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Abstract—Self-adaptive software systems rely on planning to
make adaptation decisions autonomously. Planning is required
to produce high-quality adaptation plans in a timely manner;
however, quality and timeliness of planning are conflicting in
nature. This conflict can be reconciled with hybrid planning,
which can combine reactive planning (to quickly provide an
emergency response) with deliberative planning that take time
but determine a higher-quality plan. While often effective, reac-
tive planning sometimes risks making the situation worse. Hence,
a challenge in hybrid planning is to decide whether to invoke
reactive planning until the deliberative planning is ready with a
high-quality plan. To make this decision, this paper proposes a
novel learning-based approach. We demonstrate that this learning-
based approach outperforms existing techniques that are based
on specifying fixed conditions to invoke reactive planning in two
domains: enterprise cloud systems and unmanned aerial vehicles.

I. INTRODUCTION

Modern enterprise software systems have to provide high
availability and optimal performance in spite of changing
environments, faults, and attacks. Managing these systems
manually can be costly, error prone, and difficult to scale;
therefore, these systems are becoming increasingly autonomous.
For autonomous systems, the ability to plan is one of the key
requirements to decide how to adapt. To this end, researchers
have proposed various planning techniques, including rule-
based adaptation, case-based reasoning, fuzzy-logic, reinforce-
ment learning, stochastic search (using genetic algorithms), and
optimization on probabilistic models (e.g., Markov Decision
Processes (MDPs). We use the term "planning" in a broad
sense, referring to any decision-making approach that could
be used to determine adaptation plans. The goal of planning
is to solve planning problems — descriptions of a planning
context (a system and its environment) and a goal (a state or
an objective function) for planning purposes.

For many autonomous systems, quality and timeliness are
two particularly important requirements to be considered when
planning. Here the “quality” of planning refers to the likelihood
of a plan meeting the (predefined) adaptation goals. In many
domains, a poor quality plan can lead the system into an
irreparable failure that endangers lives (e.g., in safety critical
systems), or loss of revenue and failure of business goals (e.g.,
enterprise systems). A high quality plan needs to be ready
in time to achieve its adaptation goals. For instance, if an
enterprise system fails to produce a timely defense plan the
system risks being compromised even if the plan itself was
high quality (e.g., because assets may have been exfiltrated
while the plan was being constructed) [1].

Fundamentally, quality and timeliness are conflicting require-
ments: producing higher-quality plans is likely to take more
time. Furthermore, the time to produce quality plans increases
significantly in larger search spaces resulting from complex
environments, large numbers of components, adaptation options,
and qualities of interest. To address this quality-timeliness trade-
off, one approach, referred to as hybrid planning, combines
multiple planning components with different quality-time
tradeoffs [2]. When a time-critical adaptation is needed, “fast”
(reactive) planning determines a quick (but potentially sub-
optimal) plan, while “slow” (deliberative) planning computes
a better plan that takes over once it is ready.

One of the key obstacles to the adoption of hybrid planning
is deciding when to invoke reactive planning. It may be a high-
stakes decision: waiting may lead to system failure, whereas
reactive planning may make a quick but bad decision that
makes the situation worse – not better – and may lead to
failure as well.

To avoid an inappropriate invocation of reactive planning,
one might specify up-front conditions under which it should be
invoked. For example, Netflix used reactive planning only in
emergency situations when waiting for a deliberative plan
is not advisable (e.g., unexpected surge in workload) [3].
This approach might reduce the risks of inappropriate quick
decisions, but suffers from two drawbacks: (a) it requires
deep domain expertise to identify the conditions; and (b) it
relies on error-prone human judgment to identify the right
and comprehensive conditions, which can be difficult for a
complex system with multiple conflicting requirements. For
instance, such rules are likely to be conservative and avoid
reactive planning when they might, in fact, be useful.

