Case Study of an Automated Approach to
Managing Collections of Autonomic Systems

Thomas J. Glazier, David Garlan, Bradley Schmerl
Institute for Software Research
Carnegie Mellon University
Pittsburgh, PA, USA
{tglazier, garlan, schmerl} @cs.cmu.edu

Abstract—Many applications have taken advantage of cloud
provided autonomic capabilities, commonly auto-scaling, to har-
ness easily available compute capacity to maintain performance
against defined quality objectives. This has caused the man-
agement complexity of enterprise applications to increase. It is
now common for an application to be a collection of autonomic
sub-systems. However, combining individual autonomic systems
to create an application can lead to behaviors that negatively
impact the global aggregate utility of the application and in
some cases can be conflicting and self-destructive. Commonly,
human administrators address these behaviors as part of a design
time analysis of the situation or a run time mitigation of the
undesired effects. However, the task of controlling and mitigating
undesirable behaviors is complex and error prone. To handle the
complexity of managing a collection of autonomic systems we
have previously proposed an automated approach to the creation
of a higher level autonomic management system, referred to as a
Meta-Manager. In this paper, we improve upon prior work with
a more streamlined and understandable formal representation of
the approach, expand its capabilities to include global knowledge,
and test its potential applicability and effectiveness by managing
the complexity of a collection of autonomic systems in a case
study of a major outage suffered by the Google Cloud Platform.

Index Terms—Autonomic Systems, Collections, Meta-
Management

I. INTRODUCTION

Cloud providers have made the acquisition of additional
compute capacity easily available at commodity pricing. This
has led many applications to take advantage of the provided
autonomic capabilities, commonly auto-scaling, to harness the
available compute capacity to maintain performance against
defined quality objectives. However, use of these readily
available autonomic capabilities has caused the management
complexity of the enterprise applications to increase. Each
application is now a collection of autonomic systems in which
each sub-system is an independent functional component.

The approach of combining autonomic sub-systems together
to create a composite application can lead to behaviors that
negatively impact the global aggregate utility of the appli-
cation. For example, the operations management system for
an enterprise cloud application is responsible for rolling out a
security patch to all compute resources. In cloud environments,
this is often achieved with a ‘rolling restart’ in which newly
patched systems are brought online while unpatched systems
are taken offline. However, at the same time, the auto-scaling

capabilities for each sub-system are trying to maintain suffi-
cient capacity to meet the quality objectives of the application.
This leads to one system taking compute resources offline
while another is trying to put them online. At least one of
these actions could negatively impact the global aggregate
utility of the application by either delaying or preventing the
security update or impacting the ability of the application to
meet quality objectives.

Commonly, human administrators address these conflicts
as part of a design time analysis of the situation or a run
time mitigation of the undesired effects. However, the task of
controlling and mitigating undesirable emergent behaviors is
complex and error prone. The administrator needs to analyze
the current and potential future states of the global system
and each sub-system operating in a unique environment with
multiple types of uncertainty and multiple competing quality
dimensions to select a mitigation plan from a combinatorially
large set of possibilities.

In [6] we proposed an approach that addresses these prob-
lems by enabling the creation of a higher level autonomic
system, referred to as a meta-manager. The key idea of the
approach is to assume that the behavior of each autonomic sub-
system is described by an adaptation policy; a representation of
the adaptive actions an autonomic manager will deploy given
a state of the environment and managed systems. We also
assume that each sub-system provides a set of parameters that
allows the meta-manager to tune sub-system adaptation within
a specified range of behaviors. The meta-manager can then
exploit this homogeneity to synthesize a plan that determines
the configuration settings of the sub-systems most likely to
improve global aggregate utility without subsuming the control
functions nor directly orchestrating the actions of the sub-
autonomic managers.

As a practical exemplar of the challenges and consequences
in the management of collections of autonomic systems, we
apply our approach to the major outage of the network control
plane that the Google Cloud Platform (GCP) suffered on
June 2, 2019. The network control plane for GCP exhibits
a multi-tiered autonomic system architecture demonstrating
a clear division of architectural responsibilities. Specifically,
each of the network control plane clusters are independent and
controlled by cluster management software which is respon-
sible for appropriate auto-scaling activities and recovery or

replacement of failed nodes within its specific cluster. Each of
these independent clusters is, at least partially, controlled by a
higher level autonomic manager and/or maintenance manager.
This structural complexity combined with the criticality of the
system and, specifically, its high availability requirements ex-
emplify the challenges human administrators face in managing
a collection of autonomic systems.

In this paper, we improve upon prior work with a more
streamlined and understandable formal representation of the
approach, expand its capabilities to include global knowledge,
and test its potential applicability and effectiveness by man-
aging the complexity of a collection of autonomic systems in
a case study of a major outage suffered by the Google Cloud
Platform by answering two research questions:

1) RQ1: Would our automated approach have improved the
performance of the network control plane in conditions
similar to what GCP experienced?

2) RQ2: Will our automated approach scale sufficiently to
meet the needs of an enterprise system similar to the
one presented in the GCP case study?

Specifically, the contributions of this paper are:

1) An improved and more understandable formal represen-
tation of the approach and an expansion of its capabili-
ties to include global knowledge in the management of
collections of autonomic systems.

2) A point of validation of the effectiveness and applica-
bility of our automated approach.

This paper is organized as follows: Section II provides
the background on related work in relevant areas, Section
III details the GCP outage including the architecture and
corrective actions, Section IV discuses the automated approach
to managing a collection of autonomic systems, Section V
details the experiment demonstrating the effectiveness of the
approach and results, Section VI presents the experimental
results, and Section VII presents a discussion of current and
potential future work.

