Informal meaning
α;β Sequential composition; first executes α

and then β
α ∪ β Non-deterministic choice; executes either

α or β
α∗ Non-deterministic repetition; executes α

0 or more times
x := θ Assignment of value θ to variable x
x := ∗ Assignment of an arbitrary value to vari-

able x
x′1 = θ1, . . .
x′n = θn &F

Continuous evolution of xi along differ-
ential equations x′i = θi restricted to an
evolution domain specified by formula F

?F Test if formula F holds; proceed if yes,
otherwise abort.

Table 2: Syntactic constructs of hybrid programs.

(v ≥ 0). The robot’s control alternates with physical dy-
namics of kinematic movement (v′ = a, x′ = v) in a non-
deterministic loop. The following formula expresses that if
a robot hasn’t yet reached its goal (x < g), there exists an
execution (expressed with the 〈〉 modality) where the robot
reaches its goal (x ≥ g):

x < g → 〈 (a := ∗; ?− b ≤ a ≤ A;

{v′ = a, x′ = v, v ≥ 0})∗ 〉(x ≥ g)
(2)

This formula can be fed to an automated theorem prover
KeYmaera [20] that builds a proof tree via proof rules. Sim-
ple models may be proved fully automatically, but more
complicated ones require manual steps and specification of
differential invariants. Once a proof is found, it establishes
that a property holds as a logical consequence of the model.
This is a stronger guarantee than can be given by simula-
tion and numerical analysis approaches. Furthermore, such
guarantees factor in continuous processes, unlike these other
approaches that rely upon purely discrete models.

A dLmodel variant is a specification file unrelated to other
variants. Each variant contains one dL formula that logi-
cally specifies the desired property (cf. 2). A proved variant
is supplemented with a proof and contributes to the system
design. If a variant is shown to not hold the property, a coun-
terexample situation is generated to demonstrate the prop-
erty violation, giving insight into future modeling. Thus,
maintaining multiple model variants is an integral part of
modeling with dL, further increasing the space of model
variants mentioned in Sec. 2.

The bulk of a model variant is devoted to one or several
HPs, which are enclosed into the dL formula and formalize
state changes using operations in Tab. 2. Additionally, a
model variant contains a section with declarations of con-
stants, such as b for maximum braking, and variables, such
as a, v, and x to model robot’s kinematics. All constants
and variables are global, so any part of the HP can read and
write them. This makes it difficult to tell what variables
and instructions are closely associated with each other, and
which are not. Thus, each variant is a monolithic block
of variables, operators, and logical statements, with many
modeling concerns intertwined with each other.

In the current practice of dL modeling, model variants
are derived from each other by copying and modifying the

code in a clone and own approach. For instance, to derive
a variant with sensor uncertainty, a model with no sensor
uncertainty is copied, the sensed values are augmented with
bounded errors, and the controller is adjusted to accommo-
date these changes. As a result, many variants share redun-
dant chunks of HP code that specify the shared aspects.

The monolithic structure and redundant code of dLmodel
variants make it difficult to understand, modify, and reuse
them. These barriers impede the exploration of variation
space, making dL costly to apply in practice despite its
promising formal guarantees. If, however, we could sepa-
rate model variants into components, it would provide an
essential structure within each variant to start organizing
the variant space and reusing model fragments. Having ob-
served this need for component abstractions, we turn our
attention to the challenges and exact benefits of componen-
tizing hybrid programs.

4. TOWARDS COMPONENTIZING HP
Component abstractions for hybrid programs could facili-

tate reuse of common model fragments, thus structuring the
variant space and reducing its exploration effort. In addi-
tion, component abstractions would enable reasoning about
composition errors that are otherwise implicit (much like
components themselves). However, it is not obvious how to
add component abstractions to HPs and dL: the tightly cou-
pled programs do not yield themselves to easy separation,
and complex dL formulas mix several HPs in the same spec-
ification. The rest of this section discusses the challenges
and benefits of a component-based HP in more detail.

4.1 Challenge: Tight Coupling within Model
Variants

Each model variant combines a variety of intertwined con-
cerns (e.g., Tab. 1). Modifications to such highly coupled
models may penetrate many parts of the model. In par-
ticular, new variables may be necessary to represent richer
state, new constants may be needed to put constraints on the
state, new differential equations may be required to describe
new trajectories, and new control choices may be needed to
actuate the robot safely.

To exemplify this challenge, let us consider different pat-
terns for modeling time in dL:

• Event-triggered timing (ETT). Time is not represented
in a model as a variable. Instead, event conditions
are part of an evolution domain constraint F . For
example, the system can execute until the robot has
to brake, which is when time flow is interrupted and
the control is handed to the robot.

• Local continuous timing (LCT) with bounded non-
deterministic intervals. The timer is reset in the dis-
crete part of model loop t := 0 and increases mono-
tonically longer than ε: {t′ = 1, t ≤ ε}.

• Global continuous timing (GCT). To verify liveness
properties global progress towards a goal needs to be
tracked. In this case, a global timer is initialized T :=
0 and evolved continuously without resets {T ′ = 1}.
Global timing may be combined with event-triggered
or local continuous timing.

Each of these patterns impacts multiple parts of a model.
If we chose to use, for instance, local continuous timing, then
a number of changes must be made throughout the model:
first of all, t needs to be reset in the loop, but the spot needs
to be carefully chosen depending on whether other parts of
the loop use t. Second, the differential equations and evolu-
tion domain constraints need to be updated. Furthermore, t
and ε need to be added to the variable and constant declara-
tions, respectively. Finally, control decisions are very likely
to change to accommodate a possible delay of ε seconds.
Thus, even a relatively simple change impacts many parts
of a hybrid program, which makes it difficult to encapsulate
this change in a component.