To overcome these drawbacks, as the first contribution,
this paper proposes a supervised machine learning-based
(LB) approach to decide whether to invoke reactive planning
in combination with deliberative planning or wait (i.e., no
adaptation) until a deliberative plan is ready. In the training
phase, using planning problems similar to the ones expected
at run time, a classifier is trained to choose between invoking
reactive planning and waiting. At run time, depending on how
the current situation (i.e., the planning problem at hand) relates
to problems in the training set, the classifier decides whether to
invoke reactive planning or wait. As we will see, this approach
overcomes disadvantages of condition-based (CB) invocation
of reactive planning by removing the need for humans to
determine the specific conditions at design time, and by being
applicable to a broad range of systems/domains.



To train a classifier, one needs a set of labeled training
problems such that the label of a problem indicates whether
reactive planning, in combination with deliberative planning
will provide a higher performance compared to just waiting
until a deliberative plan is ready. Labeling a planning problem
requires one to evaluate and compare the performance of (a) the
reactive plan (determined by reactive planning for the problem)
followed by the deliberative plan, and (b) waiting followed by
the deliberative plan.

Obtaining correctly labelled training data for a classifier is
challenging for real systems. To label one planning problem,
one would have to repeatedly put the system and its envi-
ronment in the same state to test the two combinations as
mentioned above. This is non-trivial, particularly in domains
with uncertain dynamics, which is often the case in modern
systems. In such domains, the environment evolution and
the outcomes of the system’s actions may change between
attempts, so one would have to perform multiple trials of
the same combination to determine the best average outcome.
For example, suppose a self-adaptive cloud-based system
proactively adds a server, anticipating an increase in future
workload. However, if the workload suddenly decreases, adding
the server is counterproductive. For such a system, an approach
is needed that can take uncertainty (e.g., possible changes in
workload) into account, preferably, in a single run (to save
time/effort) when evaluating a combination.

To this end, as the second contribution, we employ proba-
bilistic model checking to estimate the performance of reactive
planning and waiting in combination with deliberative planning
over all possible execution paths in a planning problem with a
single run of a model checker. For the estimation, we encode a
combination and the problem in a probabilistic model checker
specification and use it to calculate the expected performance
of the combination. By comparing the performance of the two
combinations, one can choose the best combination for the
problem and label (i.e., use reactive or wait) it accordingly.
Use of probabilistic model checking yields two benefits: (a)
its probabilistic nature helps to account for uncertainty when
evaluating a combination of reactive and deliberative planning,
and (b) existing probabilistic model checkers ease adoption,
automation, and reuse of the learning-based approach.

The paper validates the learning-based (LB) approach (and
implicitly the labeling process) using simulations of two
realistic systems: a cloud-based self-adaptive system [4] and a
team of unmanned aerial vehicles [5]; as detailed later, these
systems differ in their ability to recover from poor/delayed
actions. In addition, the systems use a different set of reactive
and deliberative approaches to instantiate hybrid planning. In
both cases, we compared the performance of the LB approach
against condition-based approach and found that, on average,
the former is preferable to the latter. The better performance of
the LB approach also indicates that model checking was able
to appropriately label sample problems. Moreover, an empirical
analysis of the data revealed that the performance of hybrid
planning is correlated to the performance of (i) deliberative
planning, and (ii) the relatively better-performing approaches

amongst the reactive ones. These findings can inform engineers
who need to prioritize their investment of resources in planners,
instead of exploring many possible combinations.

