
Noname manuscript No.
(will be inserted by the editor)

A Negotiation Support System for Defining Utility
Functions for Multi-Stakeholder Self-Adaptive
Systems

Rebekka Wohlrab · David Garlan

Received: date / Accepted: date

Abstract

This is a preprint of the following article, accepted to Requirements Engineering :
Wohlrab, Rebekka & Garlan, David (2021). A Negotiation Support System for

Defining Utility Functions for Multi-Stakeholder Self-Adaptive Systems.
Requirements Engineering. Accepted for publication.

For realistic self-adaptive systems, multiple quality attributes need to be
considered and traded off against each other. These quality attributes are com-
monly encoded in a utility function, for instance, a weighted sum of relevant
objectives. Utility functions are typically subject to a set of constraints, i.e.,
hard requirements that should not be violated by the system. The research
agenda for requirements engineering for self-adaptive systems has raised the
need for decision-making techniques that consider the trade-offs and prior-
ities of multiple objectives. Human stakeholders need to be engaged in the
decision-making process so that constraints and the relative importance of
each objective can be correctly elicited. This paper presents a method that
supports multiple stakeholders in eliciting constraints, prioritizing relevant
quality attributes, negotiating priorities, and giving input to define utility
functions for self-adaptive systems. We developed tool support in the form
of a blackboard system that aggregates information by different stakeholders,
detects conflicts, proposes mechanisms to reach an agreement, and generates
a utility function. We performed a think-aloud study with 14 participants to
investigate negotiation processes and assess the approach’s understandability
and user satisfaction. Our study sheds light on how humans reason about and
how they negotiate around quality attributes. The mechanisms for conflict de-
tection and resolution were perceived as very useful. Overall, our approach was
found to make the process of utility function definition more understandable
and transparent.

Keywords self-adaptive systems · quality attributes · utility functions ·
Analytic Hierarchy Process · Blackboard Architecture · requirements
prioritization · requirements negotiation · non-functional requirements

R. Wohlrab, D. Garlan
Carnegie Mellon University, Institute for Software Research
Pittsburgh, USA
E-mail: wohlrab@cmu.edu

2 Rebekka Wohlrab, David Garlan

1 Introduction

For self-adaptive systems, multiple quality attributes (such as performance,
availability, and security) need to be considered and traded off against each
other. These quality attributes are often encoded in a utility function, i.e., a
single aggregate function whose expected value should be maximized by the
system [22, 31, 35, 56]. In self-adaptive systems, utility functions are typically
used by automated planning mechanisms to identify the relative costs and
benefits of alternative strategies. In related work, utility functions are often
defined as the weighted sum of relevant objectives [12, 21, 26, 61]. For most
approaches using utility functions, it is simply stated that they should be
manually defined, but little guidance for this task is provided [35, 61]. While
the issue of utility function definition is prevalent in a variety of domains
(e.g., in environmental sciences and consumer research [11,30]), we focus on the
domain of self-adaptive systems in this paper. In this domain, it is particularly
challenging to correctly identify utility function weights and consider trade-
offs between multiple quality attributes, as reported in the research agenda
for requirements engineering for self-adaptive systems [56].

Moreover, self-adaptive systems often have multiple stakeholders (e.g., end
users or business owners) whose preferences need to be consolidated to iden-
tify the overall relative importance of each objective [55]. Decision-making
techniques are needed to help stakeholders prioritize and negotiate quality
attributes and determine appropriate utility function weights [56]. Besides de-
termining utility function weights, it is also important to capture constraints
on specific quality attributes [5,9,70]. For instance, in practice, a self-adaptive
system would be unsatisfactory if it runs out of energy while completing a
task. For this reason, utility functions are typically subject to a set of hard
constraints [70] that indicate the acceptable values for quality attributes (e.g.,
that the battery charge should always be above a certain value). In practice,
it is difficult for stakeholders to collect and consolidate preferences and con-
straints, reach an agreement, and define a utility function that can be used by
a self-adaptive system [56].

In this paper, we present a lightweight tool-supported method for utility
function definition for multi-stakeholder self-adaptive systems. The method
is based on the Analytic Hierarchy Process (AHP) [54] and the Delphi tech-
nique [34]. It supports stakeholders in prioritizing quality attributes, specifying
constraints, negotiating priorities to reach an agreement, recording rationales
and comments, and giving input to define utility functions. For utility func-
tions, we use the weighted sum approach, as it is lightweight and commonly
used in related work [12, 16, 26, 61]. It assumes that the weighted quantity of
one quality attribute can be traded off (or “substituted” [1]) with another one.
Our approach supports the elicitation and consolidation of constraints, con-
flict detection, and mechanisms to help stakeholders reach a consensus when
conflicting constraints occur. We created tool support in the form of a black-
board system to help stakeholders collect relevant information and process it
to arrive at a final utility function and constraints.

A Negotiation Support System for Defining Utility Functions 3

The paper is based on a previous conference publication [71] and has been
extended by a more detailed description of the method, as well as developed
tool support, including mechanisms for constraint specification, conflict detec-
tion, and suggestions for (semi-)automatic resolution mechanisms. Moreover,
we present findings from a think-aloud study with 14 participants evaluat-
ing the approach’s applicability, understandability, and user satisfaction. Our
findings indicate that the explanations provided by the tool, as well as the
conflict resolution mechanisms, helped to define a utility function in a trans-
parent and understandable way with traceability to the initial user input. Our
interview data suggests that they were generally satisfied with the tool sup-
port, although refinements to the usability are needed to increase the tool’s
maturity further.

The remainder of this paper is structured as follows: Section 2 describes
our research method. Section 3 presents our AHP-based approach for utility
function definition. In Section 4, we describe the tool support we implemented.
The example system used in our study is presented in Section 5. Section 6
presents the findings of our study. In Section 7, we describe related work. We
discuss our findings in Section 8 and conclude the paper in Section 9.

2 Research Method

We developed our contributions in several iterations based on an informal
literature review, an investigation of related methods, our previously pro-
posed approach for utility function definition [71], and internal discussions.
We motivate our design decisions and the underlying reasoning in the sections
where we present our approach and tooling. To evaluate our approach, we per-
formed a think-aloud study [43]. The think-aloud method [19] is a widely used
technique to investigate problem-solving processes and participants’ cognitive
models [42, 65]. The main idea is that participants make spoken comments
about their thoughts while working on a task. Think-aloud protocol analy-
sis has previously been used by software engineering researchers, for instance,
when evaluating user interfaces and understanding how developers perform
and reason about tasks [42,53,69]. In our case, we decided to perform a think-
aloud study because we were interested in the cognitive processes of utility
function definition, negotiation, and conflict resolution.

For our think-aloud sessions, we prepared a series of tasks to be performed
by the participants. The participants were asked to think aloud while per-
forming their work. We also conducted a short post-task interview in which
we asked questions about the participants’ experiences with the tool and asked
them to think aloud while answering.

We conducted the study with 14 academic participants who had an under-
standing of complex systems to analyze how they reason about utility func-
tions, constraints, and preferences. We aimed to understand the applicability
and understandability of our approach, as well as our participants’ satisfaction
levels with the employed mechanisms. Our think-aloud study and its findings

4 Rebekka Wohlrab, David Garlan

will form a basis for further empirical studies focusing on the approach’s ap-
plicability to real-world systems.

We were especially interested in how our participants experienced the ap-
proach, how they negotiated, and whether any tool mechanisms were challeng-
ing to understand. Assessing the mechanisms’ understandability allowed us to
analyze the mental models that human users develop when working with the
negotiation support system, which can lead to better insights for the future
development of approaches for utility function definition and stakeholder ne-
gotiation. Apart from understandability, we also focused on user satisfaction
to investigate our participants’ expectations and areas of improvement. Our
research questions were:

RQ1: How understandable are the blackboard system’s resolution mecha-
nisms?

RQ2: How satisfied are users with the blackboard system’s output?

In the following, we elaborate on the study design, participant selection,
data collection, data analysis, and threats to validity.

Study Design: The think-aloud sessions started with an introduction to the
problem domain, where the facilitating researcher explained an example sys-
tem that we used in the remainder of the study (more details will be provided
in Section 5). The goal was to ensure that the participants were aware of the
system’s context and the objectives of the study. The introduction was followed
by a learning phase, in which the participants were given a role description of
a stakeholder and were asked to try out the tool, enter constraints and pref-
erences, and explore information on the blackboard. Conflict resolution was
supported by the tool’s mechanisms and negotiation was performed using the
chat. We had previously determined role descriptions for all stakeholders, so
that the interviewing researcher could adopt the role of another stakeholder
and have a chat conversation with the participant in the negotiation phase.

Finally, we leveraged methods to elicit our participants’ mental models of
utility function definition. Following Hoffman et al.’s suggestions to evaluate
solutions for explainable AI [32], we decided to conduct glitch detector tasks
(in which people identify things that are wrong in a system/explanation) and
prediction tasks (in which users are asked to predict a system’s results and
explain their predictions). These tasks help to understand whether the current
system or explanation is understandable and in line with what participants
would expect. The tasks were related to an estimation of the final weights
of the utility function, participants’ understanding of constraint resolution,
concordance, and consistency. For instance, one of the tasks involved showing
the participants a bar chart with non-concordant preferences for which a wrong
utility function was generated. The participants should indicate whether or not
they expected the preferences to be concordant and which weights they would
expect the final utility function to have.

In the post-task interviews, we presented a list of Likert-scale questions
to our users and asked them to answer on a scale from “strongly disagree”

A Negotiation Support System for Defining Utility Functions 5

to “strongly agree”. Moreover, we asked about the experience when using
the tool, difficulties, strategies for negotiation, and potential suggestions to
develop the tool further. More details about the study procedure, as well as
the material we used during the study, can be found online1.

Participant Selection: We selected 14 participants with an understanding of
complex, software-intensive systems (e.g., robotics or software systems). Sev-
eral participants had worked with robot planning applications before and were
aware of the challenges with defining utility functions. We selected partici-
pants with different backgrounds and roles, including four university faculty
members, one researcher involved in industrial projects, two technical staff
members/researchers, six PhD students, and one business office staff member.

Data Collection: All sessions were conducted via a video conferencing platform
and took between 46 and 84 minutes, with an average of 64 minutes. The
audio of the think-aloud sessions was recorded and transcribed for easier data
analysis. Moreover, we collected tool data and observations during the sessions.