4.2 Challenge: Multi-Program Formulas
Some dL formulas go beyond the simple structure ϕ →

[α]ψ. For example, passive friendly safety requires that for
all executions of a robot and a moving obstacle [RobotObst],
a robot should always stop or be far enough from the obsta-
cle to stop (RobotFar). Assuming the obstacle 〈DetailedObst〉
is far enough from the robot (ObstFar), should have an op-
portunity to stop and avoid collision (Safe). The following
formula from [17] captures this property:

Pre → [RobotObst](RobotFar ∧
(ObstFar → 〈DetailedObst〉Safe))

(3)

This dL formula includes two hybrid programs that exe-
cute independently: once RobotObst, which contains a robot
and a non-deterministic obstacle, stops at some point, pro-
gram DetailedObst starts executing. DetailedObst does not
have robot’s code in it explicitly (it is assumed to be stopped),
but has a refined model of an obstacle that is capable of
braking and accelerating unlike the one in RobotObst. The
two hybrid programs share some of their variables, such as
the obstacle’s position, and the initial constraints of these
two programs are mixed in Pre.

The challenge of componentizing such multi-program for-
mulas arises from mixing the logical and imperative parts:
the initial condition for a HP is mixed with another HP
and is separated from it with logical predicates. In addi-
tion, part of the state space is implicitly shared. So the
fundamental question is: How can multi-program formulas
be decomposed into and rebuilt from reusable components?

4.3 Benefit: Reuse of Model Fragments
Reuse of model fragments is highly desirable for dL mod-

eling to facilitate model space exploration. To illustrate
this point, we extracted sets of robot’s physical equations2

from [17] in Tab. 3. In the simplest case, a robot is mov-
ing with velocity v and acceleration a along a line in a bi-
nary orientation o ∈ {1,−1}. A slightly more complicated
case is with movement along a grid net, defined by direc-
tions ofb, ohv ∈ {1,−1}, and a line with direction defined
by dx, dy ∈ [0; 1]. Modeling movement in arcs of fixed ra-
dius r requires representing rotational velocity ω and link-
ing it to a. To enable spinning on a single spot (r = 0),
w′ = a

r
needs to be rewritten with a new helper variable s

as s′ = a, s = wr, introducing yet another physical model.
Finally, the model of spiral movement does not link rota-
tional velocity ω with a.

2Non-linear functions like sin are avoided in the interest of
provability [20].

1D Line x′ = ov, v′ = a, v ≥ 0

Grid x′ =
(1+ohv)ofb

2
v, y′ =

(1−ohv)ofb

2
v, v′ =

a, v ≥ 0
Line x′ = vdx, y

′ = vdy, v
′ = a, v ≥ 0

Arcs
w/o spin

x′ = vdx, y
′ = vdy, d

′
x = −wdy, d′y =

wdx, v
′ = a,w′ = a

r
, v ≥ 0

Arc w/
spin

x′ = vdx, y
′ = vdy, d

′
x = −wdy, d′y =

wdx, v
′ = a, s′ = a, s = wr, v ≥ 0

Spiral x′ = vdx, y
′ = vdy, d

′
x = −wdy, d′y =

wdx, v
′ = a, v ≥ 0

Table 3: Versions of the robot’s physical dynamics.

Each row in Tab. 3 captures a complex mechanical move-
ment. Changing between these dynamics and introducing
them to new models currently relies on tedious and error-
prone manual editing, which is likely to introduce errors in
models, especially when several variants are modified at the
same time. Instead, identifying and reusing these dynamics
at a higher level of abstraction would distinguish existing
model variants based on their physical model and reduce
the effort of deriving new ones.

4.4 Benefit: Information Flow Analysis
Even though a dL formula may be well-formed and prov-

able, it may still have implicit modeling errors that lead to
a system’s safety violation. For instance, a robot may read
an obstacle’s velocity Vo right after the obstacle assigns it
in every loop iteration and use this perfect information to
avoid the obstacle with a narrow margin. Although this
usage does not violate the model’s formal safety, any im-
plementation would fail to achieve this perfect prediction of
the obstacle’s next action, making the margin too narrow to
avoid a collision.

More abstractly, this problem is rooted in incorrect infor-
mation flow : hybrid programs do not restrict exchange of
data between entities, thus allowing information exchange
that would not be possible in reality. A solution to this
problem would distinguish acting entities, impose informa-
tion flow constraints, and analyze HPs to find violations.