II. BACKGROUND AND RELATED WORK

For many self-adaptive systems, using a single (i.e., either a
reactive or a deliberative) planning approach can be problem-
atic [6]. Hybrid planning (HP) seems to be a promising way to
balance quality and timeliness of planning. However, our formal
analysis of hybrid planning [2] highlights two fundamental
challenges:
PLANNING COORDINATION (PLNCRD): Hybrid planning
requires a smooth transition from a reactive plan to a possibly
higher-quality deliberative plan. Suppose a system observes an
emergency situation, and, as a result, invokes reactive planning
to provide a quick response. For a seamless transition from
a reactive plan to a deliberative plan, two conditions need to
be met [2]: (1) timing – the deliberative plan should be ready
at the moment of transition; and (2) preemption – that the
deliberative plan should contain state of the system at the point
of the transition. Satisfying these two conditions is challenging
for two reasons: (a) uncertainty about deliberative planning time
makes it difficult to predict when the deliberative plan will be
ready, and (b) uncertainty in the system’s environment makes it
difficult to predict the expected system and environment state
after executing the reactive plan.
PLANNING SELECTION (PLNSEL): Assume that deliberative
planning provides better plans compared to reactive planning.
Formally, given set Ξ of all planning problems for a system
and set F of reactive planning approaches, solving the PLNSEL
problem means approximating function G ∶ Ξ→ F suggesting
which reactive approach should be invoked for a planning
problem ξ ∈ Ξ.1 Set F has a special element (i.e., ρwait) that,
for any planning problem, always suggests to wait until the
deliberative plan is ready; therefore, using ρwait in combination
with deliberative planning is equivalent to using deliberative
planning alone. ρwait is required to ensure that hybrid planning
does not underperform deliberative planning in cases when
none of the other reactive approaches (in F) provide a better
plan than just waiting for the deliberative plan to be ready;
as supported by our evaluation results (cf., Section V-C), in
certain situations, it is prudent to just wait. This paper focuses
on choosing between a reactive approach and waiting until
a deliberative plan is ready, therefore set F has only two
elements: the reactive approach and ρwait.

To solve PLNCRD, we adopt the approach suggested in prior
work [7]. The approach has two distinguishing characteristics:
(a) deliberative planning generates a high-quality universal
plan/policy (one containing state-action pairs for all the
reachable states from the initial state), where a mapping from a
state (say s) to an action (say a) suggests a be executed in s; and
(b) the operating domain is assumed to be Markovian: the state
after a transition depends only on the current state — not on the

1The choice of using deliberative planning followed by reactive planning is
not considered since if a deliberative plan is ready to take over, it will provide
a higher utility compared to a plan determined by reactive planning.



sequence of states that preceded it. These two characteristics
increase the chances of successful preemption if reactive and
deliberative planning use the same initial state. That is, once the
deliberative plan is ready, it can take over plan execution from
the reactive plan because any state resulting from executing the
reactive plan will be found in the deliberative plan. However,
in reality, there is still a possibility that transition between
the plans might fail due to violating the timing or preemption
condition, thus affecting the quality of adaptation (for more
details, see Section V).

To solve PLNSEL, which is the focus of this paper,
Mausam et al. [8] proposed to always use reactive planning and,
if required, revise the plan using a more deliberative planning
approach. They assume that reactive planning will always
improve the current situation. This assumption worked because
their hybrid planning instantiation is limited to either a specific
combination of planners or a particular domain. However, this
assumption might not always hold since it depends on the
quality of a reactive planner and the nature of an operating
domain [2]. Our proposed learning-based (LB) based approach
can be applied to different domains and different combinations
of planners as demonstrated in Section V.

Researchers have proposed various condition-based (CB) ap-
proaches. For instance, Pandey et al. [7], and Ali-Eldin et al. [9]
proposed hybrid controllers in the context of self-adaptive cloud
systems; these instantiations of hybrid planning use threshold-
based rules to invoke reactive planning. Bauer et al. [6]
extended this idea with more sophisticated conditions. While
CB approaches have shown to be effective, as noted earlier
identifying these conditions at design time can be difficult,
particularly, for complex systems having multiple interacting
dimensions of concern (e.g., cost, performance, security). We
overcome these drawbacks with the LB approach.