II. RELATED WORK

Automating the management of collections of autonomic
systems was envisioned in the original IBM paper defining the
MAPE-K model for autonomic computing [11]. However, it is
not entirely clear how one should do this. There are two readily
available approaches; from control theory, a subsumption
approach [1] [5] that replaces the autonomic management of
the sub-systems with a higher-level manager that subsumes
the control functions of the sub-system managers, and an
orchestration approach [11] that updates the knowledge models
of the sub-system managers with information relevant to
their operation. Both of these approaches have a number of
challenges.

The subsumption approach from control theory establishes
hierarchical control systems by decomposing the complex
behavior into individual units to divide the decision making
responsibility. Each unit of the hierarchy is linked to a node in
the tree and commands, tasks, and goals to be achieved flow

down the tree from superior nodes, whereas sensations and
commands results flow up the tree [1] [5]. This approach is
effective in its application to systems with limited complexity.
However, the complexity of the analysis necessary for a
collection of autonomic systems would grow exponentially in
the number of control actions and sub-system states making
such a solution generally infeasible.

Since the orchestration approach was first elaborated by
Kephart and Chess[11], there have been several efforts to
address the scientific and engineering challenges of building
these higher level autonomic managers specific to self-adaptive
systems [18] [17]. An example of the scientific challenges, in
[15], the authors develop a modelling language for collabo-
rations in self-adaptive systems of systems. As an example
of the engineering challenges, [14] develops a framework that
defines a ‘meta-model’ that facilitates coordination between
the different types of orchestrating autonomic managers. In [7],
the authors create an autonomic sub-system that coordinates
the activities necessary to facilitate network control plane
communications. In [2], the authors create a meta-level control
model to coordinate message between components in an agent
based architecture using reinforcement learning. However, an
underlying assumption of all this work is that by improving
the coordination amongst the individual autonomic systems
one can improve their performance against an implicit global
utility function.

In [6] we introduced an approach that directly addresses
the problem of modifying the adaptive behavior of the sub-
systems so they make adaptation decisions that better align
with an explicit global utility function. In the previous work
we demonstrated the potential of the approach with a SMG
simulation. SMGs have been used to synthesize plans for
individual autonomic systems [3], and our work extends that
to synthesize plans for a collection of autonomic systems.
In this paper we simplify the formal representation of the
approach, leading to improved understandability, extend the
formal model to include additional capabilities to improve
analysis, and evaluate the approach using a real-world case
study and a realistic test bench running on enterprise produc-
tion grade cloud systems.

III. GOOGLE CASE STUDY

On June 2, 2019, Google Cloud Platform (GCP) experi-
enced a major outage in its scope, duration, and impact [8].
The outage caused network packet loss, up to 100%, resulting
in an inability to access critical services for over 4 hours
and caused a significant degradation of services for major
websites including youtube.com, Gmail, GSuite, Nest, Snap,
Discord, and Vimeo [12]. In this section, we will detail, to
the extent possible given public information, the architectural
components and requirements of the system determined to be
the root cause, how the outage progressed, the critical events
during the remediation process, and a review of the preventive
actions that resulted from Google’s own post-mortem analysis.

Manager

Maintenance Manager

Customer Platform

Fig. 1: GCP Control Plane Architecture

A. Architecture

As is common with cloud providers, each customers has
the ability to setup and customize a private networking space,
known as an autonomous system (AS) or more commonly
as a virtual private cloud (VPC) [13], for their application.
Due to the high degree of customization available, changes in
the networking configuration of these VPCs are commonplace
which mandates that a system is continuously processing these
changes and making the relevant updates to the configuration
of the physical networking hardware. This system is referred
to as the network control plane.

While the technical details of the network control plane
are not publicly available, Figure 1 presents what we believe
to be a high-level and functionally accurate representation of
the system based on the information provided in the outage
details in [8]. The network control plane consists of a set
of autonomous clusters composed of individual nodes and
managed by cluster management software that enables various
cluster control functions, like auto-scaling. Each of the nodes
will process jobs to update the network configuration as
needed. The exact mechanism behind this is unknown, but
we have represented it as a queue. We would not expect this
queueing system to be dedicated to the network control plane,
but instead is an enterprise wide platform serving multiple
applications.

These individual clusters are run under a specific GCP
service known as Google Compute Engine [9][12] which leads
us to believe the nodes are individual virtual machines. These
individual clusters are distributed throughout various regions
and availability zones to ensure a highly available and respon-
sive network control plane. When the network control plane
finishes processing a job, the new network configuration is
then distributed to the relevant networking equipment to enable
proper packet routing to the individual autonomous systems.
Due to the expectations of customers and the criticality of
changes in network configuration, the network control plane
is constantly processing jobs maintaining very low processing
time, anecdotally less than 5 seconds.

When maintenance of the network control plane is re-
quired, the maintenance system will either move jobs from
one individual cluster to another or stop the processing of
jobs and resume it after the maintenance on the cluster has

been completed. In similar situations, maintenance is typically
done in a ‘rolling’ fashion which allows one cluster to be
under maintenance while others continue processing jobs,
a strategy that prevents an interruption and degredation of
service. Further, in the event of a failure of the entire network
control plane, the physical network is setup to be ‘fail static’,
meaning that the network will continue to run normally on
the current known good configuration for a period of time to
allow administrators to resolve the problem.

B. Outage Details

The GCP outage was the result of two misconfigurations
and a software defect. Specifically, the network control plane
jobs and their infrastructure were included in a specific type
of automated maintenance event, the instances of the cluster
management software were also included in the maintenance
event type, and finally, the maintenance software had a defect
allowing it to deschedule multiple independent software clus-
ters at once, even if they were in different physical locations.

At 11:45 US/Pacific the maintenance event started and
began to shutdown the clusters running the network control
plane jobs. Once the network control plane failed, the physical
network continued to operate normally for a few minutes.
After this, the routing configuration was invalid resulting in
significant packet loss, up to 100%, and end users began
to be impacted between 11:47-11:49 US/Pacific. The Google
engineers were alerted to the networking failures 2 minutes
after it began and started their incident management protocols.