Let us consider a more detailed example of information
exchange. A modeler sketches a variant for the intersection
tactic to model the safety of robot’s decision to cross an in-
tersection. A robot advances along the x axis, and a moving
(unfriendly) obstacle is approaching the intersection (xo, yr)
along the y axis. The model sketch takes the following form:

ISect ≡ Pre → [(4)

((ao := ∗; ?− b ≤ ao ≤ A; (5)

(?xr > xo ∨ Safe; ar := ∗; ?− b ≤ ar ≤ A) (6)

∪ (?CanGoBefore ∨ CanGoAfter ; (7)

ar := ∗; ?0 ≤ ar ≤ A) (8)

∪ (?vr = 0; ar := 0) ∪ ar := −b; (9)

t := 0; (10)

{x′r = vr, v
′
r = ar, (11)

y′o = vo, v
′
o = ao, (12)

t′ = 1, t ≤ ε, vr ≥ 0, vo ≥ 0})∗ (13)

](‖(xr, yr)− (xo, yo)‖ > 0) (14)

Given certain preconditions Pre (4), formula ISect states
that a collision does not occur (14) in any execution of the
hybrid program (5)–(13). The program gives the obstacle a
non-deterministic choice of acceleration (5). The robot has
several decision branches: it may choose any acceleration if it
has already crossed the intersection or is safely far away from
it (6), accelerate fully to pass before or after the obstacle
(8), remain stopped, or brake (9). The timing pattern is
LCT, and the robot and obstacle cannot drive backwards
(13). The conditions Safe, CanGoBefore, and CanGoAfter
are at the heart of the robot’s decision-making and need to
be determined by a modeler.

Now imagine that the sketch ISect is handed over to an-
other modeler to complete it with the robot’s branch de-
cisions. These decisions can be made differently depend-
ing on the information available to the robot. There are
two options: (i) sense yo and assume the obstacle’s veloc-
ity bounds are Vmax and Vmin; and (ii) sense yo and Vo

and assume the obstacle’s acceleration bounds are Amax

and Amin ≥ 0. In case of (i) it is possible to estimate
the obstacle’s slowest time to the intersection as tint ≡
(yr − yo)/Vmin and define CanGoAfter ≡ xr + Vrtint > xo.
For (ii) the modeler can instead approximate tint as a root
of yr − yo + Votint +Amint

2
int/2 = 0.

Options (i) and (ii) critically rely on different assumptions
about the system design: whether the obstacle’s velocity is
available to the robot and what variables are bounded. If
the first modeler intended (i) based on knowledge of the
robot’s sensors and obstacle parameters, but the second
modeler instead chooses (ii), it is possible for the condi-
tion CanGoAfter to lead to a collision because the model
would not fit the reality. Since the original ISect sketch
does not provide any guidance or constraint on what infor-
mation about the obstacle is available to the robot, analo-
gous interaction errors may also happen in the specification
of CanGoBefore and Safe across many model variants. De-
tecting these errors with the original dL semantics would be
nearly impossible due to the monolithic structure of a HP
that does not accociate between variables and statements
with any part of model.

To summarize this section, componentizing HPs is difficult
due to tight coupling of model fragments and complex logical
combinations of hybrid programs. However, if introduced,
component abstractions would facilitate reuse and enable
high-level analysis of information flow. In the following sec-
tion we overcome the componentization challenges with an
architectural approach that gives a component-based repre-
sentation to HPs.

5. ARCHITECTURES FOR HP
This section develops architectural abstractions for hybrid

programs. Our goal is to represent hybrid programs and
multi-program dL formulas at a component level, generat-
ing plain HPs from reused model fragments. To achieve the
goal, we define the following: (i) a component as a primary
entity for information hiding and reuse, (ii) a connector for
information exchange and HP code transformation, (iii) an
architectural view – a collection of components and connec-
tors – to represent a single HP, and (iv) a logical formula
over views to represent a model variant.

We base our approach on Acme architecture description
language that describes hierarchical assemblies (views) of
components and connectors with properties [?]. Compo-

nents connect through ports, to which connectors attach
their roles. Acme facilitates component-based reuse through
the notion of a style – a collection of component, connec-
tor, port, and role types that can be reused in many views.
Acme is not limited to software structures: it has also been
extended to capture physical entities, cf. Bhave’s CPS styles
[4]. Constructs introduced in this section give meaning to
Acme’s elements in terms of HPs and dL. This way, Acme
serves high-level manipulation, reuse, and analysis, HPs serve
imperative specification, and dL serves logical specification
and verification.

5.1 Components
First and foremost, we need to distinguish the acting en-

tities of hybrid programs – hybrid program actors. Actors
encapsulate a state, expose part of it through ports, and
combine discrete control and continuous physics:

Definition 1. Hybrid program actor HPA is a compo-
nent instance that is characterized by a tuple:

HPA ≡ (State,Ports,Ctrl ,Phys).

The state of an actor is a set of variables and constraints:
State ≡ (Vars,Constr), where Vars ≡ {vi} is set of a typed
variables3, and Constr ≡ {ϕi} is a set of state constraint
formulas, defined by Eq. 1, over variables in Vars. For
example, for a robot with 1D Line dynamics from Tab. 3,
State ≡ ({x, v, a, o}, {o ∈ {−1, 1}).

A port of is an external interface of an actor – a variable
v that regulates interaction between actors: Ports ≡ {vi}.
For example, if a robot is sensing an obstacle’s x coordinate,
we denote this as a port variable pxo , which is separate from
the obstacle’s variable xo. Unless a state variable is exposed
through a port, it is considered hidden from other actors. We
do not require that Vars ∩ Ports = ∅: a port p may expose
a state variable (p ∈ Vars) or define its own (p 6∈ Vars).

An actor’s control is a hybrid program: Ctrl ≡ α, defined
as a sequence of operators from Tab. 2 over variables in
Vars and Ports. Ctrl describes computations executed by
the actor. For example, statements 6–9 are a prototype of
robot’s Ctrl , pending replacement of xo with an appropriate
port.