Data Analysis: We performed data analysis using QualCoder 2.4 [15]. Qual-
Coder is a tool for qualitative data analysis for text, images, audio, and video.
We performed coding, following Creswell’s guidelines for qualitative analy-
sis [14], and applied an editing approach. Our initial set of codes was based on
the research questions and the predefined set of tasks. Two examples of these
a priori codes are “understandability” and “concordance of preferences”. The
codes were refined, new codes were added, and several codes were merged
during the analysis. To identify the research findings to report on in this pa-
per, we went through the codes to analyze relationships and group them into
categories. Our findings are reported in Section 6.

2.1 Threats to Validity

We identified several threats to internal, construct, and external validity.

Internal validity/credibility: Threats to internal validity or credibility were
partially mitigated by providing rich descriptions describing the contexts of
statements in the think-aloud sessions. The decision to conduct a think-aloud
study helped us to not limit ourselves to a fixed set of factors (as in a sur-
vey) but explore potentially confounding factors. Collecting data based on the
transcripts of our sessions, tool data, and answers to glitch detector/predic-
tion tasks helped us to triangulate different sources of information and elicit
participants’ mental models. What should be noted is that the participants of
the study were given a description of their roles and asked to act according to

1 https://doi.org/10.6084/m9.figshare.17019125.v1

https://doi.org/10.6084/m9.figshare.17019125.v1

6 Rebekka Wohlrab, David Garlan

that description. Studying utility function definition and stakeholder negotia-
tion in a real-world context would likely lead to different findings. For instance,
stakeholders might fight for their positions more than in our example scenario.
In Section 8, we discuss further implications of this threat. We aimed for high
transparency both when it comes to the explanation of our research method
and the description of our findings. Using quotes ensures that findings can be
traced back to statements from the think-aloud sessions and strengthens our
findings’ credibility.

Construct validity: Construct validity is concerned with how well our measures
are suited to study the phenomenon under study. In our case, it was central to
establish a common terminology with the participants, e.g., when it comes to
terms like negotiation, consensus, priorities, or agreement. For this reason, we
spent five to ten minutes at the beginning of the sessions to clarify the context
of the study and ensure that all participants’ questions were answered. We
provide information about the introductory part of the study in the external
document with our study’s material1.

Evaluation apprehension is another threat to construct validity and re-
lates to participants trying to appear intelligent or good in the eyes of the
researcher. It would be problematic to confound the effect of a treatment with
apprehension. We acknowledge the issue of evaluation apprehension, although
we investigate utility function definition in an exploratory fashion rather than
intending to arrive at the finding that our tool (as a treatment) would lead to
any measurable changes.

Conclusion validity: Conclusion validity focuses on to what extent the findings
in this paper are reasonable. It is especially concerned with whether we found
relationships in our data that do not exist or whether we missed relationships
that should have been found. While we did not aim to arrive at statistically
significant conclusions in this study, conclusion validity is still relevant for
our think-aloud study. The degree of reliability might have been compromised
by the fact that we collected data from 14 participants in sessions of an av-
erage length of 64 minutes. Collecting data from an even larger number of
participants would have led to a larger amount of information and the po-
tential detection of further findings. To mitigate threats to reliability, we aim
to be transparent about our research method and provide information about
our study design material as external documents. We thoroughly discussed
and refined the study material over several weeks to avoid issues related to a
potentially incoherent structure or poor question wording.

External validity: The study reported in this paper does not have broad gen-
eralizability as its goal, but rather presents an in-depth think-aloud study
focusing on practical experiences with utility function definition. We selected
the participants of this study based on their knowledge of complex, software-
intensive systems, which is why the findings of this study are not necessarily
transferable to other populations. Another central threat is the presence of

A Negotiation Support System for Defining Utility Functions 7

the main researcher who has both assumed a central role when developing the
tool and facilitated the sessions. This threat related to reactivity might entail
that our participants respond more positively because they know that we are
evaluating our tool. To mitigate this threat, we stressed that the participants
should openly share their thoughts and that suggestions for improvement were
especially welcome. Our results indicate that the participants followed these
instructions and freely shared points of criticism, as 40% of the participants
stated that the tool was not easy to use and suggested aspects to improve.
A potential way to mitigate this threat further is to involve an independent
group of researchers performing the same study. To facilitate the replication of
our study, we provide supplementary material online1. Involving participants
with different roles also helped us get a variety of perspectives on the topic
and strengthen external validity.

3 A Method for Defining Utility Functions

Figure 1 shows the steps of our method for utility function definition, which
was previously published in [71]. The method can be used either for the ini-
tial definition or the refinement of the utility function, in case stakeholders’
preferences evolve. We assume that the involved stakeholders are aware of the
quality attributes under consideration and know how they can be measured.
For instance, stakeholders might be concerned with speed as a quality attribute
(indicating how fast a system arrives at its target destination), safety concerns
(penalizing collisions with objects), and energy consumption (indicating the
battery charge). The leftmost steps are performed individually by each stake-
holder. The guard conditions refer to whether an AHP matrix is consistent
and whether an agreement has been reached. Each step is labeled with the
paragraph of this section in which it is described.

Human stakeholders participate in all steps of the method shown in Fig-

ure 1. The activities labeled with H are manually performed. For the activ-

ities marked with C , we developed tool support that performs checks, gives
feedback to human stakeholders, and asks for input if needed. Our approach is
based on the creation of a matrix that captures pairwise comparisons of qual-
ity attributes (A). When checking for consistency (B), the transitive property
of pairwise comparisons is crucial [54]. In this context, consistency entails that
if quality attribute X is preferred over quality attribute Y and Y is preferred
over quality attribute Z, it must follow that X is also preferred over Z. The
check for agreement in step (D) is concerned with the concordance of pairwise
comparisons made by several stakeholders. For concordance, we compare the
rankings of quality attributes (indicating which attribute is considered most,
second, ..., and least important) and analyze how strongly different stake-
holders’ rankings agree with each other. Moreover, it is identified whether the
specified constraints agree or conflict with each other. In the final step (E),
our method supports stakeholders in negotiating and adjusting their input
preferences and constraints.

8 Rebekka Wohlrab, David Garlan

(A) Perform pairwise comparisons: For the prioritization of quality attributes,
we use the AHP, which is especially useful when subjective, abstract, or non-
quantifiable criteria are relevant for a decision [54]. A central part of the AHP
is to elicit stakeholders’ priorities of different objectives in pairwise compari-
son matrices, which are positive and reciprocal (i.e., aij = 1/aji). For utility
functions, we are interested in the degree of preference of one quality attribute
over another, with the goal of increasing the overall utility of a system. Verbal
expressions are used for these pairwise comparisons (e.g., “I strongly prefer X
over Y ”). Table 1 shows how the verbal expressions correspond to numerical
values. When working with our tool, users are not required to create or un-
derstand AHP matrices. It is sufficient to perform pairwise comparisons and
indicate their preferences.

For a robot planning problem, Table 2 shows an example of an AHP matrix
with the attributes safety (expected number of collisions), speed (duration of
a mission), and energy consumption (consumed watt-hours). In the example,
safety is very strongly preferred over speed (7) and extremely preferred over
energy consumption (9). Speed and energy consumption are equally preferred.

The relative priorities of the quality attributes can then be calculated using
the principal eigenvector of the eigenvalue problem Aw = λmaxw [54]. A is the
matrix of judgments and λmax is the principal eigenvalue. For the matrix in
Table 2, the principal eigenvalue is λmax ≈ 3.01. A corresponding normalized
eigenvector to λmax is (0.8, 0.1, 0.1)T , which corresponds to the relative prior-
ities of the quality attributes. A priority indicates the importance of a quality
attribute with a value between 0 and 1, where a priority of 0 indicates that
the quality attribute is not important at all. The relative priorities always
sum up to 1 (given that they originate from the corresponding normalized
eigenvector).

Utility functions are often used by automated planners to calculate the
optimal plan for a self-adaptive system. The utility function for a plan p can be
defined as U(p) = 0.8·utilitysafety(p)+0.1·utilityduration(p)+0.1·utilityenergy(p).
utilitysafety(p) is related to the expected number of collisions when executing
the plan, utilityduration(p) captures the utility with respect to the duration
of the plan, and utilityenergy(p) is concerned with the consumed watt-hours.
The preference of a quality attribute can often be described with a sigmoid
function defining an interval for the quantity that is considered as good enough
and an interval for the quantity that is insufficient [49]. Appropriate methods

(B) Check for
consistency

(D) Check for
agreement

(A) Perform pairwise
comparisons of QAs
(each stakeholder)

(E) Negotiate and
adjust input

(C) Input constraints
(each stakeholder)

[inconsistent]

[consistent]

[no agreement]

[agreement]

Ⓗ Ⓗ
Ⓒ ⒸⒽ

Fig. 1 Our utility function definition method. Activities marked with (H) are performed
by a human user, whereas activities marked with (C) are performed semi-automatically.

A Negotiation Support System for Defining Utility Functions 9

Table 1 AHP judgment/preference op-
tions with numerical values [54].

Extremely preferred 9
Very strongly preferred 7
Strongly preferred 5
Moderately preferred 3
Equally preferred 1
Intermediate values 2, 4, 6, 8

Table 2 Example of an AHP matrix.

Safety Speed Energy
Consumption

Safety 1 7 9

Speed 1
7

1 1

Energy Cons. 1
9

1 1

need to be selected to elicit these thresholds and quality attributes’ preference
functions.

(B) Check for consistency: AHP matrices can be checked for consistency. A
matrix is consistent if ajk = aik/aij for i, j, k = 1, . . . , n [54]. Saaty proved
that a necessary and sufficient condition for consistency is that the principal
eigenvalue of A be equal to n, the order of A [54]. He defined the consistency
index CI as (λmax − n)/(n − 1). For our example in Section 3, CI is 0.004.
To compare consistency values, Saaty also calculated the random consistency
index RI by calculating CI for a large number of reciprocal matrices with ran-
dom entries [54]. For a 3 × 3 matrix, the average random consistency index
was 0.58. According to Saaty, the consistency ratio CR = CI/RI shall be less
or equal to 0.10 for the matrix to be considered consistent [54]. In our exam-
ple, the consistency ratio is 0.01. If consistency is not fulfilled, stakeholders
are required to refine their AHP matrices. The matrix can be automatically
analyzed to point out the triples of quality attributes QAi, QAj , and QAk

where ajk � aik/aij or ajk � aik/aij .