Troubleshooting of the failure was significantly hampered
by severe network congestion by all of the consumers of
GCP services which caused the engineering team to begin
another set of incident management protocols to mitigate
the tool failures. Specifically, engineers had to travel to the
physical data centers, and they had to reprioritize network
traffic to allow the tooling traffic to take precedence. By 13:01
US/Pacific, the root cause of the incident had been determined
and the engineers began to re-enable the network control
plane and its supporting infrastructure. Due to the length of
the outage and the shutdown of the network control plane
instances across different physical locations, the configuration
data had been lost and needed to be rebuilt. The rebuilt
configuration for the network control plane began to roll out
at 14:03 US/Pacific.

As the network control plane started to come back online,
new network configurations began to roll out and service
started to recover at 15:19 US/Pacific and full service was
restored at 16:10 US/Pacific.

C. Post-Mortem Actions

In the wake of the outage, the GCP administrators took
a number of short term actions to prevent an immediate
reoccurrence of the problem and a number of planned changes
to prevent the problem from reoccurring in the long term. First,
the administrators halted the datacenter automation software
responsible for descheduling jobs for maintenance events. Sec-
ond, they hardened the cluster management software to reject
requests to de-schedule jobs at multiple physical locations.
Third, the network control plane will be reconfigured to handle
the maintenance events correctly and persist its configuration
so that it will not need to be rebuilt. Finally, the GCP network
will be updated to continue in a ‘fail static’ mode for a longer
period of time in the event of a loss of the control plane [8].

IV. AUTOMATED APPROACH

Our approach, originally presented in [6], enables the cre-
ation of a higher level meta-manager, which could assume
control of many of the functions for managing a collection
of autonomic systems typically performed by human adminis-
trators. In this work we simplify the formal representation of
the model to improve understandability and facilitate adoption
and extend the formal model to include additional information
to improve the analysis of the meta-manager.

The key idea behind our automated approach to meta-
management exploits the homogeneity in the type of resources
being managed, each being an autonomic system, to assume
that there exists a set of configuration options that can tune
the behavior of the sub-system to within a specified range
of behaviors. For example, these might be the types of
maintenance events considered valid and the maximum and
minimum number of servers to sustain in each control plane
cluster.

These configuration options influence which adaptation tac-
tics the autonomic manager selects to respond to events in the
environment. For example, if a network control plane cluster
at maximum configured server capacity determines that it does
not have sufficient capacity to meet demand, it might choose
to begin de-scheduling jobs. However, if the maximum server
configuration were increased, then the cluster manager would
have at least one additional adaptation tactic available, the
ability to add additional servers.

The configuration options of an autonomic manager is one
of, at least, three factors that can influence which adaptation
tactic is employed. The second is the state of the environment.
In the GCP example, this might be the number of network
control plane jobs that are currently required to be processed.
The third is the current state of the managed system. In the
GCP example, this might be the current number of servers
in use within a cluster or the processing power of each
node. Once an adaptation tactic is applied, a new state of the

managed system is the result. For example, the new state of a
GCP control plane cluster might be an additional server over
what was available in the previous state.

The configuration options, state of the managed system, and
the state of the environment influence which adaptation tactics
are potential candidates for selection, but the individual auto-
nomic managers must attempt to select the ‘best’ adaptation
action available. To do this, the adaptation manager evaluates
the new state of the managed sub-system that results from the
application of each adaptation tactic and determines its ability
to meet the defined SLAs of the system, often through the
use of a utility function. The adaptation tactic that produces a
state that will best meet the defined SLAs of the sub-system
is considered the ‘best’ adaptation tactic and is deployed.

Therefore, if one is able to enumerate the states of the
managed system and the states of the environment, it is
also possible to predetermine which adaptation tactic would
be deployed by the autonomic manager given the state of
the managed system and the state of the environment and
subject to the configuration of the autonomic manager. This
enumeration is referred to as the adaptation policy. In [6],
the formal representation of the adaptation policy was built
on a complex formal representation of a sub-system. A key
difference in this work is that this formal representation is
simplified by eliminating the model of the sub-system and
instead represent the adaptation policy as a higher order
function:

P(c) = (ple,s) = &) (1)
where:

o P is the adaptation policy of the adaptation manager

o C is the set of all possible configurations and ¢ € C

e E is the set of all states of the environment that can
be elaborated from the autonomic system environment
model, e € F, is a state as defined in [16]

« S is the set of all states of the managed system that can be
elaborated from the autonomic system model, s,s’ € S,
is a state as defined in [16]

The mechanism by which the autonomic manager moves
from system state s to s’ is through the use of an adaptation
tactic that is one of a set of adaptation tactics available, a € A,
and is subject to:

a € argmax U(A(s, 1)) ()
i€A

where U(s) — [0[1] is the local utility function and
A(s,a) — ' is a transition function that returns the new
state of the managed system given the current state and the
adaptation tactic.

Using the adaptation policy, it is possible to elaborate the
extensive form of a game between the autonomic manager
of the sub-system and its local environment. For example, for
each time step, t, the local environment will establish a current
state from those naturally possible, e;, this will be the ‘move’

of the environment. Then, at the same time step, the sub-
system will have a current state, s;. Using e; and s;, one can
then use the adaptation policy, P, and the current configuration
of the sub-system’s autonomic manager, c, to determine which
adaptation tactic, a, will be deployed. This process can repeat
for as many time steps and branches as necessary to elaborate
the extensive form of the game.