III. LEARNING-BASED PLANNING SELECTION

This section introduces a novel approach to PLNSEL –
deciding which reactive approach to invoke for a given problem.
Our approach has two phases: offline and online. During the
offline phase, the first step is to collect/identify a training set
of planning problems similar to the ones expected at run time.
In the second offline step, using a probabilistic model checker,
these problems are labelled with the preferred reactive approach
to provide an instantaneous response. The third and last offline
step is to decide appropriate features in the training set and use
them to train a machine learning classifier, which will determine
the best reactive planner at each moment. In the online phase,
when facing a planning problem ξ (representing the current
situation) at run time, the system invokes the classifier on the
features of ξ. The classifier picks a reactive planner, which is
used by the system until a deliberative plan is ready.

1) The offline phase: In the offline phase, a classifier is built
on planning problems that the system expects to observe at run
time. As noted, the offline phase has three steps: (a) identify
sample planning problems to profile the hybrid planner; (b)
profile the hybrid planner on these problems to know the label
(i.e., which reactive approach is likely to outperform others);

and (c) select features and hyper-parameter values to train a
classifier.

(1a) Identifying Sample Problems: To select reactive planners
effectively, it is crucial to cover the planning problem space
comprehensively. However, identifying a set of representative
problems is challenging due to a potentially infinite problem
space and its unknown structure. No single selection strategy fits
all systems and domains, and we suggest tailoring the sample
set to the system’s context and requirements. Fortunately,
modern systems produce large amounts of data that are available
to train a classifier. For instance, in our evaluation systems,
we mine sample planning problems from the available traces
containing the typical system load patterns [10] (for the cloud-
based system) and randomly sample the space of missions (for
the UAV domain).

(1b) Labeling the Sample Problems: This step determines
the reactive approach ρir ∈ F that performs best in combination
with deliberative planning for a sample planning problem ξ,
and labels it accordingly (i.e., ρir). At the end of this step,
we obtain a set of labelled training data, which is critical to
(supervised) learning in our LB approach. However, in the
presence of environment uncertainty (which is often the case
for realistic systems), it is difficult to evaluate a combination
given that its performance may vary across plan executions
(for the same problem) because of different possible outcomes
leading to different plan execution paths. For example, suppose
a self-adaptive cloud-based system proactively adds a server
anticipating an increase in the future workload (i.e., the number
of requests received by clients). However, if the workload
increases or decreases further, adding the server might not have
the desired effect. Therefore, an approach is needed that can
take uncertainty into account when evaluating the combination.

To overcome this problem, we propose using probabilistic
model checking, which considers stochastic uncertainty when
evaluating a combination of reactive and deliberative plans. By
constructing a model for a model checker, one can encode the
combined execution of a reactive plan followed by the deliber-
ative plan (produced by the respective approaches) for some
planning problem; the model checker returns expected utility of
this execution. Given a planning problem, a finite set of reactive
approaches, and a deliberative approach, this process is repeated
for each reactive approach to evaluate its combination with the
deliberative approach for the problem. Model checking helps
label training problems by evaluating plan combinations under
probabilistic uncertainty, by considering all possible execution
paths weighted by their probabilities. Here, we assume that
different conflicting quality attributes for a self-adaptive system
can be represented as a multi-dimensional utility function such
as Equations 1 and 2 in Section IV, and that the planning goal
is to maximize expected utility. In other words, the quality of
a (combined) plan can be assessed based on the utility it is
expected to provide.

Figure 1 shows how a model checker can be used to evaluate
the combination of reactive (ρir, producing plans πi

r) and
deliberative (ρd, producing plan πd in time td) planning. The
outcomes of executing actions from each plan are uncertain,
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Figure 1: Evaluating reactive approach ρir by calculating the
utility for the combination of reactive and deliberative plan.

and a model checker handles this uncertainty by aggregating
the quality of possible outcomes as expected utility, denoted
U i
r. Since planning time td is difficult to predict upfront, and

not guaranteed to remain fixed for different sample problems
(or even the same one in different runs), in practice, one can
configure the worst-case planning time (td) chosen as an over-
approximation after a large number of trial runs for sample
problems as we did in our experiments (cf., Section V-B).