An actor’s physics is a set of differential equations with
an evolution domain constraint: Phys ≡ {x′i = θi&F} over
variables in Vars and Ports. Each line in Tab. 3 is an
instance of robot’s Phys. The goal of separating physics
from control is that the former is often shared among many
model variants, while the latter may be more specific the
variant’s combination of concerns.

5.2 Component Interaction
We have introduced the acting entities of hybrid programs.

Now we represent channels, through which interaction be-
tween hybrid actors happens, and the effects of these chan-
nels, like adding a bounded error to sensing, with hybrid
program connectors:

Definition 2. Given {HPAi}, HP connector HPC is a
connector instance that is characterized by a tuple:

(Roles,RTP ,Trf).

3HPs natively support only R, so we encode Z and B as reals
with constraints in Constr .

Roles Roles ≡ {r} distinguish different responsibilities of
ports attached to a HP connector, such as a sender or a
receiver. A mapping between roles and ports RTP asso-
ciates each role with a port on an actor: RTP ≡ Roles →⋃

HPAi.Ports. The transformation function Trf captures
the connector’s effect on the attached actors so that the
connector can be reused in multiple model variants with dif-
ferent actors. Unlike Roles and RTP that define what a
connector is, Trf defines how it works. Formally, Trf maps a
set of actors and their attachments to a set of transformed
actors:

Trf : {HPA} × Roles × RTP → {HPA} .

Consider a simple immediate precise sensing (IPS) con-
nector that senses the precise value of a variable and re-
turns the result immediately. It has two roles: Roles =
{Sense, Sensed}. Let actor a1 use its port p1 to sense the
value of p2 from actor a2 through an IPS. The IPS transfor-
mation derives ȧ1 from a1 and ȧ2 from a2

4:

IPS.Trf({a1, a2} ,Roles,RTP) ≡ {ȧ1, ȧ2} s.t. (15)

ȧ1.State = a1.State,

ȧ1.Ports = a1.Ports \ {p1},
ȧ1.Ctrl = a1.Ctrl [p1/p2],

ȧ1.Phys = a1.Phys,

ȧ2.State = a2.State,

ȧ2.Ports = a2.Ports \ {p2},
ȧ2.Ctrl = a2.Ctrl ,

ȧ2.Phys = a2.Phys.

IPS replaces the readings of variable p1 in a1 with read-
ings of p2 in a1.Ctrl . A more complicated connector is an
immediate bounded error sensing (IBES) connector that de-
livers a sensing result immediately with a bounded error
δ ≥ 0. It has three roles: {Sense, Sensed,Bounds}. If we
add another port p3 to a1 above and connect role Bounds
to it (RTP(Bounds) = p3 ∈ a1.Ports), the IBES transfor-
mation5 replaces p1 in a1.Ctrl with a new variable λ that
stores the sensing result with error δ:

IBES.Trf({a1, a2} ,Roles,RTP) ≡ {ȧ1, ȧ2} s.t. (16)

ȧ1.State.Vars = a1.State.Vars ∪ {λ, δ}
ȧ1.State.Constr = a1.State.Constr ∪ {δ ≥ 0} ,

ȧ1.Ports = a1.Ports \ {p1, p3},
ȧ1.Ctrl = λ := ∗; ?p2 − δ ≤ λ ≤ p2 + δ;

(a1.Ctrl [p1/λ, p3/δ]),

ȧ1.Phys = a1.Phys.

Analogously, we can define other connectors: an uncertain
actuation connector for adding an uncertainty factor after
changes in a control variable, a delayed precise sensing con-
nector that stores a delayed value for one loop iteration, and
a delayed bounded error connector that adds both a delay
and a bounded error. Connectors can be applied to a sin-
gle component by connecting all roles to the component’s
ports: for example, to model robot’s imprecise information
about its own location, IBES’s Sense and Sensed have to
be associated with the same port.

By invoking Trf of each connector, we can reduce a set
of actors and connectors to a set of actors without con-
nectors. We will call this the Transform Connectors (TC)
4We use α[a/b] to mean substitution of a for b in HP α.
5IBES handles ȧ2 the same way as IPS in (15).

procedure:{HPA} × {HPC} → {HPA}. TC transforms and
removes all connectors in a non-deterministic order. In the-
ory, a different order of transformation may result in se-
mantically different programs. Nevertheless, in practice we
did not find cases where the meaning would depend on the
transformation order. We proceed under the assumption
that there is a single set of components that TC returns.

So, on the one hand, HP connectors represent informa-
tion exchange between actors, such as sensing. On the other
hand, HP connectors encapsulate common HP transforma-
tions, which can be used to obtain new model variants in
a disciplined manner, e.g., by replacing IPS with IBES. HP
connectors do not handle composition: we separate composi-
tion from interaction between actors. In the next subsection
we introduce the means to create composite actors.

5.3 Component Composition
To enable automated generation of HPs, we need to bridge

the gap between HP actors and hybrid programs. To this
end, we will compose the actors until there is a single mega-
actor, which then generates a HP. There are, however, sev-
eral ways to compose actors. Therefore, we encapsulate a
mechanism of composition in a composer (similar to com-
ponent glue [3], director [21], and coordinator [6] in related
work):

Definition 3. A composer CPR is a pair (Compose, ToHP),
where Compose is a function that maps several actors into
one actor: {HPA} → HPA, and ToHP is a function that
maps HPA to a hybrid program.