The ability to elaborate an extensive form of the game
between the sub-system and the local environment from the
adaptation policy is what enables the meta-manager to analyze
potential alternative configurations for each sub-system to im-
prove their individual performance against a global objective
over a time horizon. Using the GCP control plane as an
example, a meta-manager could analyze how a cluster would
adapt and perform against its objectives if the amount of
available resources was reduced; a change to the configuration.
If it is found that the new level of resources would allow for
performance that meets the SLAs of that system, the meta-
manager can then analyze the policies for the other clusters
to see which might improve performance against SLAs if
their available resources were increased. These changes in
the configuration, or meta-tactics, of the sub-systems are one
type of change a meta-manager could potentially make that
allow the meta-manager to influence the adaptive behavior
of the sub-systems without subsuming the autonomic control
functions.

In addition to the adaptation policies, the meta-manager also
has additional information, referred to as global knowledge,
about the individual systems and the local environments that
might be only partially known to the individual sub-systems.
There are at least two types of global knowledge: 1) informa-
tion on the interrelationships between local environments and
2) information on the interrelationships between sub-systems.
Using the GCP control plane as an example, a cluster in one
data center might be handling an unusually large number of
jobs while another is near idle. The control plane will begin
rescheduling jobs to the other cluster to balance the load. This
is an example of one local environment of one sub-system
having an impact on the local environment of another sub-
system: the large load in one local environment triggered a
more moderate load in another local environment.

Similarly, individual sub-systems can also have interrela-
tionships between them. A common one is a shared resource
pool in which consumption of a resource, like money or
energy, by one sub-system can cause scarcity for the other
sub-systems. Global knowledge allows the meta-manager to
create adjusted representations of the states of the managed
system and representations of the states of the environment
for each of the sub-systems to enhance their accuracy making
the meta-manager’s analysis more effective.

We can formally define a meta-manager as a tuple
MU, P,C,E,S,K) where:

U is the global utility function where U(s) — [0|1] where
s is a managed system state for a specific sub-system,
o P is the set of all adaptation policies, P,

o C is the set of all sets of possible configurations for the
subsystems, C,

o & is the set of all sets of possible states of the environment
for the subsystems, F,

o S is the set of all sets of possible states of the managed
system, S,

e K is a set of functions, k(z) — 2’ € K, where x
is a state as defined in [16]. Each function returns the
new state that results from the application of the global
knowledge represented by that function. It is important
to note that both the states of the environment and states
of the managed system derive from the state type in [16].

The goal of the meta-manager is to determine which con-
figuration, ¢ € C, for a specific sub-system with a given
adaptation policy, P, will maximize the global utility function,
U, assuming a specific state of the environment, e € F,
and specific state of the managed system, s € S, both of
which might have been enhanced with global knowledge, K.
Formally this can be stated as:

VP € P;argmaxU(P(c) — p(ep, sp)) 3)
ceCp
where ep and sp are states of the environment and managed
system, respectively, Cp is the set of all possible configura-
tions, specific for the sub-system represented by adaptation
policy, P, where:

ep = 0({Ve € Ep;Vk(e) € K}) 4)

and

sp=0({Vs € Sp;Vk(s) € K}) 3)

0(y) — e and 0(z) — s are functions that accept a set
of states, environment(y) and managed system(z), and return
the ‘best’ state to be used for the evaluation by the meta-
manager. There is nothing about 4 or # which mandates a
specific method of selection for the state of the environment
or the state of the managed system. It is possible to select
the current state, a state a specific number of time steps in
the future, or even handle uncertainty to select the most likely
state. This inclusion of the formal representation of global
knowledge in our automated approach is a new contribution
over the approach previously elaborated in [6].

An assumption built-in to our approach and formalization
is that the global utility is only dependent upon the states
of the managed systems that are part of the collection of
autonomic systems under management. One limitation is that
this prohibits using attributes known only at the global level
of the meta-manager itself.

We believe this to be a reasonable assumption because
collection level factors that are useful in a utility calculation
can be manifested in the managed system state of each sub-
system. Returning to the GCP example, assuming there is a
maximum operational run cost for the entire network control

»»a 8USA-Centrall-

Load
Generator

"- :
e A Maintenance Manager :
-~ -

Message Push

Message Pull

Q
Q

===:p Maintenance Command

wuni Meta-Manager Command

Fig. 2: Experiment Platform Architecture

plane, the meta-manager can set and adjust the maximum
cost levels, or number of servers, for each of the control
plane clusters to prevent the summation of all of them from
exceeding the defined maximum. The state of the managed
system would then represent its level of cost which could then
be factored into the global utility calculation.

A feature of our approach is that it does not mandate a
specific type of analysis nor toolset to determine the best
configuration for each sub-system. For example, one system
implementation could use a rules-based approach while an-
other uses a stochastic multi-player game approach; still others
could use a non-exhaustive state space exploration method,
like a Monte Carlo analysis. All of these analysis methods are
enabled by the use of the adaptation policies. This is important
for the GCP case study as it increases the potential scalability
of the approach; making it more applicable to real collections
of autonomic systems and making it a potentially effective
automated alternative to a human-centric approach.

V. EXPERIMENT & RESULTS

The goal of the experiment is to answer RQ1 and RQ2
and examine the applicability and effectiveness of our ap-
proach. Both research questions can be answered by creating
a representative workload against a realistic experimental
platform and evaluating three scenarios: normal conditions,
maintenance conditions, and maintenance conditions with a
meta-manager. To determine and compare the effectiveness of
our automated approach, we use two measures: (1) the integral
of the time of the oldest message in the queue, referred to as
the inverse utility, and (2) the integral of the cost (i.e., number
of servers in use per unit-time). The ideal value for each of
these is the minimum that can be achieved. This appropriately
evaluates the GCP case study as the control plane has the
assumed quality attribute of processing the requested changes
to the network configuration with minimal delay consistently
over time; an inverse aggregate utility.

Additionally, we examine the scalability of the approach
by exploiting the fact that each of the network control plane
clusters are practically identical. This enables an assumption
that the set of meta-tactics appropriate for one cluster is
applicable to all clusters. We can then consolidate and simply
the analysis which increases the scalability of the approach.