(C) Input constraints: Besides determining stakeholders’ preferences, it is of-
ten important to elicit constraints when developing real-world systems [5].
These constraints cannot be traded off against other quality attributes, but
need to be fulfilled in any case [71]. Our tool supports the specification of such
constraints. We support both lower bound and upper bound constraints that
can be associated with a real number (e.g., stating that the speed should be
at least 2.0 m/s or at most 1.0 m/s). Moreover, stakeholders are asked to add
a rationale explaining underlying reasons.

(D) Check for agreement: One of the aspects when checking for agreement is
to identify conflicts in stakeholders’ constraints. Conflicts occur when a lower
bound constraint for a specific quality attribute specifies an interval that does
not overlap with an upper bound constraint’s interval for the same quality
attribute. For instance, stating that speed should be at least 2.0 m/s is in con-
flict with specifying that it should be at most 1.0 m/s. These conflicts need
to be resolved in step (E). Besides conflict resolution, it is also possible that
there exists an overlap between constraints, so that one constraint supersedes
another. In these cases, both constraints are lower bound (or upper bound)

10 Rebekka Wohlrab, David Garlan

constraints. For instance, if one stakeholder requires speed to be at least 2
m/s and another one requires speed to be at least 3 m/s, the former con-
straint would be superseded by the latter (since ‘speed at least 3’ is a stronger
constraint).

For users’ preferences, we use another check for agreement. We consider
the rankings of n quality attributes by k stakeholders (where each quality
attribute’s rank is a number between 1 and n). The lower the rank, the more
important is the quality attribute for a specific stakeholder. If all stakeholders
rank energy as the most important quality attribute (rank 1), its ranking
would be 1k = k, the lowest possible ranking. For QAi, the sum of ranks by
all stakeholders is Ri, and the mean value of these ranks is R̄ = 1

n

∑n
i=1Ri. If

the stakeholders’ rankings do not agree, we can assume that the sums of ranks
of several quality attributes are approximately equal [38]. It is therefore natural
to consider the sum of squared deviations from the mean values of ranks
S =

∑n
i=1(Ri−R̄)2 [38]. The maximum possible value of S is k2(n3−n)/12 [38].

Kendall’s concordance coefficient, describing the agreement of rankings in a
[0,1] interval, is therefore: W = 12S

k2·(n3−n) [38]. If the concordance coefficient is

at least 0.3, the agreement is at least at a moderate level.

(E) Negotiate and adjust input: In case an agreement is not reached, a tool-
supported negotiation and reprioritization phase starts. When it comes to
conflict resolution for constraints, several options are suggested by the tool.
The typical options for a user are to drop their constraint, decide based on
stakeholders’ authority levels (which allows the stakeholder with the highest
authority to decide to drop another constraint), or negotiate in the chat.

For preferences, another negotiation and adjustment approach is used. To
aggregate AHP matrices, the “most recommendable aggregation technique” is
to calculate the weighted arithmetic mean of individual priorities (AIP) [46].
Stakeholders’ priorities can be weighted differently, as their influence and stake
may differ. In our approach, stakeholder authority levels can be defined to
indicate their authority.

To resolve conflicts, we adapt the Delphi technique [34] for remote consen-
sus building. The Delphi technique can be used “to seek out information which
may generate a consensus”,“to correlate informed judgments on a topic span-
ning a wide range of disciplines”, and “to educate the respondent group as to
the diverse and interrelated aspects of the topic” [34]. In our adapted version
of the Delphi technique, interactive tooling is used to present the nature of the
conflict(s), give participants a transparent overview of each other’s preferences
and constraints, and explain potential solution strategies (see Section 4.4 for
details). Users can declare that they do not want to indicate any preferences.
Participants are encouraged to use the chat feature to discuss underlying ob-
jectives and arrive at an agreement. Comments and rationales are presented to
the participants and the input can be revised, both with respect to constraints
and with respect to preferences. The resulting utility function is a weighted
sum of the objectives, where the final weights are the participants’ aggregated
weighted priorities (using AIP).

A Negotiation Support System for Defining Utility Functions 11

Fig. 2 Overview of the architecture of the utility function definition system

4 A Negotiation Support System for Utility Function Definition

We developed our system for utility function definition based on the black-
board architecture pattern. The following sections introduce the system, start-
ing with its architecture in Section 4.1.

The system follows the approach described in Section 3. The initial steps
are concerned with the collection of user input (based on the pairwise compar-
ison for AHP and the specification of constraints). Afterwards, an automated
‘consolidation agent’ checks for agreement, identifies conflicting and super-
seded constraints, and feeds that information back to users. Moreover, the
system supports negotiation and input adjustment. When an agreement has
been reached, the resulting utility function is shown and explained to users.

Users interact with a web application and user interface that are described
in Section 4.2. We present how our consolidation agent processes and consol-
idates stakeholders’ input in Section 4.3, followed by a description of conflict
resolution mechanisms in Section 4.4.

4.1 Blackboard System Implementation

The blackboard architecture pattern is a software architecture pattern that was
initially used for speech recognition [20] and has been applied in a variety of
domains [13]. The pattern is based on the metaphor of several experts or agents
looking at a blackboard, analyzing its current state, and adding information to
it. These agents add and refine information on the blackboard until a problem
has been solved. The pattern allows for diverse problem-solving techniques
and flexible representation of information [13]. We found the pattern to be
applicable for the problem of utility function definition where multidisciplinary
stakeholders need to collect a variety of information and create a common
utility function for a given system. The blackboard’s agents can be human
stakeholders or can be automated.

12 Rebekka Wohlrab, David Garlan

Figure 2 shows an overview of the architecture of our utility function defi-
nition and negotiation system. It consists of the blackboard system and several
agents. To interact with human stakeholders, we developed an end user agent
(implemented as a Vaadin 14 web application [27]). Moreover, we created a
consolidation agent that processes and aggregates information. The consoli-
dation agent evaluates the blackboard’s status, detects and explains conflicts,
and determines the utility function weights. It is described in further detail in
Section 4.3.

The blackboard system consists of a blackboard manager component and
a database to store information. The storage is implemented as a MySQL
database. The information in the database is stored in “facts” and we distin-
guish between constraint facts, preference facts (for stakeholders’ preferences),
definition facts (establishing common definitions of the fact types), authority
facts (indicating the stakeholder authority level for a quality attribute), as
well as utility facts (indicating the final weights of the utility function). Facts
can be linked to each other with superseded, removed, or parent relationships.
These relationships between facts help to establish and maintain traceability.

The blackboard manager observes the storage and executes the next agent
based on observed changes. It pushes a message to the next agent to indi-
cate that it is its turn to update the blackboard system. The next agent is
selected based on their authority levels and depending on what has changed
in the system. For instance, if facts have been added and a human user has
requested to generate the utility function, the consolidation agent is executed.
If the consolidation agent needs information to resolve a conflict, it adds that
information to the storage. The blackboard manager, in turn, sends a message
to an end user agent about the nature of the conflict and requests information.

4.2 Web Application and User Interface

We used Vaadin 14 to implement the web application for the end user agent [27].
Vaadin supports several principles of user interface design out of the box, e.g.,
by providing control components, ensuring that designers choose appropriate
color schemes, and supporting straightforward mechanisms to embed informa-
tion or error dialogues [25, 27]. For our particular user interface design, we
used the dashboard design pattern [68]. Our dashboard helps users to get an
overview of the current state of the utility function definition process. The
dashboard was enriched with forms (located in a bar on the left side of the
screen) to allow users to provide input using control elements (i.e., sliders, text
fields, drop-down lists, and chat/log textfields [25]). The advantage of apply-
ing the dashboard pattern is that users are not required to click many times
to navigate through a (potentially complex) navigation structure. Overall, we
relied on common elements for interface design [25, 68] that our participants
were familiar with. What should be noted is that we developed the user in-
terface on a device with a resolution of 1920x1080 pixels. The user interface
is not as easy to use on smaller devices, which might motivate the need to

A Negotiation Support System for Defining Utility Functions 13

Overview of preferences

Summary: According to the preferences, the system's utility function is 0.425 ·
energy_reward(system) + 0.345 · safety_reward(system) + 0.23 ·
speed_reward(system)

The utility function is subject to the following constraints:
0) energy min 5.0 Energy expert Rationale: The battery charge needs to

be at least 5mAh to keep some margin.
1) speed max 9.0 Safety expert Rationale: The speed must not be

higher than 9 m/s (because we
conducted experiments and saw that ...

Constraining quality attribute

speed

speed

safety

safetyenergy

③

①

⑤

④

②

energy

Rationale

At least/at most

Value

Fig. 3 Screenshot of the utility function definition system

redesign parts of the interface when using the system on other devices in the
future.

Figure 3 depicts a screenshot of the user interface. The dashboard shows
all information and blackboard facts at once. The user can input their pref-

erences using the editor in the top-left corner 1 , where sliders are provided
for pairwise comparisons of the quality attributes. The sliders have a pin with
an initial position at the center (indicating that both attributes are equally
preferred) that can be moved towards the left or right to indicate the pref-
erence of one quality attribute over another. Rather than filling in an AHP
matrix, sliders help focus on the pairs of quality attributes to be compared
and visualize how strong the preference is by supporting different positions of
the sliders’ pins. One advantage of using sliders is that stakeholders do not
need to work with AHP matrices or numerical values, which greatly reduces
the mathematical complexity they need to deal with. Moreover, a constraint
editor is provided, allowing the specification of constraints that state that the

value of a quality attribute shall be at least or at most a certain value 2 . It
is also possible to define a rationale for a constraint. At the center, the black-
board facts are displayed. A list of facts shows all currently inserted facts,

including the attribute, stakeholder, description, and rationale 3 . Below the
list, two buttons are provided allowing users to generate a utility function and
to request an explanation of what happened. Preferences are visualized as bar
charts to help end users get an overview of the priorities that the stakeholder

assign to the quality attributes 4 . Finally, the bottom right part is a chat/log

window 5 , indicating the current state of the consolidation, but also allowing
users to send messages to each other (e.g., in the negotiation phase).