To compute U i
r for ξ, the model checker calculates the

expected utility for the combination of plans πi
r (until time

step td) and then πd. If set F has N reactive planners, then
each sample problem ξ requires N evaluations corresponding to
each ρr ∈ F . For probabilistic model-checking, our evaluation
uses PRISM [11]; it can model check MDP-based planning
problems, which is the case for the two evaluation systems
(cf., Section IV). However, our approach is not limited to any
specific model checker.

Finally, we need to compare expected utilities for each
combination. For problem ξ, suppose the plan determined by
ρ′r ∈ F (in combination with the deliberative plan) provides
the highest utility, ξ is assigned the label corresponding to ρ′r.
In cases where more than one reactive approach provides the
highest utility, any one approach can be chosen. Thus, each
sample problem is labeled with one of the N labels, given N
reactive approaches. This approach can be naturally extended
to also support any number of deliberative approaches (rather
than one); basically, the labeling process can help in deciding
the best pair of reactive and deliberative approaches.

(1c) Training a Classifier: The first step to train a classifier
on the labeled problems is to identify relevant features of
planning problems that help separate the N classes. We use
two complementary sets of features: ones representing the
current state of the system, and ones describing how the system
will evolve in the future. As an example, for a cloud-based
system, state variables such as the number of active servers
can be used to capture the current state. To capture future
evolution, one can use real-time predicted request arrival rates
for the future within the planning horizon [12]. We believe
these features reasonably capture a planning problem, which
has current (i.e., initial) state and transitions as the fundamental
elements. Once features are identified, we use cross-validation

on the sample problems to train and test different classifiers;
we pick the classifier that provides the best performance during
cross-validation.

2) The online phase: When a self-adaptive system requires
planning (e.g., periodically or in response to a fault), it
formulates a planning problem ξ. The offline-trained classifier
is used on ξ to assign the label corresponding to an appropriate
ρr ∈ F . It is necessary that the classifier is near-instantaneous —
otherwise the classification delay makes the profiling scenario
too dissimilar from the online scenario.

The proposed LB approach overcomes the limits of relying
on predefined conditions to choose among reactive approaches.
Now, domain expertise is not necessary to decide which
reactive approach needs to be invoked. Instead, engineers can
rely on planning problems encountered in the past to answer
the same question, without committing to specific up-front
conditions. Moreover, full/partial automation is possible for the
LB approach, which can relieve designers from the painstaking
and error-prone process of identifying the conditions.

IV. SYSTEMS FOR EVALUATION

Section V evaluates the LB approach and, implicitly, the
labeling process using model checking. The key question
investigated in the evaluation is, “how effective is the LB
approach compared to the CB?” Effectiveness is a measure
of a system’s ability to meet its adaptation goal, which is
encoded in a multidimensional utility function as presented
later in Formulas 1 and 2. To compare the approaches,
we conducted controlled experiments by keeping all the
experimental parameters constant except the planning approach
(LB, CB, . . . ) and the traces (cf., Section IV-A) or missions
(cf., Section IV-B) used as inputs for the two systems. We
controlled the parameter values to isolate the effects of the
planning approach (independent categorical variable) on the
utility (dependent ordinal variable).

This evaluation is done in the context of two different
systems: a cloud-based load balancing system and a team
of UAVs on a reconnaissance mission; the differences are
discussed in Section VI. These two systems are used because
balancing timeliness and quality of planning is critical to
their success, and developing a single planning approach from
scratch can be challenging for engineers. These systems let
us investigate different compositions of constituent planners,
which vary in their action sets, planning horizons, and treatment
of uncertainty.

A. The Cloud-based Load Balancing System
As the first system, we adopted a cloud-based load balancing

system that we used to evaluate CB hybrid planning in our
previous work [7]. We hope that in the future, cloud-based
systems will facilitate comparisons among potential solutions
to PLNSEL since they have become a de facto benchmark
for researchers in the self-adaptive community [13]. As an
implementation of a cloud-based system, we used SWIM,
which is a well accepted artifact in self-adaptive research
community [4]. Further implementation details can be found
in the online supplementary materials [14].