To test this, we re-ran the scenario with maintenance and a
meta-manager to determine if there was a notable change in
the aggregate utility as a result of applying the proposed model
scaling technique.

A. Platform Implementation

The experiment was designed to mimic the GCP control
plane architecture describe in Section III. Therefore, it was
instantiated on GCP using as many of the standard features as
possible.

The technical platform consists of five principal compo-
nents, as diagramed in Figure 2: (1) Load Generator, (2) Pub-
/Sub Queue, (3) Managed Instance Groups, (4) Maintenance
Manager, and (5) the Meta-Manager.

The load generator is a custom developed utility that uses
the Google provided SDK to generate random well-formed
messages to be placed on the Pub/Sub queue. The rate at which
it places messages on the queue and the length of the run are
both configurable.

The Pub/Sub queue is a standard GCP product offering [10]
which provides message queueing and subscriber capabilities
with guaranteed delivery mechanisms. This was configured
with a single topic and a single pull subscription.

A managed instance group (MIG) is a cluster of virtual
machines (VMs) that are managed by an external controller
that will auto-scale the cluster depending upon configured
parameters. Each instance group is configured to auto-scale
to maintain the Pub/Sub metric oldest_unacked_message_age
less than or equal to 5 seconds. This metric represents the age
of the oldest message in the Pub/Sub queue. Each instance
group is also configured, by default, with a 60 second cool
down time between auto-scale actions and a minimum of 1
VM and a maximum of 10. Each of these VM instances
is created from a base operating system template running a
custom utility that is configured to check for and, if present,
pull messages from the Pub/Sub queue once every second.
Processing of the messages is then simulated by determining
a random amount of time, between 250 and 1500 milliseconds,
the system pauses before discarding the message and moving
to the next.

The maintenance manager is a custom developed utility
running on a static virtual machine that uses the Google SDK
to interface with the configuration and state of the MIGs.

Specifically, it can place the MIG into a ‘Rolling Replace’
update in which each VM in the cluster is replaced by a new
one.

The meta-manager is a custom component that collects ,
current state information from the managers of the MIGs, uses °
that information to update a model, presented in section V-B,
triggers the analysis of the model to determine the ‘best’ set
of meta-tactics to deploy, and carries out those actions against
the managed sub-systems.

B. Model Definition

The model used by the meta-manager is defined as a
Stochastic Multi-player Game (SMG) that is implemented in]
PRISM-Games [4] v.2.1. The meta-manager analyzes this to ;
synthesize an adaptation strategy for the meta-manager to *
implement. This strategy synthesis is first attempted during .
the experiment run-time using data from the running system.
Parts of the model are labelled ‘Dynamic’ to indicate which °
information is injected at run time. However, if the analysis of _
the model cannot be completed in an experimentally relevant
time horizon, the synthesis is performed off-line and loaded *®
into the meta-manager for execution using default values.

1) Global Items: The items found in Listing 1 are a set
of constants and global variables that facilitate the creation of °
the model. The variable QueueLoad is the current number of |
outstanding jobs to be processed. The variable Model_Sink is
set to True to designate that the model is in its end state and
prevents any further model actions. The constant MAX_TURNS
sets the maximum number of steps, or time horizon, the model
can run. The constants MIN_SERVERS and MAX_SERVERS
set the bounds for the number of instances in the modeled
MIG. The constant PROCESSING_RATE is the average num- '
ber of new jobs each VM can process per unit time. The
constant NEW_JOBS_RATE sets the average number of jobs
per unit time. The constant MAX_OLDEST_MSG_TIME sets *
the threshold value for what is considered an acceptable pro-
cessing time. The formula CURRENT_CAPACITY calculates
the total amount of server capacity available. The formula
OLDEST _MSG_TIME is dynamic and is replaced by the
observed value of the oldest_unacked_message_age metric.

9

same number of ‘points’ to each environment state as the time
of the oldest message in the queue.

| rewards "ControlPlane_Time"
[AddJobs] true: OLDEST _MSG_TIME;
endrewards

Listing 2: Reward Structures

3) Control Module: The control module provides the ad-
ministration for the model. Specifically, it tracks what the
current turn is, furn, the turn count, furnCount, and a series
of synchronized actions to update the current turn.

module ControlModule
turn [0..2] init O;
turnCount : [0..1000] init O;
[AddJobs] (!Model_Sink) —> (turn’ =
turnCount’ = turnCount + 1);

turn + 1) & (

[ProcessJobs] (!Model_Sink) —> (turn’ = turn + 1)
& (turnCount’ = turnCount + 1);

[Maintenance] (!Model_Sink) —> (turn’ = turn + 1)
& (turnCount’ = turnCount + 1);

[AddCapacity] (!Model_Sink) —> (turn’ = turn + 1)
& (turnCount’ = turnCount + 1);

[RemoveCapacity] (!Model_Sink) —> (turn’ = turn +

1) & (turnCount’ = turnCount + 1);

[CoolDown] (!Model_Sink) —> (turn’ = turn + 1) & (
turnCount’ = turnCount + 1);
IMM] (!Model_Sink) —> (turn’ = 0) & (turnCount’ =

turnCount + 1);
endmodule

Listing 3: Control Module

4) Player Definition: In our definition of the game, there
are three players: (1) Environment, (2) MIG1, and (3) Meta-
Manager. Listing 4 shows the model player definitions.

2| player CONTROLPLANE [ProcessJobs],

player ENV [AddJobs], Environment endplayer

[Maintenance], [
AddCapacity], [RemoveCapacity],[CoolDown]
endplayer

player MM [MM] endplayer

Listing 4: Player Definition

The first player is the environment which adds jobs to
the queue and determines the end of the model by setting
Model_Sink.