The web application is used to support the steps shown in Figure 1, i.e., per-
forming pairwise comparisons (using the sliders), inputting constraints (using

14 Rebekka Wohlrab, David Garlan

Fig. 4 Information about an end user constraint (speed at least 2.0)

the form), getting feedback from the consolidation agent regarding consistency
and agreement issues, as well as negotiating and adjusting the initial input.
Depending on the state of the blackboard system, the user is prompted to give
input to resolve conflicts and reach an agreement. When an agreement has
been reached, a summary is shown to users, describing what the final weights
of the utility functions are and which constraints the utility function is subject
to. Moreover, it is possible to view information related to the constraints by
clicking on them in the list of facts. Figure 4 shows an example of information
for an end user constraint, requiring speed to be at least 2.0. It is shown that
a fact was removed due to a conflict with this constraint, namely the safety
expert’s constraint requiring speed to be at most 1.0. The number line below
shows the speed values that are allowed according to the two constraints and
it can be seen that there is no overlap between the two constraints’ lines. For
superseded constraints, a similar explanation is generated by the consolidation
agent.

4.3 Consolidation Agent

The consolidation agent’s role is to detect and explain conflicts that arise in
the constraints or preferences of multiple stakeholders, as well as to generate
the weights for the utility function. The consolidation agent uses the reasoning
engine Drools [50]. Drools has previously proven applicable as the reasoning
engine for blackboard systems, e.g., in the domain of legal decision making [62].
Drools is based on the Rete algorithm [24] and supports both forward and
backward chaining. In our case, we specified Drools rules in a dedicated file
to handle conflict detection and resolution and insert new facts. Each rule is
formulated based on a condition (“when”) that triggers an action (“then”).
Every rule can have a salience value indicating the priority of the rule, to ensure
that if several rules fulfill their condition they will be fired in a deterministic
order. An overview of the Drools rules for our blackboard system is shown
in Table 3. It can be seen that the rules are concerned with superseded and
conflicting constraints, concordance checks for preferences, the creation of new

A Negotiation Support System for Defining Utility Functions 15

Table 3 Overview of Drools rules for our blackboard system

1. Superseded
constraints

If one constraint for a specific quality attribute implies another (not su-
perseded or removed) constraint, the latter constraint is added to the
superseded facts of the former.

2. Conflicting
constraints

If one constraint for a specific quality attribute is in conflict with another
(not superseded or removed) constraint, the latter constraint is added
to the removed facts of the former (provided that the latter constraint’s
stakeholder’s authority level is lower than the other one’s).

3. Concordance
check

If the concordance value of the current preference facts is less than a
certain value (0.3), an explanation is generated to inform stakeholders
about non-concordant preferences and present them with options.

4. Create util-
ity facts

If there exists a preference fact for a quality attribute but no utility fact,
a utility fact is created setting the weight to the priority value of that
preference fact and adding the preference fact to the superseded facts.

5. Consolidate
preferences

If there exists a utility fact and a non-superseded preference fact for a
quality attribute, the utility fact’s weight is updated and the preference
fact is added to the list of superseded facts.

6. Default au-
thority level

If a stakeholder has a constraint for a quality attribute but does not have
a specified authority level for it, a new authority fact is created setting
the stakeholder’s authority level to a default value.

utility facts, the consolidation of preferences, and the creation of authority
facts. These rules can be adjusted for future use cases, e.g., in case different
resolution mechanisms are required for a certain application. For instance, for
the concordance check (3. in Table 3), we check whether Kendall’s concordance
coefficient is at least 0.3 (see Step (D) in Section 3). Depending on the level of
agreement required for a certain application, this value can be easily adjusted.

Listing 1 shows the rule for the detection of superseded lower bound con-
straints. In the example, a constraint fact $fact is superseded by another con-
straint fact $otherFact. It is superseded because $fact always holds when $oth-
erFact is fulfilled. The rule’s when condition requires a lower bound constraint
fact $fact for a specific quality attribute that is not superseded, as well as
another lower bound constraint fact $otherFact that has a constraint value
greater than $fact’s value. For instance, $fact might indicate that the speed
of the robot should be at least 1 m/s, whereas $otherFact specifies that speed
shall be at least 2 m/s. If the condition is fulfilled, the then part of the rule
adds a message to the user indicating that $fact has been superseded and adds
$fact to the collection of $otherFact’s superseded facts.

Listing 1 Example rule to detect and handle superseded lower bound constraints

rule supersededLowerBound

salience 110

when

$fact: ConstraintFact($myQA: getQA(),

!isSuperseded (), isLowerBound (),

$myValue: getValue ())

16 Rebekka Wohlrab, David Garlan

Your speed constraint (at least 2.0) is in conflict with the safety expert's constraint (at most 1.0).
It is impossible to state that speed should be both at least 2.0 and at most 1.0.

Safety expert's rationale: The speed should not be higher than 1 m/s (because we conducted experiments
and saw that the system would be unsafe otherwise).

End user's rationale: so that the robot can meet its deadlines.

Your authority level for speed is high (2), whereas the safety expert's authority level is the default value (1).

Keep both constraints and (re-)negotiateDecide based on authority levels (keep my constraint)Drop my constraint

Fig. 5 Dialog shown to the user to resolve a conflict related to two speed constraints

$otherFact: ConstraintFact(getQA () == $myQA,
isLowerBound (), getValue () > $myValue)

then

addMessage($otherFact + " supersedes " + $fact);
addToSuperseded($otherFact,$fact);

end

4.4 Conflict Detection and Resolution

Three mechanisms for conflict detection and resolution are supported. Con-
straints can be in conflict with each other. Moreover, preferences can be non-
concordant or inconsistent. We describe these three cases in the following.

4.4.1 Conflicting Constraints

As described in Step (D) in Section 3, conflicts between constraints can occur.
Our tool supports conflict detection, explains conflicts to users, and suggests
ways to resolve them. The supported options are to drop a constraint or to
(temporarily) keep both and (re-)negotiate. Figure 5 shows a dialog that is
prompted to the end user describing an example conflict, stakeholders’ ratio-
nales, authority levels, and options. Stakeholders’ authority levels are crucial
in situations in which no easy conflict resolution strategy can be found and
it is necessary to decide between two conflicting constraints. In the example
situation shown in Figure 5, two speed constraints are in conflict with each
other and the end user can decide which constraint should be kept, given that
they have a higher authority level than the safety expert. The end user can
decide to drop their constraint or drop the safety expert’s constraint. If a con-
straint has been dropped, it is then possible to inspect them and access an
explanation similar to the one in Figure 4.

A Negotiation Support System for Defining Utility Functions 17

4.4.2 Non-concordant Preferences

When preferences are not concordant, an information message by the consol-
idation agent is shown, explaining the issue of non-concordance and poten-
tial ways to solve the conflict. As described in Step (D) in Section 3, non-
concordant preferences arise because the rankings of different stakeholders do
not agree. To analyze what changes are required to create a concordant so-
lution, the consolidation agent analyzes stakeholders’ rankings and calculates
possible changes to reach an agreement. In the current implementation, uni-
lateral changes are considered, i.e., we analyze how an individual’s ranking
could be changed to reach a concordant solution. For instance, if a stakeholder
has a first-ranked quality attribute that is not one of the other stakeholders’
first-ranked quality attributes, we analyze which sliders/pairwise comparisons
need to be adjusted to ensure that the second-ranked quality attribute has
the same priority as the first-ranked quality attribute. Using an adjusted ma-
trix, we run the AHP and calculate whether this change is sufficient to reach
concordance.

To reach a consensus, you need to align your preferences.
– Option 1) @End user: To reach a concordant solution, it is enough

if you lower the top slider and indicate that you strongly prefer
speed over safety. If you do that, you slightly increase your ranking
of safety, which is more in line with the others’ preferences.

– Option 2) You can also convince the safety expert to lower their
preference for safety. If the safety expert prefers safety as much as
energy or speed, your preferences are concordant.

– Option 3) You can also convince the energy expert to lower their
preference for energy. If the energy expert prefers energy as much
as safety or speed, your preferences are concordant.

Write in the chat and negotiate with other stakeholders.

The stakeholders can then negotiate with each other using the chat.

4.4.3 Inconsistent Preferences

In case the AHP input of a single stakeholder is inconsistent (see Step (B)
in Section 3), the web application provides an information message in the
chat/log window. Inconsistencies can arise because pairwise comparisons are
not proportional to each other or because they violate the property of transi-
tivity. The following quote shows an example of what the information message
can look like:

Consolidation Agent: Your ranking is inconsistent.
Your preferences indicate that
(1) safety >> speed, (2) speed > energy, and (3) energy >> safety
However, if you state that safety >> speed and speed > energy, it must
follow that safety > energy.

18 Rebekka Wohlrab, David Garlan

Energy expert Safety expert End user

energysafetyspeed

Fig. 6 An overview of the stakeholders’ preferences in our example

This is in conflict with your statement (3) (energy >> safety), which
is why your ranking is inconsistent.

5 Example

The example system we use in the think-aloud study is a robot (e.g., a vacuum
cleaner). The relevant quality attributes of the system are energy, safety, and
speed. In this context, energy is measured by the battery charge of the robot
and safety based on the expected number of collisions. Speed is measured in
meters per second and thus related to the duration of the robot’s mission.
The stakeholder roles are energy expert, safety expert, and end user. In our
study, the end user role was adopted by the participants (more details will be
provided in Section 2). As mentioned before, stakeholder authority levels can
be defined to indicate that a stakeholder is particularly knowledgeable when
it comes to a certain quality attribute. In this example, a high stakeholder
authority level is assigned to the energy expert for energy, the safety expert
for safety, and the end user for speed. All other authority levels are set to a
default value.

Figure 6 presents an overview of the stakeholders’ preferences in our run-
ning example. The left part of the figure shows the bar chart depicting the
stakeholders’ priorities for the three quality attributes. They were calculated
using AHP based on the user input shown in the right part of the figure. The
example was designed in a way that stakeholders’ priorities are not initially
concordant: the energy expert clearly prioritizes energy, the safety expert has
a strong preference for safety, and the end user prefers speed over the other
quality attributes. Apart from the preferences, the following constraints are
specified:

1. Energy expert: Energy (battery charge) at least 5.0 — Rationale: The
battery charge needs to be at least 5mAh so that the robot never runs out
of energy

A Negotiation Support System for Defining Utility Functions 19

2. Safety expert: Speed at most 1.0 — Rationale: The speed should not be
higher than 1 m/s (because we conducted experiments and saw that the
system would be unsafe otherwise).