A composer implements a method of creating aggregate
actors with Compose until the system is represented by a
single actor, which is then converted into a hybrid program
using ToHP. In the general case Compose can be arbitrar-
ily complicated and is out of this paper’s scope. Instead,
we focus on the sequential composer SeqC that is implicitly
used throughout all collision avoidance models in [17]. This
composer orders actors’ executions in a given sequence:

SeqC .Compose(a1, . . . , an : HPA) ≡ ȧ s.t.

ȧ.State = a1.State ∪ · · · ∪ an.State,

ȧ.Ports = a1.Ports ∪ · · · ∪ an.Ports,

ȧ.Ctrl = a1.Ctrl ; . . . ; an.Ctrl ,

ȧ.Phys = {a1.Phys, . . . , an.Phys}.

(17)

To create a HP from a : HPA, SeqC sequentially composes
control with physics and puts them into a non-deterministic
loop:

SeqC .ToHP(a) ≡ (a.Ctrl ; a.Phys)∗ (18)

We envision other kinds of composers as well; for exam-
ple, a non-deterministric composer with ∪, an alternating
composer with a flag, or a truly parallel composer6. Never-
theless, SeqC is sufficient for the purposes of this work.

Now that we defined actors, their interaction, and their
composition, we are ready to introduce HP architectural
views that represent hybrid programs:

Definition 4. A HP architectural view HPV is a tuple
({HPA} , {HPC} ,CPR).

6A parallel composition operator in dL is work in progress.

Thus, a HP architectural view contains actors, which in-
teract through connectors, and a composer. To obtain a
hybrid program α from HPV , the first step is to transforms
components using connectors with the TC procedure. Next,
HPC compose the actors to form a single HPA and generate
a HP. In other words:

Definition 5. A HP architectural view HPV represents
hybrid program α, denoted α = RV

HP (HPV), if

CPR.ToHP(CPR.Compose(TC({HPA} , {HPC}))) = α.

This definition establishes an algorithm to obtain a HP
from its architectural view. Now a HP can be edited at a
higher level by manipulating actors and connectors. Notice
that State does not yet contribute to the hybrid program
since it is a logical, not operational, property like Ctrl or
Phys. The remaining step is enabling logical specification
over HP views.

5.4 Architectural DDL Formulas
As discussed in Sec. 4.2, dL formulas may incorporate

several hybrid programs. Hence just embedding a logical
specification in a view would limit us to simple logical for-
mulas. Our goal is to build a logical specification layer on
top of HP views, making it possible to reuse a HP view in
several variants that target different properties. To repre-
sent a broad variety of formulas, including (3), we define an
architectural dL formula the following way:

Definition 6. An architectural dL formula over HP views
HPV 1, . . . ,HPV n is a dL formula over variables from these
views Vars1∪· · ·∪Varsn, parametric terms Constr1, . . . ,Constrn,
and hybrid programs HPV 1, . . . ,HPV n.

Given several views, one can express a system property
in a formula that combines the views. To obtain a plain
dL formula from the architectural dL formula, one needs
to replace Constr i with Compose(TC(HPV i)).State.Constr
and replace HP view references HPV i with their generated
code RV

HP (HPV i).
With the introduced formulas, Eq. 3 can be specified

with two HP views RobotObst and DetailedObst, each of
which corresponds to a hybrid program, and one formula
that conjoins views’ Constr in Pre. Other conditions like
RobotFar , ObstFar , and Safe will need to be specified with-
out referencing the views since these conditions are specific
to the property. Since views have disjoint state spaces, ex-
tra statements are necessary to relate the state of RobotObst
after finishing and the state of DetailedObst before starting.

To conclude this section, architectural abstractions (ac-
tors, connectors, composers, and formulas) represent hybrid
programs and dL formulas. We described an algorithm to
transform an architectural dL formula to a normal dL for-
mula. The next section illustrates how these abstractions
benefit CPS modeling.

6. SUPPORTING HP MODELING
This section demonstrates how architectural models sup-

port analysis and reuse of hybrid programs.

6.1 Information Flow Analysis
We assume now that every model variant is encoded as

an architectural dL formula with at least one HPV . We

stated in Sec. 4.4 that the goal is to analyze information flow
at the component level. An input to the analysis is HPV
before TC, Compose, or ToHP procedures are carried out.
The output is whether the desired constraints on information
flow were satisfied.

The first step is ensuring information hiding among ac-
tors: each actor’s control and physics do not use other ac-
tors’ state. This separation is embedded in Def. 1: an ac-
tor’s control and physics programs should be formulas over
only State and Ports of this component. This helps elimi-
nate many model variants that would not be compatible, for
instance, a controller that worked with straight line physics
(Tab. 3) does not work with arcs because the set of control
variables is different.

Separated actors can bridge their variable sets by adding
connectors and exchanging data. For the ISect model in
Sec. 4.4, we create actors R, O, and Int and adding con-
nectors for robot to sense xint, yint, yo, and Vmin. Thus we
indicate that yo and Vmin are the only variables that the
robot senses from the obstacle, and that it cannot operate
any others like ao. This critical separation between what
is an obstacle is and what the robot knows about the obsta-
cle limits the implementation of Ctrl in the model to the
realistically available variables.

Our architectural abstractions allow modelers to customize
information flow constraints in Acme. For example, consider
the issue of“cheating”by reading control variables right after
they were set (Sec. 4.4). This can happen if a variant com-
bines immediate sensing with SeqC . To detect this problem
an extra constraint for view TC(HPV) can be defined:

∀a1 : HPA | ∀v ∈ a1.State.Vars | @a2 : HPA |
v := ∈ Sub(a1.Ctrl) ∧ v ∈ Sub(a2.Ctrl) ∧
HPV .CPR = SeqC (. . . , a1, . . . , a2, . . .),

where Sub(ϕ) is a set of all subformulas of ϕ and is a wild-
card for any formula. Satisfaction of this constraint, checked
with a solver in Acme, guarantees that control variables are
not read outside the actor in the same loop iteration.