»| formula OLDEST_MSG_TIME = (CURRENT_CAPACITY >=

global QueueLoad [0..10000] init O; 1
global Model_Sink bool init false; 2
const int MAX_TURNS = 150; //DYNAMIC

const int MAX SERVERS = 10;

const int MIN_SERVERS = 1; |
const int PROCESSING_RATE = 150; //DYNAMIC

const int NEW_JOBS_RATE = 250; //DYNAMIC

const int MAX_ OLDEST MSG_TIME = 5;

formula CURRENT_CAPACITY = (MIGI1_Server_Count) =
PROCESSING_RATE;

//DYNAMIC

QueuelLoad) ? 3 7;

Listing 1: Global Items

2) Reward Structures: The reward structures, combined
with the properties (see section V-B5), represent the global
utility function, U. This reward structure is setup to assign the

module Environment
[AddJobs] (turn = 0) & (turnCount < MAX TURNS) —>
(QueuelLoad’ = QueueLoad + NEW_JOBS_RATE) ;
[J(turn = 0) & (turnCount >= MAX TURNS) & (!
Model_Sink) —> (Model_Sink’ = true);
endmodule

Listing 5: Environment Definition

The second player is the MIG with 5 possible actions: (1)
process jobs from the queue, (2) undertake maintenance, (3)
add server capacity, (4) remove server capacity, and (5) cool
down after adding or removing capacity. The actions within the
module define the adaptation policy, P, for the sub-system, the
MIG. To examine the AddCapacity action in detail, the state-
ment MIGI1_Cool_Down_Count and is an element from the
managed system state, s, and statement OLDEST_MSG_TIME
> MAX_OLDEST_MSG_TIME is comparing an element from

16

the system state to an element from the environment state, e.
The result of this statement is an increase of +1 to the number

of servers, up to the maximum, currently in the cluster. The

declared global variables are all attributes of the configuration

of the autonomic system and their state at any given point of °

time would be an entry ¢ € C' from section IV.

>| global MIGI1_Server_Count

const int MIGI_Turn = 1;
[MIN_SERVERS . . MAX_SERVERS

] init 1;

;| global MIG1_Cool_Down [0..2] init 1;
global MIG1_Cool_Down_Count [0..2] init O;
global MIG1_CanMaintenance bool init true;

formula MIGI1_ProcessJobs = ((QueueLoad - (
MIG1_Server_Count = PROCESSING_RATE)) > 0) ?

QueuelLoad - (MIGI1_Server_Count % PROCESSING_RATE

) = 0

formula MIGI1_SetMaintenanceSvrs = ((
MIG1_Server_Count — 2) >= 1) ? MIGI1_Server_Count
-2 1;

formula MIGI_AddCapacity = (MIG1_Server_Count + 1 >
MAX_SERVERS) ? MAX_SERVERS : MIGI1_Server_Count +
L;

formula MIGI_RemoveCapacity = (MIG1_Server_Count — 1
< MIN_SERVERS) ? MIN_SERVERS
MIG1_Server_Count — 1;

module MIGI1

[ProcessJobs] (turn =
MIG1_ProcessJobs);

[Maintenance] (turn = MIGI_Turn) & (
MIG1_CanMaintenance) —-> (MIGI_Server_Count’ =
MIG1_SetMaintenanceSvrs) & (MIG1_CanMaintenance’
= false);

[AddCapacity] (turn = MIGI_Turn) & (

OLDEST MSG_TIME > MAX_OLDEST MSG_TIME) & (
MIG1_Cool_Down_Count <= 0) —-> (MIGI1_Server_Count
’ = MIG1_AddCapacity) & (MIG1_Cool_Down_Count’ =
MIG1_Cool_Down) ;

[RemoveCapacity] (turn = MIGI_Turn) & (

OLDEST MSG_TIME < MAX_OLDEST MSG_TIME) & (
MIG1_Cool_Down_Count <= 0) —> (MIGI_Server_Count
> = MIGI_RemoveCapacity) & (MIGI1_Cool_Down_Count
> = MIGI1_Cool_Down) ;

[CoolDown] (turn = MIG1_Turn) & (
MIG1_Cool_Down_Count > 0) —> (
MIG1_Cool_Down_Count’ = MIG1_Cool_Down_Count —
1);

endmodule

MIG1_Turn) —-> (QueuelLoad’ =

Listing 6: MIG Definition

The third player is the MetaManager module, presented
in Listing 7, and it has a set of actions that represent the
available meta-tactics. Each of these meta-tactics updates the
configuration of MIGI. The guards on each of these actions
are identical and each part of them is strictly to ensure the
proper operation of the model, they do not influence which
meta-tactic could be selected. This is important, as this is
the uncertainty that will be resolved by the tool when it
synthesizes a strategy to determine the best use of these meta-
tactics; determining the adaptation strategy the meta-manager
will use. This process is what is represented by equation
IV. The tool uses the current state of the environment, ep,
the current state of the managed system (MIGI), sp, and
the current configuration, ¢, to determine which configuration
change is going to improve the global utility function, U, see
section V-B2. The first statement is a pass-through with no

effect on other components. This allows for the MetaManager
to take ‘no action’.

const int MM_Turn =

>| module MetaManager

[IMM](turn = MM_Turn) —-> (Model_Sink’ =
; //Pass—Through, No Action

2;

Model_Sink)

4 IMM](turn = MM_Turn) —-> (MIG1_Cool_Down’ = 0);

5 IMM](turn = MM_Turn) -> (MIG1_Cool_Down’ = 1);

6 IMM](turn = MM_Turn) -> (MIG1_Cool_Down’ = 2);

7 [IMM](turn = MM_Turn) —-> (MIG1_CanMaintenance’ =
false);

8 [IMM](turn = MM_Turn) -> (MIG1_CanMaintenance’ =
true) ;

9| endmodule

Listing 7: MetaManager Definition

5) Properties: This is a rewards based property that causes
the tool to search for the strategy that minimizes the reward,
see section V-B2, that can be guaranteed by the players MM
and CONTROLPLANE.