3. Safety expert: Safety (expected collisions) at most 2.5 — Rationale: We
cannot accept more than 2.5 collisions because of SAFETYLEG363.

4. End user: Speed at least 2 — Rationale: The system needs to have a speed
of at least 2 m/s (so that it can meet deadlines).

5. End user: Energy (battery charge) at least 1.0 — Rationale: The battery
charge should be at least 1 (because it would be undesirable to run out of
battery).

It can be seen that the end user’s speed constraint (5. in the list above)
is in conflict with the safety expert’s speed constraint (2.). In our study, the
participants were presented with the issues of non-concordant preferences and
constraint conflicts and asked to select an appropriate resolution mechanism.

6 Findings

To answer our research questions, we categorized our findings into themes
focusing on the understandability of the tool (Section 6.1, RQ1), as well as on
user satisfaction (Section 6.2, RQ2).

6.1 Understandability (RQ1)

When assessing our participants’ mental models and understanding of the
system, we identified that the overview that the system provided was very
much appreciated. All participants had an immediate understanding of the
preference bar charts and could read and interpret them without requiring
any assistance. The list of constraints was also understandable, but required
more processing time for our participants. Several participants stressed that
they especially liked the rationales connected to constraints. When being asked
about what the most helpful aspect of the tool was, a faculty member pointed
out that it was “being able to drill down into this tool for some information”. A
researcher answered: “I see very clearly where everybody stands with respect
to their position. I think the rationale was also useful, just seeing exactly why
people say speed or safety is important.”

6.1.1 Preferences

When it comes to stakeholders’ preferences, a majority of the participants
found the sliders easy to use for pairwise comparisons. In our glitch detector
task, all participants were able to validate that a stakeholder’s bar chart was
in line with the values of the corresponding sliders.

20 Rebekka Wohlrab, David Garlan

At the same time, we found that it was difficult to judge whether different
stakeholders’ preferences were concordant without any additional tool expla-
nations. When performing prediction tasks and asking participants what they
would expect to happen given a set of stakeholders’ preferences as bar charts,
our participants faced difficulties. A PhD student stated that “it is hard to
say whether [the preferences] are concordant just by looking at them. I would
have to write them down or analyze it more.” Given a set of concordant prefer-
ences, several participants suggested that there might still be a discussion and
indicated preferences that were not completely aligned. We found that it is not
immediately apparent what changes are required to make preferences concor-
dant. The explanations of non-concordance and the presentation of different
options to reach an agreement were appreciated by the participants. A PhD
student stated that it was helpful to get an overview of possible negotiation
strategies to solve agreement issues:

“My favorite thing is how we get to the negotiation part at the end. It
lists all of the possible changes that would make things work. Because it
seems like that would be difficult to figure out if it didn’t come straight out
and tell you. By just looking at it, it’s really hard to see if it’s concordant
or not.”

A researcher pointed out that the transparent nature of the utility function
definition process was beneficial:

“What I found helpful is the way the aggregated weight was being cal-
culated. So, I give my own preferences. But then at the end without much
work, I can quickly see that the weights are being found and then conflicts
are being highlighted. And then conflicts are being attempted to resolve with
an explanation. So all that gives me more transparency into what’s going
on and then I can think more about it.”

An interviewee stressed that the explanations that guided stakeholders
to create concordant preferences were especially useful. A faculty member
suggested that even more explanations might be beneficial to help stakeholders
understand the mechanisms of the tool, depending on the level of expertise
of the users: “I think the system could show information or explanations on
different levels of detail. One of the things I was wondering was how we actually
go from the individual preferences to the final weights of the utility function”.

6.1.2 Constraints

The specification of constraints was considered “straight-forward” by several
participants. It was more challenging for a few participants to reason about
superseded and removed constraints. To analyze participants’ understanding,
we had several glitch detector tasks focusing on constraints that were super-
seded or removed. On average, it took our participants more than 30 seconds
to identify glitches or arrive at the conclusion that the explanation was cor-
rect. A researcher stated that it was “tricky how one constraint was picked
over another.”

A Negotiation Support System for Defining Utility Functions 21

The current tool supports different mechanisms to remove constraints, ei-
ther because a stakeholder decides to drop their constraint or because a stake-
holder with a higher authority level decides to remove a constraint of a stake-
holder with a lower authority level. It is also possible to start a conversation
and agree on a new or modified constraint. When presented with these options,
we found that our participants reasoned quite differently about constraint res-
olution. The constraints in question were speed constraints. The end user had a
constraint requiring speed to be at least 2 m/s (because of deadlines), whereas
the safety expert constrained speed to be at most 1 m/s. Given the same
speed constraint-related conflict and adopting the end user role, we saw that
the following decisions were taken:

1. Deciding that the own constraint shall be kept and removing the safety
expert’s constraint (because the end user had the top authority level for
speed in our example)

2. Deciding to drop their constraint
3. Negotiating and convincing the other stakeholder to drop theirs

A majority of participants started a negotiation process in the chat. The par-
ticipants deciding to go for decision 1.) insist on the fact that the top authority
level was assigned. After asking the safety expert about their rationales, one
participant stated that “OK, well as the end user, my main concern is meeting
these deadlines. So I’m going to keep my constraints. And take a little [safety]
risk.” Another participant explained their decision as follows: “For me, deal-
ing with end users is just that they are stubborn and obstinate, so I also went
into that role, especially when dealing with deadlines. I know that you know
a lot of people are very strict and concerned about meeting deadlines, and
they panic about it, and they’re willing to sacrifice safety. ” The participants
who decided to drop their own constraints argued that the safety expert is an
expert and would not add a speed constraint without having good reasons.
One participant initially dropped the end user’s constraint (speed at least 2
m/s) and added a new one (setting the speed to at least 1 m/s) that did not
conflict with the safety expert’s constraint.

One participant suggested that removing conflicting constraints should not
be a suggested alternative.

“I feel like just dropping a constraint entirely might not make experts
happy and they may be very unhappy and they may complain or walk away
from it. So maybe there is a negotiation process that involves compromises
and relaxation instead of overriding someone else’s constraints.”

A researcher stressed that the alternatives shown for constraint resolution
were beneficial for the blackboard system’s understandability.

“It was extremely clear what was going on. ‘You said this, that person
said that, here are some of the alternatives’. [...] and I can look at those
alternatives and say: ‘OK, I can live with alternative X’ or I could say ‘no
there’s no way to make those work for me’ so then you keep going.”

22 Rebekka Wohlrab, David Garlan

0%

0%

0%

8%

13%

40%

73%

100%

100%

100%

92%

87%

60%

27%

I am satisfied with how my constraints were considered
and resolved

I am satisfied with how my preferences were considered
and resolved

I am satisfied with the information that the tool
showed me

I think that the tool could be useful for real−world
applications

It was fun to work with the blackboard system

The system is easy to use

Using this system was a frustrating experience

100 50 0 50 100
Percentage

Response strongly disagree disagree agree strongly agree

Fig. 7 Likert-scale answers measuring the satisfaction levels (n = 14)

One participant stated that the constraint resolution “is what the tool is really
good at. They are more objective. [...] And for humans it’s harder to see when
you have a lot of constraints and then see if they are satisfiable or not.”
For this reason, the participant considered the constraint consolidation aspect
especially helpful in terms of understandability.

6.2 Satisfaction (RQ2)

To analyze how satisfied users are with the blackboard system’s output, we
collected Likert-scale answers measuring satisfaction levels. Our questions were
inspired by the candidate Likert items used to evaluate user experience [23].
An overview of the answers is shown in Figure 7. It can be seen that our
participants indicate that they are generally satisfied with how information
was considered and resolved. The usability of the system was not evaluated as
positively as many of the other factors. We asked our participants to motivate
their answers and describe the findings below.

6.2.1 Negotiation

One finding related to negotiation was that different negotiation outcomes
were considered satisfactory. Several participants aimed to ensure that their
own concerns and preferences were well represented in the final utility func-
tion and constraints. Four participants actively searched for information about
the rationales for constraints and preferences. When dealing with conflicting
constraints, a staff member argued that they would use the negotiation part
to make an informed decision: “I would want to understand why we’re so far
apart and what has led me to believe that a minimum speed of ten is required
to complete the task. What has led them to believe that a maximum speed of
nine is safe?”

A Negotiation Support System for Defining Utility Functions 23

The size of a required change was also an aspect that several participants
took into account. One participant stressed that avoiding unilateral changes
and motivating various stakeholders to slightly cede their preferences could
be beneficial: “It could be a smaller change for each of them than it would
be if just one person decided to make a change. [...] But then you have to
convince more people to change, which I imagine in practice could be harder
than just convincing one person.” When analyzing the alternatives to reach
a consensus with respect to the preferences, another participant stated that
it was acceptable to perform a small change on their own preferences, rather
than starting a discussion with another stakeholder and motivating the other
stakeholder to perform an even bigger change. One participant stressed that in
certain situations, it might be easier to see that changes are necessary: “I might
not want to change my preference but if I see that we’re close to conversion,
I might say that it’s ok to change my preferences or drop a constraint.”

6.2.2 Real-World Applications and Scalability

Several participants mentioned that scalability could be an issue when deploy-
ing the tool for real-world applications. The issue that for many quality at-
tributes, AHP requires a large number of pairwise comparisons was mentioned.
When it comes to real-world applications, a faculty member asked how many
discussions/negotiation conversations would typically occur. This interviewee
suggested structuring the chat/log window in a better way and grouping con-
versations related to different conflicts. The faculty member also wondered
whether there would always be pairwise negotiations between stakeholders or
whether more than two stakeholders might be important when resolving con-
flicts. Another participant suggested that sending text messages in a chat is
not the ideal way of exchanging information. Having a phone or video call
could convey information more efficiently and effectively.

92% of the participants thought that the tool could be useful for real-
world applications. One participant stressed that in practice, utility functions
are often defined on an ad-hoc basis: “With the tool, I can actually reason
about the utility function. Otherwise, I would simply create a function out of
the blue and not put in a lot of thought.”