6.2 Reuse with Architectural Types
To address the need for model fragment reuse (Sec. 4.3),

we add types to HP actors and connectors. For simplicity,
an actor type is a partially specified actor as in Def. 1. An
actor can have an arbitrary number of types. Thus actor a
satisfies types a : A and a : B if7:

A.State ∪ B.State ⊆ a.State,

A.Ports ∪ B.Ports ⊆ a.Ports,

A.Phys,B.Phys ⊆ a.Phys.

Type extension is equivalent to having both types: a ∈
(A v B) ≡ a ∈ A ∧ a ∈ B. This simple approach enables
powerful reuse. For example, notice that spiral dynamics
(Tab. 3) is a more general case of arcs w/o spinning, so
we extend the former with the latter: ArcNoSpinDynT ≡
SpiralDynT ∪ (∅, ∅, ∅, {w′ = a

r
}). Then SpiralDynT is reused

every time an actor is declared with it or ArcNoSpinDynT.

7The control property Ctrl , however, cannot be composed
from multiple types: we demand that there is a single source
of controller, be it an actor instance or one of actor types.

A HP connector type determines the Trf function, which
encapsulates modeler’s expertise about common transforma-
tions, such as IPS or IBES. Instead of manually introducing
new variables, constraining them, and weaving into the code,
a modeler achieves this with a HP connector automatically.
For example, in the ISect program, we can derive a vari-
ant with uncertain awareness of the obstacle’s position by
replacing IPS with IBES, doing it more reliably and easily
than manually in hybrid program code.

Type-based reuse is sometimes at odds with information
hiding: some actor fragments need to be reused while being
accessible to all actors, such as timing patterns in Sec. 4.1.
To strike a balance between reuse and hiding, we introduce
a global actor GlobalHPA, represented by a system in Acme,
into every model variant. This actor is a convenient excep-
tion to information hiding discussed in Sec. 6.1: its variables
are visible to all other actors. To reuse timing patterns with
types LCT ≡ (({t, ε), {ε ≥ 0}), ∅, t := 0, {t′ = 1, t ≤ ε}) and
GCT ≡ (({T}, ∅), ∅, ∅, {T ′ = 1}), we let GlobalHPA : LCT
or GlobalHPA : GCT to ensure consistent timing without the
need to create a connector to read t, T , or ε.

In summary, architectural types allow a modeler to specify
and reuse common model fragments like physics and time,
thereby organizing the variant space around these fragments.

7. EVALUATION
We evaluated the proposed architectural abstractions on

an extended set of model variants from the robotic col-
lision case study [18, 23]. Since the models were created
prior to and without consideration of their componentizing,
these models are an acceptable evaluation target. We im-
plemented a prototype tool as a plugin to AcmeStudio [22]8

and used it to create architectures, reuse, and analyze archi-
tectural models for 15 hybrid programs and 12 dL formulas
over these programs.

Many primitive fragments of hybrid programs, such as
LCT and SeqC , contributed in all model variants. An HP
view was reused as a whole three times in a model variant
where the robot reaching the goal was modeled at different
time moments. This demonstrates utility of architectural dL
formulas. Among types that described robot’s physics, 1D
line, grid, and arc movement types were used three, three,
and five times respectively. Thus, physical commonalities
are a fruitful target for reuse. Surprisingly for us, HP con-
nectors were used 28 times (IPS being most common) – al-
most twice in each model – demonstrating the tremendous
amount of component interaction that the architecture made
explicit. Overall, this reuse evaluation shows that approach
is capable of displaying and exploiting commonalities among
hybrid programs.

The information flow analysis found several violation of
information hiding between HP actors. In several models a
robot directly changed obstacle’s position xo := ∗; yo := ∗.
Although this intended to mean selection of an arbitrary ob-
stacle, this specification is fragile and confusing: it does not
work as intended when copied to another context, such as
diamond modality 〈〉, since the robot can moving the obsta-
cle away from itself to avoid a collision. Another violation
occurred in an intersection scenario similar to ISect : the
robot’s control conflated sensing of an obstacle’s position

8The tool and models can be downloaded at www.cs.cmu.
edu/~iruchkin/dist/hparch-cbse15.zip.

and intersection’s position, which shared one of coordinates.
Hence, it was impossible to tell whether the robot uses ob-
stacle sensor data or intersection awareness. This issue may
affect implementations since the measurement of obstacle is
approximate and delayed, while the intersection’s position
is often known and fixed.

Creating architectural models exposed information hiding
violations between hybrid programs as well. In one multi-
program dL formula, two programs shared variables odx
and ody, but gave them different meaning: the first HP used
them as the obstacle’s speeds, and the second one used them
as the obstacle’s unit direction vectors. This semantic mis-
match would lead to implementation errors where the same
variables could be interpreted differently. We also discov-
ered that in (3) a robot in RobotObst factors in an assump-
tion of the worst-case braking power about an obstacle in a
DetailedObst, which does not actually hold: the obstacle can
decelerate arbitrarily fast, making safety easier to attain in
the model than in reality. In summary, although some of the
discovered violations are not bugs per se, they may become
those in the process of refinement and implementation, so
their detection is beneficial to MDE.