The system is hosted on a heterogeneous set of servers of
varying capacity and per-minute usage cost, which increases
with the capacity. The request arrival rate varies in an uncertain
manner, leading to variance in the system’s workload. The goal
of self-adaptation is to optimize profitability by maximizing
revenue (dependent on the number of processed requests) and
minimizing operating cost (dependent on the server usage)
using various adaptation tactics. To maximize revenue, it is
desirable to maintain the response time for user requests below
a certain threshold (T ), since higher response times lead to
revenue loss. To reduce the response time caused by increased
arrival rate, the system can add more servers (using tactic
addServer<type>) and pay their costs. To reduce costs,
the system can deactivate servers with an adaptation tactic
removeServer<type>.

Another way to control response time is by reducing the
amount of optional content (e.g., advertisements or product
recommendations) that is provided in each response — some-
times called brownout. The optional content can increase
revenue, but requires more bandwidth for each request, thus
increasing response time. Tactics increaseDimmer and
decreaseDimmer can control brownout by, respectively,
raising or lowering the probability that a request will be served
with optional content. Higher dimmer values lead to higher
proportions of requests served with optional content.

To summarize, the system needs to maximize revenue, keep
response time below the threshold to avoid penalties, and
minimize the number of active servers to reduce cost. These
objectives are captured in a multidimensional utility function
shown in Formula 1. The adaptation goal of the system is
to maximize the utility calculated using this formula. If the
system runs for duration L, its utility function is defined as:

U = ROxO +RMxM − PxT −
n

∑
i=1

Ci ∫
L

0
si(t)dt, (1)

where RO and RM is revenue generated by a response
with optional and mandatory content respectively; xO, xM ,
and xT are the number of requests with optional content,
only mandatory content, and having response time above the
threshold; Ci is cost of server type i, and si is number of active
servers of type i; n is number of different types of servers.

Both the timeliness and quality of planning is needed to
maximize utility for this system. A timely (i.e, quick) response
is needed to minimize penalty P in case of the response time
constraint violation. Simultaneously, a quality plan is needed
for the long term utility gains by considering factors such as
the current state of the system and its environment, predicted
values of request arrival rate, and timing of tactic latency [12].

To construct a realistic environment of users accessing
the cloud-based system, we used a research dataset with
online traffic common in web analytics — the daily traces
of user requests from the FIFA WorldCup website [15]. Each
day’s trace contains time stamps representing inter-arrival time
between two client requests, abstracting away the details of
user requests to focus on their frequency. We picked these
traces because they contain the patterns for high-demand cloud

Action Description Survival/Detection Chance

IncAlt Climb one altitude level increases/decreases
DecAlt Descend one altitude level decreases/increases
IncAlt2 Climb two altitude levels increases/decreases
DecAlt2 Descend two altitude levels decreases/increases
GoTight Change to tight formation increases/decreases
GoLoose Change to loose formation decreases/increases
EcmOn Turn ECM on increases/decreases
EcmOff Turn ECM off decreases/increases

TABLE I. Adaptation Actions.

systems as classified by Ghandhi et al. [10]. Moreover, this trace
set is considered as a benchmark for traffic in web analytics [6],
[16]. We mined training data and performed experiments on 87
traces (out of 92), ignoring 5 empty/partial ones; the illustrating
plots are available in the supplementary material [14].