One stakeholder pointed out that this tool is especially beneficial because
it could be used early on in the requirements engineering process and not
when all components of the system are already built. On the other hand, it
was also mentioned that the tool could be used when a system is already in
deployment to re-adjust the weights and constraints of the utility function.
Another participant stressed that the tool might be especially useful when a
running system is analyzed and the preferences are tweaked. This participant
stated that data from simulations or the running system would be beneficial to
understand the impact of the utility function’s weights, so that “you run the
system, you see how it behaves and then you can adjust the utility function
that way, too.”

24 Rebekka Wohlrab, David Garlan

6.2.3 Usability

The usability of the tool was one of the areas where our participants had
suggestions for improvement. 40% of the participants indicated that the system
is not easy to use and 27% found it frustrating to work with the system. Several
interviewees stated that it would be difficult to work with the tool on their
own, without guidance from a tutorial or tool expert. The setup of the study
as a think-aloud session was considered beneficial, as it allowed for clarification
and support where needed.

The visualizations were stressed as very helpful by a majority of the par-
ticipants. A PhD student stated:

“I particularly liked the bar plots of the utility of each attribute for each
stakeholder. The discussion/chat can also be useful. I like how it is easy to
specify your preferences between attributes. I think it’s intuitive to just say
‘I prefer this one over that one’.”

The number lines that visualize the values that are allowed according to two
superseded/conflicting constraints (see Figure 4) were considered more difficult
to understand, but were still considered helpful by multiple participants.

7 Related Work

Utility functions have been widely applied in the context of human decision-
making, in particular, based on von Neumann and Morgenstern’s contribu-
tions to expected utility theory [66]. In the field of optimization in autonomic
computing systems, utility functions have become widely used since the early
2000s [70]. While utility functions are a common mechanism in self-adaptive
systems [12, 16, 22, 26, 31, 61], there exist only a few approaches to defining
them. This paper addresses the need for preference elicitation techniques to
ensure that utility functions meet stakeholders’ needs [70]. In the following,
we describe several related approaches.

Adjusting utility functions at run time: It is important to keep in mind that
utility functions cannot be specified once and for all at design time, but that
elicitation and readjustment of preferences at runtime is typically needed,
especially when it comes to self-adaptive systems [39]. Song et al. [60] propose
an approach that collects user feedback after every round of adaptation to
adjust the weights of constraints. A related approach relies on user feedback to
switch between “variants” with associated utility function weights, depending
on the current usage context [36].

When prioritizing quality attributes at run time, it is often crucial to
consider the system’s context and adapt requirements [17, 40, 59]. One ap-
proach [59] uses the AHP for pairwise comparisons of quality attributes while
taking contextual factors into consideration (e.g., related to the urgency of
tasks, the time period, weather, or wealth). The authors concluded that the

A Negotiation Support System for Defining Utility Functions 25

proposed elicitation technique was beneficial, but that it is difficult to avoid
overwhelming users when eliciting preferences along with a large amount of
contextual information and scenarios. User-adaptive task models are used by
another approach that captures users’ tasks, contextual factors, as well as pref-
erences [58]. Based on this information, the self-adaptive system’s behavior can
be adapted whenever user preferences are readjusted, the context changes, or
failures occur [58].

Several related techniques have been developed that explicitly take the
uncertainty of self-adaptive systems’ contexts into account. The ARRoW ap-
proach uses Primitive Cognitive Network Process (P-CNP), an improved ver-
sion of the AHP, and dynamic decision networks to reassess utility weights
at run time [48]. Partially Observable Markov Decision Processes are used by
another approach to model the satisficement of non-functional requirements,
explicitly considering the uncertainty of runtime contexts [47]. We acknowl-
edge the need to support varying system contexts and consider it promising
to extend our approach with automatic mechanisms to adjust the utility func-
tion at runtime. We envision our approach to be used continuously, so that
utility function weights can be adjusted based on preference elicitation and a
consensus between multiple stakeholders even when the system is running.

Quantifying contributions in goal models: Besides using utility functions, goal-
oriented approaches are also a common mechanism to capture system objec-
tives in self-adaptive systems [70]. In the context of goal-oriented requirements
engineering, contribution labels are commonly used to indicate how much goals
contribute to each other’s satisficement [33,44]. These contribution labels can
be qualitative (e.g., “–” or “+”) or quantitative (e.g., 0.8 or 0.1). Although it
has been criticized that quantitative labels add unwarranted precision and can
overwhelm users, they have still been found to be beneficial in empirical stud-
ies [44]. Several contributions to quantifying the contributions of goals have
been developed and many of them are based on similar techniques as ours. For
instance, an approach for self-adaptive systems uses goal models that can be
analyzed, converted into arithmetic functions, and leveraged to select optimal
adaptation strategies at run time [4]. It is suggested to use group decision
techniques and AHP to arrive at the weights of goals’ contributions. A similar
study has also successfully combined AHP for the quantification of goal con-
tributions with group decision techniques [3]. Our approach does not require
stakeholders to create a complete model of goals, actors, and their relation-
ships, but focuses on multi-stakeholder preference elicitation to create a utility
function encoding the key quality attributes.

Utility functions in the context of goal models can also be used to determine
how multiple functional requirements contribute to the satisficement of non-
functional requirements in self-adaptive systems. For instance, Providentia [10]
uses a search-based technique to determine the weights of such utility functions
at run time with the goal of maximizing overall satisficement of requirements.
The proposed approach was found to lead to better and more robust results
than setting the weights manually or randomly [10].

26 Rebekka Wohlrab, David Garlan

Analytic Hierarchy Process for requirements prioritization: The AHP has been
used for analyzing requirements trade-offs, especially because of its favorable
mathematical properties (e.g., consistency and concordance checks) [18,45,55].
One of the known disadvantages is the large number of required comparisons,
since n(n − 1)/2 comparisons need to be performed for n quality attributes.
In practice, it can be difficult for end users to assign absolute values for the
pairwise comparisons [37, 67]. In certain situations, it can be sufficient to use
an ordinal scale, rather than relying on ratio scale data (as in the case of the
AHP) [37]. Future extensions of our work can explore other prioritization tech-
niques, especially for applications where a large number of quality attributes
needs to be considered. To deal with uncertainty and the difficulty of selecting
precise values when comparing quality attributes, fuzzy extensions of AHP
have been proposed [41].

Requirements negotiation and conflict resolution: Several requirements nego-
tiation techniques have been proposed in the last decades [8, 28, 29, 57]. The
WinWin spiral model [8] is an early, well-known negotiation approach that
helps multiple stakeholders gain an understanding of their conflicts and arrive
at a mutual agreement. It has led to the development of other negotiation
approaches, e.g., EasyWinWin [28], an approach that is based on a group
support system for negotiation and conflict resolution. Many of the existing
negotiation techniques require an analysis of stakeholders, their objectives,
and potential conflicts before actual negotiation starts. The conflict detection
mechanisms we implemented in our negotiation support system address this
need and can assist stakeholders in identifying conflicts (semi-)automatically.
Different conflict resolution strategies might be beneficial in different situa-
tions. Tools to automatically detect and resolve requirements conflicts have
been developed in the past, especially in the context of goal-driven require-
ments engineering [51, 64]. For instance, Oz is a tool that can automatically
detect conflicts, categorize them, and generate compromise resolutions using
planning techniques [52]. Typically, multiple resolution alternatives exist and
human input can be leveraged to decide how a conflict should be resolved
in a specific situation. We support a subset of resolution alternatives in our
tool (Section 4.4) and found that our participants adopted different conflict
behavior, which is in line with previous findings [29,63].

Requirements prioritization is strongly connected to requirements negoti-
ation and often used as an input to focus the negotiation process [6]. Our
approach is based on these insights and leverages AHP as a prioritization
technique in an initial step to inform the negotiation process. To allow for dis-
tributed settings, some of the activities in our method are performed individ-
ually by each stakeholder, whereas for the actual negotiation, we recommend
participants to collaborate synchronously using the chat. This recommenda-
tion is in line with the state of the art of requirements negotiation tools, in
which both synchronous and asynchronous collaboration are supported [29].

A Negotiation Support System for Defining Utility Functions 27

8 Discussion and Future Work

Our think-aloud study indicated that the explanations provided by the tool,
as well as the conflict resolution mechanisms, helped to establish an under-
standable and transparent utility function definition process with traceability
to the initial input. Participants were generally able to identify glitches in
explanations and required considerable time effort when aiming to identify
and resolve conflicts on their own. Our interview data suggests that they were
generally satisfied with the tool support, although refinements to the usabil-
ity are needed to increase the maturity of the tool further. What should be
noted is that the large number of elements that were included in our dash-
board resulted in the user interface being perceived as crowded, especially on
devices with smaller screens. Redesigning the interface by introducing further
navigation elements is one of the areas of future work.

An important aspect to consider is the level of abstraction at which qual-
ity attributes shall be compared and reasoned about. Our approach assumes
that involved stakeholders are aware of the quality attributes under consider-
ation and know how they can be measured. For our weighted sum approach
for utility function definition, quantifiable quality attributes are required. For
instance, the participants in our study were informed that we considered the
expected number of collisions when reasoning about safety. The choice between
quality attributes needs to take these aspects into account (and possibly even
consider how the system is or will be implemented). To acknowledge the need
for other kinds of requirements elicitation, we also support the collection and
specification of constraints in our approach. We expect the negotiation sup-
port system to be adjustable to other kinds of utility functions and different
kinds of input (e.g., requirements at lower levels of abstraction) that can be
prioritized, consolidated, and reasoned about in a collaborative effort. We de-
cided to rely on the weighted sum approach given that it is applied in actual
systems (e.g., [12,21,26,61]) and we aim to address a real-world concern with
this research. It should be noted that the weighted sum approach for utility
function definition has the property that quality attribute dimensions can be
traded off against each other—poor performance in one dimension can be com-
pensated by good performance in another dimension. In certain situations, it
would be more beneficial to define non-linear utility functions. For instance,
multiplying the utilities of different quality attributes can allow stakeholders
to express logical “and”s and capture a conjunction of constraints. Indepen-
dently of whether a utility function is described as a weighted sum or not,
real-world contexts commonly require eliciting the priorities of requirements
and negotiating constraints [6, 29]. We are convinced that our proposed ap-
proach is of value to other requirements prioritization and negotiation contexts
and not only relevant to define weighted sum utility functions.