1| <<CONTROLPLANE ,MM>> Rmin=? [Fc Model_Sink]

Listing 8: Properties

C. Scenario Results

Each of these scenarios was run by generating a workload
of 250 messages per minute for 30 consecutive minutes with
an additional 5 minute warm-up and cool-down period against
an enterprise production grade cloud system, not a simulation.
All scenarios were run in a single 3 hr. window to control
variability in the underlying systems.

Normal Operations

400 12

350 = 10
300 ', -
= 250 el e e 5] B E
w ' =]

< 200 6
£ §
= 150 4 E
W

100
50

1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39
Time Step (Minutes)

Server Count- MIG1 == == Server Count- MIG 2

Fig. 3: Experiment - Normal Operations

The first scenario, presented in Figure 3, exercises the
system under normal operating conditions without the inter-
ference of the maintenance manager or the assistance of a
meta-manager. This scenario results in an aggregated inverse
utility of 1137 with an aggregated cost of 431.

The second scenario, presented in Figure 4, exercises the
system with the interference of a maintenance manager. The
maintenance manager is configured to perform a rolling restart
of cluster 1 at time step 10 and a rolling restart of cluster 2
at time step 15. This scenario results in an aggregated inverse
utility of 3024 with an aggregated cost of 334.

With Maintenance Manager

400 12
350
300

— 250

:g 200

F 150
100

50
0

(-]
Server Count

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Time Step (Minutes)

----- Server Count- MIG 1 == == Server Count - MIG 2

Fig. 4: Experiment - Maintenance Operations

The third scenario, presented in Figure 5, exercises the
system with the interference of a maintenance manager, which
is configured identically as the previous scenario, and the
assistance of a meta-manager. In this scenario, the meta-
manager first attempts to set the cool down period of each
of the clusters from 60 seconds, the default, to the minimum
available, 15 seconds at time step 7. Then at time step 12, the
meta-manager configures each cluster to ignore the requests of
the maintenance manager to perform rolling restarts. While the
rolling restart has already been started for MIG1, this action
does prevent the rolling restart of cluster 2 at time step 10. Due
to the state space expansion of modelling both MIGs explicitly,
it was necessary to reduce the MAX_TURNS to 40 which
took a total of 642 seconds generating 12,299,356 states and
35,734,291 transitions. Because of the amount of time required
to run this model, the meta-strategy was precalculated offline
and preloaded into the meta-manager. This scenario results in
an aggregated inverse utility of 1157 with an aggregated cost
of 298.

With Meta-Manager - 2 Clusters Modelled

400 12
350 i
300 »

5 250 jm———— L o e B E

¢ 200 i Y ! 6 5

F 150 ! :

= - 4 3

100
50
1]

1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39
Time Step (Minutes)

UNACK Time ---... Server Count - MIG1 == == Server Count- MIG 2

Fig. 5: Experiment - Meta-Manager Operations - 2 Clusters

Finally, the fourth scenario, presented in Figure 6, exercises
the system identically to the third scenario. The difference
being that the model used by the meta-manager has only one
representative cluster, with two physical clusters, under the
assumption that because the physical clusters are identical, the
proposed meta-tactics appropriate for one would be applicable

to all others. Similarly to scenario 3, the meta-manager recon-
figures the cool down period for each cluster at time step 6
and configures each cluster to ignore the maintenance manager
at time step 13, again preventing the rolling restart of cluster
2 at time step 15. The model took a total of 216 seconds to
generate a strategy for the MetaManager generating 2,772,379
states with 6,840,217 transitions with a MAX_TURNS of 150.
The scenario results in an aggregated inverse utility of 1095
with an aggregated cost of 269.

With Meta-Manager - 1 Cluster Modelled

o
Server Count

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Time Step (Minutes)

e UNACK Time v v oo Server Count-MIG1 == == Server Count - MIG 2

Fig. 6: Experiment - Meta-Manager Operations - 1 Cluster

VI. EXPERIMENTAL RESULTS

The experimental results show a 61.7% improvement, from
3024 to 1157, in the aggregate inverse utility between scenario
2, maintenance conditions, and scenario 3, maintenance condi-
tions with a meta-manager. Further, the results also show that
the meta-managed scenario had a 10.7% improvement in the
aggregated cost. Additionally, this is only a 1.75% difference
between the normal operating conditions, scenario 1, and the
meta-managed maintenance conditions, scenario 3. Based on
these experimental results, we can reasonably conclude that
our automated approach would have improved the performance
of the network control plane in the GCP case study.

Finally, the difference in aggregate inverse utility between
the meta-managed scenarios, scenario 3, with 2 MIGs mod-
elled, and scenario 4, was 5.4% decrease in aggregate inverse
utility and 9.7% decrease in aggregated cost. While a 5.4%
difference in the aggregated inverse utility could be significant
in some contexts, we believe this difference is acceptable in
a wide variety of contexts and can therefore conclude that
our automated approach would scale sufficiently to meet the
needs of an enterprise system similar to the one presented in
the GCP case study.

VII. DISCUSSION & FUTURE WORK

In this paper, we improved upon our prior work with a
more streamlined and understandable formal representation
of the approach and expanded its capabilities to include
global knowledge which can be leveraged to make the meta-
manager’s analysis more effective. However, any approach
that synthesizes strategies is potentially challenged by the
scalability of the solution. Our example demonstrated one

potential method of enhancing scalability by exploiting the
practical uniformity of all the sub-systems under management
in the GCP network control plane. But there are additional
ways of enhancing scalability as part of the individual analysis
techniques. There is nothing about our approach that is specific
to any off-the-shelf tool nor strategy synthesis technique. This
partially enables our approach to address scalability challenges
which enables a degree of generality across a number of po-
tential domains and types of collections of autonomic systems.