We observed a limitation of our approach in the case
study: large portions of similar hybrid code were “trapped”
in the robot controllers, but we were unable to reuse them
because later code of controllers differed to address specific
aspects of the variant, such as environment assumptions
and uncertainty in sensing or actuation. This limitation
is, however, not fundamental: one can use types on top
of statecharts that encapsulate control algorithms, like in
Sphinx [23].

8. RELATED WORK
The logical foundations of our work lie in the modeling

and verification of hybrid systems. Modeling with hybrid
automata [2] and hybrid programs [20] is sufficient to math-
ematically express a broad class of systems. Hybrid verifica-
tion has two distinct trends: deductive verification (proofs)
and reachability analysis (model checking). We directly sup-
port deductive verification with dL, which has been used in
domains of aircraft, collision avoidance, and traffic control.
Reachability verification algorithms, most prominently ones
in the SpaceEx platform [12], use approximations to esti-
mate the automata reachability set. In this paper, we do
not contribute any additional verification techniques, but
we overcome the engineering limitations that these modeling
formalisms have when it comes to creating complex systems.

Sphinx [23] and HP refactorings [18] are approaches to
abstracting and manipulating hybrid programs. Sphinx pro-
vides UML class diagrams and statecharts to describe hybrid
program behavior. By fully conforming to the dL meta-
model, it is limited to mimic programs very closely with-
out a possibility to separate fragments of a HP or to carry
out information flow analysis, lacking connectors for sensing
and actuation. HP refactorings describe HP transformations
that are a priori correct or have known proof obligations.
Unfortunately, so far such refactorings exist between only
very few model variants. Our work instead handles reuse
and analysis in many more cases even when the proof obli-
gations are unknown.

The majority of component-based frameworks do not ad-
dress the continuous dynamics and its correctness directly,
implicitly delegating it to other models. Mechatronic UML

[24] and BIP [3] provide a basis for verification of coordi-
nation and timing properties, but neither represent or rea-
son about the differential evolution of a system directly. In
particular, the details of continuous collision control in the
BeBot case study [24] are abstracted out and assumed to
be correct, instead of specifying and verifying it as in our
approach. µ-Kevoree [11] focuses on dynamism to resolve
runtime challenges, but not design-time variation. The sim-
ulation platform Ptolemy II [21] implements rich simulations
by introducing a director and the computational model for
each actor, but falls short in non-determinism and exhaus-
tiveness of conclusions.

Recent work in Distributed Emergent Ensembles of Com-
ponents (DEECo) [6] replaces typical system configurations
with dynamic component assemblies defined by predicate-
based membership. Communication of components in as-
semblies is indirectly decided by mapping between compo-
nent states through coordinating state automata. DEECo
forms a convenient foundation for implementation and de-
ployment of dynamic components with time guarantees. Un-
fortunately, runtime dynamicity [8] does not alleviate the
burdens of hybrid modeling and verification tackled in this
paper for two reasons. First, assemblies bind and reuse
holistic components, but not fragments of components or
common component transformations. Second, the physical
continuities are abstracted away like in the aforementioned
frameworks, making it impossible to verify a system’s phys-
ical behavior and limiting it to simulation. We introduced
components abstractions that open the door to component-
based reasoning in the face of continuous behaviors, making
DEECo applications possible as well.

Work that is closest to ours extends software architecture
elements with hybrid system elements. AcmeViews [4] aug-
ment Acme architecture description for CPS with explicit
physical elements, like efforts and flows, in order to verify
consistency among multiple views. AcmeViews however do
not have semantics given in terms of a hybrid program and
therefore lack automated generation, reuse, and continuous
dynamics. Hybrid Annex for AADL [1] extends AADL with
hybrid annotations that capture variables, invariants, and
differential evolution and discrete jump behaviors. Hybrid
Annex demonstrates the power of architectural modeling, al-
though only partially supporting reuse of the variation space
with component types; it does not support rich connectors,
and so reasoning about transformation and information flow
is hardly possible. Our work advances the described state of
the art of hybrid modeling through high-level design, reuse,
analysis, and generation of hybrid programs.

9. CONCLUSION
This paper presented architectural abstractions to capture

hybrid programs and dL formulas: architectural formulas
express critical properties over several views, each consist-
ing of HP actors, connectors, and a composer. Our approach
provides formal guarantees for hybrid programs and sup-
ports engineering of model variants through reuse of model
fragments and information flow analysis. The evaluation on
a case study of robotic collision avoidance demonstrated the
viability of architectural modeling for hybrid programs.

The implications of this work go beyond reuse and analayis
of hybrid programs for theorem proving. This paper’s link
between architecture and hybrid models promises seamless
model-driven engineering for cyber-physical systems. On

the one hand, our full compatibility with classic architec-
tural concepts lets us take advantage of architectural results
in synchronization, schedulability, and dynamic adaptation.
On the other hand, the principles of this work are not spe-
cific to hybrid programs and allow us to bring the power
of hybrid verification to the system level without isolating
software reasoning from continuous physical dynamics.

Architectural abstractions for hybrid programs open sev-
eral directions for future research. First, knowledge of archi-
tectural structure and properties can facilitate hybrid prov-
ing. Second, controller specification can be reused and an-
alyzed further, potentially by relating hybrid programs to
other control models like Simulink. Finally, another inter-
esting direction is providing architectural analyses for hybrid
models, e.g., taint analysis for security and propagation of
faults, in other case studies.