We explicitly focus on self-adaptive systems in this paper; however, the
developed negotiation support system might be applicable to other contexts
as well. The focus on self-adaptive systems is motivated by the fact that many
existing self-adaptive systems rely on utility functions (e.g., [12, 21, 22, 26, 31,

28 Rebekka Wohlrab, David Garlan

35,56,61]) and we aimed to address real concerns in our research. Future work
will investigate the applicability of our approach to other contexts in which
requirements negotiation and conflict resolution are needed. Non-self-adaptive
systems generally have different kinds of requirements that are not necessarily
expressed in utility functions, but whose consolidation would lead to different
strategic or design decisions [7].

Our blackboard system’s architecture supports future extension and cus-
tomization of our approach. To support extension, we aimed to design the tool
with a focus on the separation of concerns and pluggability of context-specific
elements. For instance, we use a variety of “fact types” (e.g., constraint facts,
preference facts, and definition facts) and developed different kinds of agents
to insert and process facts. Resolution policies can easily be adjusted by chang-
ing the consolidation agent’s Drools rules (Section 4.3). It is also possible to
add further agents and future applications are not limited to our Drools-based
agent and the Vaadin-based user interface. For instance, future extensions of
the tool could include adding support for other roles that partially reuse exist-
ing agents’ functionality (e.g., legal experts specifying different kinds of hard
requirements or human facilitators that do not specify any own preferences but
support the negotiation phase). The addition of further analysis agents (e.g.,
simulation tools) appears beneficial to help stakeholders realize the practical
impact of a change to the utility function. Moreover, the negotiation support
system can be adjusted to process different kinds of information, e.g., hard
or soft constraints, goals, other kinds of utility functions, scenario-specific in-
formation, stakeholder roles, or quality attributes. We imagine the system to
be used continuously, so that stakeholders can engage in a discussion even as
the system context or environment changes. Mechanisms to allow users not
only to express their preferences on a general level, but elicit situation-specific
preferences and utility functions, are another area for future work.

An interesting observation of our study is that it confirms previous find-
ings related to requirements negotiation. The negotiation support system helps
with the automatic identification of conflicts and the proposition of alternative
solutions, which are two of the crucial activities in the requirements negotia-
tion process [2]. Moreover, different conflict behaviors reported by Thomas [63]
were observable in our study: Given the same role description of an end user,
some participants adopted a competing role, whereas others were accommo-
dating, and others used compromising conflict resolution strategies. It is im-
portant to keep in mind that humans react differently when facing conflicts.
Future approaches can build upon these lessons and, for instance, ensure that
negotiation dynamics are not deteriorated by too competing stakeholders and
that crucial stakeholder input is still elicited. It should be noted that our par-
ticipants were provided with a role description rather than representing their
own opinions. We expect stakeholders in real-world situations to engage more
strongly and insist more heavily on their positions than in our think-aloud
study. The negotiation dynamics in real-world situations are likely to be dif-
ferent from the ones in our think-aloud study. For instance, we expect that
future case studies discover different negotiation tactics and ways of reasoning

A Negotiation Support System for Defining Utility Functions 29

than the ones reported in Section 6.2.1. In practice, personal relations between
stakeholders and an in-depth understanding of the constraints’ rationales cer-
tainly have an impact on negotiation. While the findings we describe in the
paper indicate how humans reason about negotiation in general, we acknowl-
edge the need for a case study to explore the phenomenon of requirements
negotiation and prioritization in a real-world setting.

While the functionality to add rationales to constraints was considered
beneficial, several participants stated that even richer information could be
useful to make informed decisions. A potential direction for future work could
be to augment the current tool with run-time or simulation data, as also sug-
gested by two participants. These mechanisms would allow users to analyze
and see the impact of their preferences and utility function weights on system
behavior. Such a tool could generate different plans to show users how the
actual behavior of the system would be affected by changes to users’ prefer-
ences or to the utility function. For instance, it could be stated that a different
path would be selected if a user changed their preference for a specific pair
of quality attributes in a certain way. Such analyses could help stakeholders
to determine what their actual preferences are and whether a utility function
meets their needs.

9 Summary and Conclusions

This paper presented a method that supports multiple stakeholders in eliciting
constraints, prioritizing relevant quality attributes, negotiating, and giving
input to define utility functions for self-adaptive systems. The tool-supported
method is based on the AHP for the pairwise comparison of quality attributes
and is supported by a blackboard system that centrally stores information and
coordinates several agents. We implemented a consolidation agent that uses the
reasoning engine Drools to process information, identify conflicts, and suggest
resolution mechanisms to help stakeholders arrive at a utility function.

To assess the approach with respect to its understandability and user sat-
isfaction, we performed a study with 14 participants. Our study sheds light
on how differently humans reason about and how they negotiate around qual-
ity attributes. We found that it can be difficult for participants to manually
identify conflicts and arrive at concordant preferences. Our tool’s mechanisms
for conflict detection, (semi-)automatic conflict resolution, and visualization of
preferences were perceived as very useful. Overall, our approach helps to make
the process of utility function definition more understandable and transparent.

Future work can build upon the blackboard system and add other kinds
of information/requirements to reason about when consolidating stakehold-
ers’ needs. For instance, contextual information is important to consider for
real-world self-adaptive systems. This information can be complemented with
support for analysis tools that simulate and explain the impact of different util-
ity functions on the behavior of the system. Moreover, the developed method
and tool support appear useful and applicable to other domains and systems

30 Rebekka Wohlrab, David Garlan

that could benefit from requirements negotiation. A promising direction for
future work is to study our approach’s applicability in these contexts.

Acknowledgements We would like to thank all participants for their help and support
with the study. This work is supported in part by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation,
by award N00014172899 from the Office of Naval Research and by the NSA under Award
No. H9823018D000. Any views, opinions, findings and conclusions, or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views
of the Office of Naval Research or the NSA.

References

1. Abdennadher, I., Rodriguez, I.B., Jmaiel, M.: A utility-based approach for self-adaptive
systems: Application to a smart building. In: Proceedings of the IEEE/ACS 14th In-
ternational Conference on Computer Systems and Applications (AICCSA), pp. 76–82
(2018). DOI 10.1109/AICCSA.2017.41

2. Ahmad, S.: Negotiation in the requirements elicitation and analysis process. In: Pro-
ceedings of the 19th Australian Conference on Software Engineering (ASWEC 2008),
pp. 683–689 (2008). DOI 10.1109/ASWEC.2008.4483263

3. Akhigbe, O., Alhaj, M., Amyot, D., Badreddin, O., Braun, E., Cartwright, N., Richards,
G., Mussbacher, G.: Creating quantitative goal models: Governmental experience. In:
E. Yu, G. Dobbie, M. Jarke, S. Purao (eds.) Conceptual Modeling, pp. 466–473. Springer
International Publishing, Cham (2014)

4. Anda, A.A.: Combining goals and SysML for traceability and decision-making in
the development of adaptive socio-cyber-physical systems. Ph.D. thesis, Université
d’Ottawa/University of Ottawa (2020)

5. Asadi, M., Soltani, S., Gasevic, D., Hatala, M., Bagheri, E.: Toward automated feature
model configuration with optimizing non-functional requirements. Information and Soft-
ware Technology 56(9), 1144–1165 (2014). DOI https://doi.org/10.1016/j.infsof.2014.
03.005

6. Berander, P., Andrews, A.: Requirements prioritization. In: Engineering and managing
software requirements, pp. 69–94. Springer (2005)

7. Boehm, B.: Value-based software engineering: reinventing. ACM SIGSOFT Software
Engineering Notes 28(2), 3 (2003)

8. Boehm, B., Bose, P., Horowitz, E., Lee, M.J.: Software requirements as negotiated win
conditions. In: Proceedings of the International Conference on Requirements Engineer-
ing, May 1994, pp. 74–83 (1994). DOI 10.1109/icre.1994.292400

9. Bowers, K.M., Fredericks, E.M., Cheng, B.H.C.: Automated optimization of weighted
non-functional objectives in self-adaptive systems. In: T.E. Colanzi, P. McMinn (eds.)
Search-Based Software Engineering, pp. 182–197. Springer International Publishing,
Cham (2018)

10. Bowers, K.M., Fredericks, E.M., Hariri, R.H., H. C. Cheng, B.: Providentia: Using
search-based heuristics to optimize satisficement and competing concerns between func-
tional and non-functional objectives in self-adaptive systems. Journal of Systems and
Software 162, 110497 (2020). DOI https://doi.org/10.1016/j.jss.2019.110497

11. Cegan, J.C., Filion, A.M., Keisler, J.M., Linkov, I.: Trends and applications of multi-
criteria decision analysis in environmental sciences: literature review. Environment
Systems and Decisions 37(2), 123–133 (2017)

12. Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the pres-
ence of multiple objectives. In: Proceedings of the 2006 International Workshop on
Self-Adaptation and Self-Managing Systems (2006). DOI 10.1145/1137677.1137679

13. Corkill, D.D.: Blackboard systems. AI Expert 6, 40–47 (1991)
14. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods Ap-

proaches, 3 edn. Sage Publications Ltd. (2008)

A Negotiation Support System for Defining Utility Functions 31

15. Curtain, C.: QualCoder 2.4 [Computer software]. https://github.com/ccbogel/

QualCoder/releases/tag/2.4 (2021)
16. Cámara, J., Lopes, A., Garlan, D., Schmerl, B.: Adaptation impact and environment

models for architecture-based self-adaptive systems. Science of Computer Programming
127, 50–75 (2016). DOI https://doi.org/10.1016/j.scico.2015.12.006

17. Dell’Anna, D., Dalpiaz, F., Dastani, M.: Requirements-driven evolution of sociotechnical
systems via probabilistic reasoning and hill climbing. Automated Software Engineering
26(3), 513–557 (2019)

18. Elahi, G., Yu, E.: Comparing alternatives for analyzing requirements trade-offs - in
the absence of numerical data. Inf. Softw. Technol. 54(6), 517–530 (2012). DOI
10.1016/j.infsof.2011.10.007. URL https://doi.org/10.1016/j.infsof.2011.10.007

19. Ericsson, K.A., Simon, H.A.: Protocol analysis: Verbal reports as data. MIT Press
(1984)

20. Erman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, D.R.: The Hearsay-II speech-
understanding system: Integrating knowledge to resolve uncertainty. ACM Comput.
Surv. 12(2), 213–253 (1980). DOI 10.1145/356810.356816

21. Esfahani, N., Elkhodary, A., Malek, S.: A learning-based framework for engineering
feature-oriented self-adaptive software systems. IEEE Transactions on Software Engi-
neering 39(11), 1467–1493 (2013)