For hybrid planning, we use one reactive approach in addition
to waiting, i.e., F = {ρdet, ρwait}, and ρmdp as deliberative
planning. Here, ρdet and ρwait refers to deterministic planning
and wait planning respectively (as discussed in Section II),
and ρmdp refers to MDP planning. Uncertainty in request
arrival rate is ignored by ρdet by assuming it to be constant at
the current value. This reduction in the search space greatly
reduces the planning time for ρdet, making it practically
instantaneous in the context of the this system. When using
the CB approach, ρdet is invoked when response time is above
the threshold; therefore, the intent behind using ρdet is to
avoid penalty P . In contrast to ρdet, ρmdp considers predicted
(but uncertain) values of the request arrival rates. We use a
time-series predictor to anticipate the future workload on the
system, similar to others [12]. The goal of both reactive and
deliberative planning is to maximize utility (Formula 1) for their
look-ahead horizon (parameter values described in Section V-B).
In addition to labeling sample planning problems (Section III),
we use PRISM both as a deterministic and MDP planner as
we did in our previous work [7]. Reactive and deliberative
planning specifications (including environment modeling), are
available in the supplementary material [14].

B. A Team of Unmanned Aerial Vehicles

As the second evaluation system, we used a simulated team
of unmanned aerial vehicles (UAVs) performing a reconnais-
sance mission in a hostile environment; as an implementation
of a team of UAVs, we used DARTSim [5]. The predefined
route of the team is a straight line, divided into equal segments
of fixed length. Each segment can have threats and detection
targets depending on how they are randomly placed in the route.
The locations of targets and threats depends on a random seed,
which is an input parameter to DARTSim. The mission of the
team is to maximize the number of targets detected and avoid
being shot down by the threats, which would lead to the mission
failure (no more targets can be detected further). However, it
is difficult to meet the two requirements simultaneously since
there is no action available that increases the chances of both
target detection and survival for the team (see Table I). If the
team chooses to execute an action, then all of its UAVs in the
team execute the same action.



The team has different sensors to detect targets and threats as
it flies a route at constant speed. For each route segment within
the range, the sensor reports whether it detects a target or threat,
depending on the sensor type. However, due to sensing errors,
these reports may include false positives and false negatives. An
adaptation manager can get multiple observations to construct
a probability distribution of threat or target presence in a cell.

A threat can destroy the team only if both are in the same
segment. However, a threat has range rT , and its effectiveness
is inversely proportional to the altitude of the team, denoted
by A. In addition, the formation of the team affects the
probability of it being destroyed. The team can be in two
different formations: loose (φ = 0), and tight (φ = 1). The latter
reduces the probability of being destroyed by a factor of ψ.
When the team uses (E = 1) electronic countermeasures (ECM),
the probability of being destroyed is reduced by a factor of
α. The probability of detecting a target with the downward-
looking sensor, given that the target is in the segment being
traversed by the UAVs, is inversely proportional to the altitude
of the team [5]. Furthermore, flying in tight formation reduces
the detection probability due to sensor occlusion or overlap,
and the use of ECM also affects target detection, reducing the
probability of detection by a factor of β. The probability of
the team being destroyed d and detecting a target g depends
on factors such as altitude, formation, and the use of ECM as
formulated by Moreno et al. [5]; the formulation is summarized
in the supplementary material [14].

Given constants µ and λ, and the number of segments
survived and target detected for a mission is S and T
respectively, the utility of the mission is calculated as

U = µS + λT. (2)
Both the timeliness and quality of planning are needed to

maximize utility for this system. A timely (i.e, quick) response
is needed in response to threats, which could lead to mission
failure. Simultaneously, a quality plan is needed for the long
term utility gains that requires not only surviving but also
detecting targets; this requires considering factors such as
uncertainty in the threat and target locations.

To instantiate hybrid planning, like in the previous section,
we use ρwait and ρmdps as the reactive approaches (F =
{ρmdps, ρwait}) and deliberative planning ρmdpl. Both ρmdps

and ρmdpl use MDP planning, however, ρmdps plans with
a shorter horizon compared to deliberative planning ρmdpl.
Moreover, while planning, ρmdps does not consider adaptation
actions IncAlt, DecAlt, and EcmOn, and EcmOff. Using
a shorter horizon in combination with a subset of actions
results in a smaller state space in ρmdps compared to ρmdpl.
Since ρmdps uses actions IncAlt2 and DecAlt2, it can
increase/decrease two altitudes levels in response to a threat
or an opportunity to detect a target. The goal for both reactive
and deliberative planning is to detect targets on the ground and
avoid being shot down by threats. When using a CB approach,
this instantiation invokes ρmdps if A < rT i.e., the team is in
the range of threats, else ρwait is used; therefore, ρmdps is
used to provide a quick response when the team is in danger.
The PRISM planning specifications are available at [14].