Future work in this area will focus on (1) better understand-
ing the applicability of various strategy synthesis techniques
and their applicability to various use cases based upon the level
of assurance they provide and the timeliness of their analysis,
(2) examining architecture strategies of composing autonomic
systems into functional collections to evaluate the how the
use of global knowledge and strategies to further enhance
scalability differ and (3) loosening the goal of the collection
of autonomic system of improving global aggregate utility and
instead improve against a global objective. For example, in a
security context, it might be in the collection’s best interest to
hold the attention of an attacker by sacrificing the currently
compromised sub-system to allow time for the other members
of the collection to mitigate the threat to themselves. This
would be changing the priority of the meta-manager from
improving global aggregate utility to improving performance
against a global objective (e.g., maintaining security) which
might be the desired short term objective.

REFERENCES

[1] James S. Albus. A reference model architecture for intel-
ligent systems design. http://ws680.nist.gov/publication/
get_pdf.cfm?pub_id=820486. Accessed: 2019-10-18.
Daniela Pereira Alves, Li Weigang, and Bueno Borges
Souza. Using meta-level control with reinforcement
learning to improve the performance of the agents.
In Lipo Wang, Licheng Jiao, Guanming Shi, Xue Li,
and Jing Liu, editors, Fuzzy Systems and Knowledge
Discovery, pages 1109-1112, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

Javier Cdmara, David Garlan, Bradley Schmerl, and
Ashutosh Pandey. Optimal planning for architecture-
based self-adaptation via model checking of stochastic
games. In Proceedings of the 10th DADS Track of
the 30th ACM Symposium on Applied Computing, Sala-
manca, Spain, 13-17 April 2015.

Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, David
Parker, and Aistis Simaitis. Prism-games: A model
checker for stochastic multi-player games. In Nir Piter-
man and Scott A. Smolka, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 185—
191, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

W. Findeisen, FEN. Bailey, M. Brdys, K. Malinowski,
P. Tatjewski, and A. Wozniak. Control and Coordination
in Hierarchical Systems. International Series on Applied
Systems Analysis. John Wiley & Sons, 1980.

(2]

(3]

(4]

(5]

10

(6]

(7]

(8]

[17]

Thomas J. Glazier and David Garlan. An automated
approach to the management of a collection of autonomic
systems. In Proceedings of the 4th eCAS Workshop on
Engineering Collective Adaptive Systems, Umea, Swe-
den, June 2019.

Hemant Gogineni, Albert Greenberg, David A. Maltz,
T. S. Eugene Ng, Hong Yan, and Hui Zhang. MMS:
An Autonomic Network-Layer Foundation for Network
Management, volume 28, pages 15-27. IEEE, 2010.
Google. Google cloud networking incident #19009.
https : / / status . cloud . google . com / incident / cloud -
networking/19009. Accessed: 2019-10-12.

Google. Google compute engine. https://cloud.google.
com/compute/. Accessed: 2019-10-18.

Google. Google pub/sub documentation. https://cloud.
google.com/pubsub/docs. Accessed: 2019-10-18.

IBM. An architectural blueprint for autonomic com-
puting. https://www-03.ibm.com/autonomic/pdfs/AC%
20Blueprint%20White %20Paper%20V7.pdf. Accessed:
2019-10-18.

Jonathan Shieber. Google cloud is down, affecting
numerous applications and services. https://techcrunch.
com/2019/06/02/google - cloud - is - down - affecting -
numerous- applications-and-services/. Accessed: 2019-
10-17.

Technopedia. Private cloud. https://www.techopedia.
com/definition/13677/private-cloud. Accessed: 2019-10-
18.

Thomas Vogel, Stefan Neumann, Stephan Hildebrandt,
Holger Giese, and Basil Becker. Model-driven architec-
tural monitoring and adaptation for autonomic systems.
In International Conference on Autonomic Computing
and Communications. ICAC °09., pages 67-68. ACM,
2009.

Sebastian Witzoldt and Holger Giese. Modeling collabo-
rations in adaptive systems of systems. In Proceedings of
the 2015 European Conference on Software Architecture
Workshops, ECSAW 15, pages 3:1-3:8, New York, NY,
USA, 2015. ACM.

Danny Weyns, Sam Malek, and Jesper Andersson.
Forms: a formal reference model for self-adaptation. In
Proceedings of the 2010 International Conference on
Autonomic Computing, Washington D.C., USA, 2010.
Danny Weyns, Sam Malek, and Jesper Andersson. On de-
centralized self-adaptation: lessons from the trenches and
challenges for the future. In SEAMS ’10: Proceedings of
the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, Cape Town, South
Africa, May 2010.

Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam
Malek, Raffaela Mirandola, Christian Prehofer, Jochen
Wauttke, Jesper Andersson, Holger Giese, and Karl
Goeschka. On Patterns for Decentralized Control in Self-
Adaptive Systems, volume 7475 of LNCS. Springer, 2012.

http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=820486
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=820486
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/pubsub/docs
https://cloud.google.com/pubsub/docs
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://techcrunch.com/2019/06/02/google-cloud-is-down-affecting-numerous-applications-and-services/
https://techcrunch.com/2019/06/02/google-cloud-is-down-affecting-numerous-applications-and-services/
https://techcrunch.com/2019/06/02/google-cloud-is-down-affecting-numerous-applications-and-services/
https://www.techopedia.com/definition/13677/private-cloud
https://www.techopedia.com/definition/13677/private-cloud

	Introduction
	Related Work
	Google Case Study
	Architecture
	Outage Details
	Post-Mortem Actions

	Automated Approach
	Experiment & Results
	Platform Implementation
	Model Definition
	Global Items
	Reward Structures
	Control Module
	Player Definition
	Properties

	Scenario Results

	Experimental Results
	Discussion & Future Work