10. ACKNOWLEDGMENTS
The authors thank Stefan Mitsch, Nathan Fulton, and

André Platzer for contributing their ideas, providing robot
models, and giving feedback on this work.

This work was supported in part by the National Sci-
ence Foundation under Grant CNS-0834701, the National
Security Agency, and the U.S. Department of Defense un-
der Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering In-
stitute (a federally funded research and development cen-
ter) and through the Office of the Assistant Secretary of
Defense for Research and Engineering (ASD(R&E)) under
Contract HQ0034-13-D-0004. The Systems Engineering Re-
search Center (SERC) is a federally funded University Af-
filiated Research Center managed by Stevens Institute of
Technology. Any views, opinions, findings and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation, the National Security Agency,
United States Department of Defense, ASD(R&E), or the
SEI.

11. REFERENCES
[1] E. Ahmad, B. R. Larson, S. C. Barrett, N. Zhan, and

Y. Dong. Hybrid annex: An AADL extension for
continuous behavior and cyber-physical interaction
modeling. In Proc. of HILT 2014, pages 29–38, 2014.

[2] R. Alur, T. A. Henzinger, and H. Wong-toi. Symbolic
analysis of hybrid systems. 1997.

[3] A. Basu, M. Bozga, and J. Sifakis. Modeling
heterogeneous real-time components in BIP. In Proc.
of IEEE SEFM, pages 3–12. IEEE, 2006.

[4] S. Becker and C. Brenner. The MechatronicUML
design method – process, syntax, and semantics.
Technical Report TR-RI-14-337, 2014.

[5] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl. View
consistency in architectures for cyber-physical
systems. In Proc. of IEEE/ACM ICCPS’11, pages 151
–160, Apr. 2011.

[6] S. Bouraine, T. Fraichard, and H. Salhi. Provably safe
navigation for mobile robots with limited
field-of-views in dynamic environments. Autonomous
Robots, 32(3):267–283, Apr. 2012.

[7] T. Bures, I. Gerostathopoulos, P. Hnetynka,
J. Keznikl, M. Kit, and F. Plasil. DEECO: An

ensemble-based component system. In Proc. of
CBSE’14, pages 81–90, New York, NY, USA, 2013.

[8] T. Bures, P. Hnetynka, and F. Plasil. Strengthening
architectures of smart CPS by modeling them as
runtime product-lines. In Proc. of CBSE’14, pages
91–96, New York, NY, USA, 2014. ACM.

[9] P. Derler, E. A. Lee, S. Tripakis, and M. TÃűrngren.
Cyber-physical system design contracts. In Proc. of
ACM/IEEE ICCPS’13, pages 109–118. ACM, 2013.

[10] L. Fletcher et al. The MIT-cornell collision and why it
happened. In The DARPA Urban Challenge,
number 56 in STAR, pages 509–548. Springer, 2009.

[11] F. Fouquet, B. Morin, F. Fleurey, O. Barais,
N. Plouzeau, and J.-M. Jezequel. A dynamic
component model for cyber physical systems. In Proc.
of CBSE’12, pages 135–144. ACM, 2012.

[12] G. Frehse et al. SpaceEx: Scalable verification of
hybrid systems. In Computer Aided Verification,
number 6806, pages 379–395. Springer, 2011.

[13] D. Garlan, R. Monroe, and D. Wile. Acme:
Architectural description of component-based systems.
Foundations of component-based systems, pages 47–67,
Jan. 2000.

[14] D. Harel. Statecharts: A Visual Formalism For
Complex Systems. 1987.

[15] Kristijan Macek, Dizan Alejandro Vasquez Govea,
Thierry Fraichard, and Roland Siegwart. Towards safe
vehicle navigation in dynamic urban scenarios.
Automatika, 2009.

[16] E. A. Lee. CPS foundations. In In Proc. of DAC’10,
pages 737–742, New York, NY, USA, 2010. ACM.

[17] J. A. Misener. Cooperative intersection collision
avoidance system (CICAS): Signalized left turn assist
and traffic signal adaptation. PATH Research Report,
Mar. 2010.

[18] S. Mitsch, K. Ghorbal, and A. Platzer. On provably
safe obstacle avoidance for autonomous robotic ground
vehicles. In Proc. of Robotics: Science and Systems,
2013.

[19] S. Mitsch, J.-D. Quesel, and A. Platzer. Refactoring,
refinement, and reasoning. In FM 2014: Formal
Methods, number 8442, pages 481–496. Springer, 2014.

[20] M. Ozkaya and C. Kloukinas. Design-by-contract for
reusable components and realizable architectures. In
Proc. of CBSE’14, pages 129–138. ACM, 2014.

[21] A. Platzer. Differential dynamic logic for hybrid
systems. Journal of Automated Reasoning,
41(2):143–189, 2008.

[22] A. Platzer. Logical Analysis of Hybrid Systems:
Proving Theorems for Complex Dynamics. Springer,
2010.

[23] C. Ptolemaeus. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, Sept. 2013.

[24] B. Schmerl and D. Garlan. AcmeStudio: Supporting
style-centered architecture development. In Proc. of
ICSE’04, pages 704–705. IEEE, 2004.

[25] Stefan Mitsch, Grant Olney Passmore, and Andre
Platzer. Collaborative verification-driven engineering
of hybrid systems. Mathematics in Computer Sc.,
8(1):71–97, 2014.