22. Faniyi, F., Lewis, P.R., et al.: Architecting self-aware software systems. In: WICSA’14,
pp. 91–94 (2014)

23. Finstad, K.: The usability metric for user experience. Interacting with Computers 22(5),
323–327 (2010)

24. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. In: Readings in Artificial Intelligence and Databases, pp. 547–559. Elsevier
(1989)

25. Galitz, W.O.: The Essential Guide to User Interface Design: An Introduction to GUI
Design Principles and Techniques. John Wiley & Sons, Inc., USA (2007)

26. Ghezzi, C., Molzam Sharifloo, A.: Dealing with Non-Functional Requirements for Adap-
tive Systems via Dynamic Software Product-Lines, pp. 191–213. Springer Berlin Hei-
delberg (2013)

27. Grönroos, M.: Book of Vaadin. Vaadin.com (2011)
28. Grünbacher, P.: Collaborative requirements negotiation with EasyWinWin. In: Pro-

ceedings 11th International Workshop on Database and Expert Systems Applications,
pp. 954–958. IEEE (2000)

29. Grünbacher, P., Seyff, N.: Requirements negotiation. In: Engineering and managing
software requirements, pp. 143–162. Springer (2005)

30. Hauser, J.R., Urban, G.L.: Assessment of attribute importances and consumer utility
functions: Von neumann-morgenstern theory applied to consumer behavior. Journal of
Consumer Research 5(4), 251–262 (1979)

31. Heaven, W., Sykes, D., Magee, J., Kramer, J.: A case study in goal-driven ar-
chitectural adaptation. In: Software Engineering for Self-Adaptive Systems, p.
109–127. Springer-Verlag, Berlin, Heidelberg (2009). URL https://doi.org/10.1007/

978-3-642-02161-9_6

32. Hoffman, R., Mueller, S., Klein, G., Litman, J.: Metrics for explainable AI: Challenges
and prospects. XAI Metrics (2018)

33. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction anal-
ysis techniques. Requirements Engineering 18(3), 199–222 (2013). DOI 10.1007/
s00766-011-0143-y

34. Hsu, C.C., Sandford, B.A.: The Delphi technique: making sense of consensus. Practical
Assessment, Research, and Evaluation 12(1), 10 (2007)

35. Inverardi, P., Mori, M.: A software lifecycle process to support consistent evolutions.
In: R. de Lemos (ed.) Self-Adaptive Systems, vol. 7475 LNCS, pp. 239–264. Springer
Berlin Heidelberg (2013)

36. Kakousis, K., Paspallis, N., Papadopoulos, G.: Optimizing the utility function-based
self-adaptive behavior of context-aware systems using user feedback. In: OTM 2008,
pp. 657–674 (2008)

https://github.com/ccbogel/QualCoder/releases/tag/2.4
https://github.com/ccbogel/QualCoder/releases/tag/2.4
https://doi.org/10.1016/j.infsof.2011.10.007
https://doi.org/10.1007/978-3-642-02161-9_6
https://doi.org/10.1007/978-3-642-02161-9_6

32 Rebekka Wohlrab, David Garlan

37. Karlsson, L., Host, M., Regnell, B.: Evaluating the practical use of different measure-
ment scales in requirements prioritisation. Proceedings of the 5th ACM-IEEE Inter-
national Symposium on Empirical Software Engineering 2006, 326–335 (2006). DOI
10.1145/1159733.1159782

38. Kendall, M.G., Smith, B.B.: The problem of m rankings. Ann. Math. Statist. 10(3),
275–287 (1939)

39. Kephart, J.: Viewing autonomic computing through the lens of embodied artificial in-
telligence: A self-debate (2021)

40. Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H.A., Thomo, A.: ACon: A
learning-based approach to deal with uncertainty in contextual requirements at runtime.
Information and Software Technology 70, 85–99 (2016). DOI https://doi.org/10.1016/
j.infsof.2015.10.001

41. Krejč́ı, J.: Pairwise Comparison Matrices and their Fuzzy Extension. Springer (2018)

42. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: Data collection
techniques for software field studies. Empirical Software Engineering 10(3), 311–341
(2005). DOI 10.1007/s10664-005-1290-x

43. Lewis, C.: Using the “thinking-aloud” method in cognitive interface design. IBM TJ
Watson Research Center Yorktown Heights, NY (1982)

44. Liaskos, S., Hamidi, S., Jalman, R.: Qualitative vs. quantitative contribution labels in
goal models: Setting an experimental agenda. In: Proceedings of the 6th International
i* Workshop (iStar 2013), iStar, pp. 37–42 (2013)

45. Liaskos, S., Jalman, R., Aranda, J.: On eliciting contribution measures in goal models.
In: Proceedings of the 20th IEEE International Requirements Engineering Conference,
pp. 221–230. IEEE (2012). DOI 10.1109/RE.2012.6345808

46. Ossadnik, W., Schinke, S., Kaspar, R.H.: Group aggregation techniques for analytic
hierarchy process and analytic network process: A comparative analysis. Group Decision
and Negotiation 25(2), 421–457 (2016)

47. Paucar, L.H.G., Bencomo, N.: RE-STORM: mapping the decision-making problem and
non-functional requirements trade-off to partially observable markov decision processes.
In: Proceedings of the 13th International Conference on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS ’18, p. 19–25. Association for Computing Ma-
chinery, New York, NY, USA (2018). DOI 10.1145/3194133.3195537

48. Paucar, L.H.G., Bencomo, N., Yuen, K.K.F.: ARRoW: automatic runtime reappraisal
of weights for self-adaptation. In: Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, pp. 1584–1591 (2019)

49. Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dynamic configuration of resource-
aware services. In: Proceedings of the 26th International Conference on Software Engi-
neering, pp. 604–613 (2004). DOI 10.1109/ICSE.2004.1317482

50. Proctor, M.: Drools: a rule engine for complex event processing. In: International Sym-
posium on Applications of Graph Transformations with Industrial Relevance, pp. 2–2.
Springer (2011)

51. Robinson, W.N.: Automated assistance for conflict resolution in multiple perspective
systems analysis and operation. In: Joint proceedings of the 2nd international software
architecture workshop (ISAW-2) and international workshop on multiple perspectives in
software development (Viewpoints ’96) on SIGSOFT’96 workshops, pp. 197–201 (1996)

52. Robinson, W.N., Fickas, S.: Supporting multi-perspective requirements engineering. In:
Proceedings of IEEE International Conference on Requirements Engineering, pp. 206–
215. IEEE (1994)

53. Rojas, J.M., Fraser, G., Arcuri, A.: Automated unit test generation during software
development: A controlled experiment and think-aloud observations. In: ACM Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2015. ACM (2015)

54. Saaty, R.: The analytic hierarchy process—what it is and how it is used. Mathematical
Modelling 9(3), 161–176 (1987)

55. Salehie, M., Tahvildari, L.: Towards a goal-driven approach to action selection in self-
adaptive software. Software: Practice and Experience 42(2), 211–233 (2012)

56. Sawyer, P., Bencomo, N., et al.: Requirements-aware systems: A research agenda for
RE for self-adaptive systems. In: RE’10, pp. 95–103 (2010)

A Negotiation Support System for Defining Utility Functions 33

57. Schoop, M., Jertila, A., List, T.: Negoisst: a negotiation support system for electronic
business-to-business negotiations in e-commerce. Data & Knowledge Engineering 47(3),
371–401 (2003)

58. Serral, E., Sernani, P., Dalpiaz, F.: Personalized adaptation in pervasive systems via non-
functional requirements. Journal of Ambient Intelligence and Humanized Computing
9(6), 1729–1743 (2018)

59. Serral, E., Sernani, P., Dragoni, A.F., Dalpiaz, F.: Contextual requirements prioritiza-
tion and its application to smart homes. In: A. Braun, R. Wichert, A. Maña (eds.)
Ambient Intelligence, pp. 94–109. Springer International Publishing, Cham (2017)

60. Song, H., Barrett, S., Clarke, A., Clarke, S.: Self-adaptation with end-user preferences:
Using run-time models and constraint solving. In: MODELS’13 (2013)

61. Sousa, J.P., Balan, R.K., Poladian, V., Garlan, D., Satyanarayanan, M.: User guidance
of resource-adaptive systems. In: ICSOFT 2008, pp. 36–44 (2008)

62. Szymanski, L., Sniezynski, B., Indurkhya, B.: A multi-agent blackboard architecture for
supporting legal decision-making. Computer Science 19(4) (2018)

63. Thomas, K.W.: Conflict and conflict management: Reflections and update. Journal of
organizational behavior pp. 265–274 (1992)

64. Van Lamsweerde, A., Darimont, R., Letier, E.: Managing conflicts in goal-driven re-
quirements engineering. IEEE Transactions on Software Engineering 24(11), 908–926
(1998). DOI 10.1109/32.730542

65. Van Someren, M.W., Barnard, Y.F., Sandberg, J.A.: The think aloud method: a prac-
tical approach to modelling cognitive processes, 1 edn. Academic Press (1994)

66. Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton
University Press (1953)

67. Voola, P., Babu, A.V.: Comparison of requirements prioritization techniques employing
different scales of measurement. ACM SIGSOFT Software Engineering Notes 38(4),
1–10 (2013). DOI 10.1145/2492248.2492278

68. Vora, P.: Web application design patterns. Morgan Kaufmann (2009)
69. Wallace, C., Cook, C., Summet, J., Burnett, M.: Assertions in end-user software engi-

neering: a think-aloud study. In: Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments, pp. 63–65. IEEE (2002)

70. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic sys-
tems. In: Proceedings of the International Conference on Autonomic Computing, May
2014, pp. 70–77 (2004). DOI 10.1109/ICAC.2004.1301349

71. Wohlrab, R., Garlan, D.: Defining utility functions for multi-stakeholder self-adaptive
systems. In: F. Dalpiaz, P. Spoletini (eds.) Requirements Engineering: Foundation for
Software Quality, pp. 116–122. Springer International Publishing, Cham (2021). DOI
10.1007/978-3-030-73128-1 8

	Introduction
	Research Method
	A Method for Defining Utility Functions
	A Negotiation Support System for Utility Function Definition
	Example
	Findings
	Related Work
	Discussion and Future Work
	Summary and Conclusions