V. EVALUATION

To compare the effectiveness of learning-based (LB) and
condition-based (CB) approaches we proceeded as follows:
We used the two systems as discussed in Section IV. Then
we collected sample planning problems, labeled them with a
model checker, and trained a classifier for the LB approach
(Section V-A). To compare the performances, we conducted
experiments in different planning modes (Section V-B) – our
findings are presented in Section V-C.

A. Learning-based Approach Implementation

This section explains the implementation of the LB approach.
1) The Offline Phase: As explained in Section III-1, the

offline phase involves three steps: identifying sample problems,
labeling the sample problems, and training a classifier.

(1a) Identifying Sample Problems: To generate sample
problems for the two systems, our goal was to create a set
of problems similar to the ones expected at run time. For
the cloud-based system, we executed each trace in a mode
where ρdet was always invoked in combination with ρmdp.
This mode is different from using a learned classifier since
the later switches between ρdet and ρwait depending on a
planning problem. Therefore, the training data is less likely to
include the exact problems that the system would observe at
run time, thus providing us with data similar to what can often
be mined from system execution logs. In total, we generated
1651 planning problems from 87 traces. For the UAV team,
we simulated 630 missions (using 630 different seeds) in the
mode similar to the cloud-based system i.e., always invoke
ρmdps in combination with ρmdpl. In total, 16822 planning
problems were generated.

(1b) Labeling the Sample Problems: Since in both the
systems set F has two elements, the offline phase of the LB
approach labels each sample problem (say, ξ) with one of three
classes (i.e., UseReactive, UseWait, or UseEither). Suppose the
expected utility (after model checking) for the combination
ρdet/ρmdps (depending on the system) and deliberative planning
is UR, and for the combination of ρwait and deliberative plan-
ning is Uw. If Ur > Uw, then the problem is labeled to invoke
the reactive planning (i.e., CLASSIFY(ξ) = UseReactive); if
Ur < Uw, then the problem is labeled to wait for the deliberative
plan to be ready (i.e., CLASSIFY(ξ) = UseWait). Finally, if
Ur = Uw, then the choice between reacting and waiting does
not matter (i.e., CLASSIFY(ξ) = UseEither). One can also
include a small margin (δ such that Ur > Uw +δ, or vice versa)
when comparing Ur and Uw. For the cloud-based system, 111,
253, and 1287 problems were labeled as UseWait, UseReactive,
and UseEither, respectively. The UAV team had 358, 8391,
and 8073 problems labeled as UseWait, UseReactive, and
UseEither, respectively.

(1c) Training a Classifier: Next we choose and train a
classifier by separating train/test data via cross-validation. In
the cloud system we used leave-one-out cross-validation. First,
we left out a test trace (iterating through all 87 traces) on which
the LB approach would later be evaluated. On the problems
from the remaining 86, we trained via 10-fold cross-validation.



Classifier performances are then averaged over all validation
folds, and the best one is picked for the test trace. Similarly
for the UAV team, we used 630 mission seeds for 10-fold
cross-validation. The best classifier is evaluated as part of the
LB approach on a different 70 missions. For the systems, each
fold had the same proportion of classes as the whole dataset.

To find the “best” classifier in cross-validation, we used
recall, precision, and F1 score based on dataset characteristics.
For both the systems, it was challenging to discover situations
when ρwait is the best choice because the data is skewed against
UseWait. Thus, we maximized the recall value for UseWait.
For this criterion, an ensemble classifier known as extremely
randomized trees achieved the best performance in the both
systems. For the cloud, this classifier had recall/precision
for UseWait above 0.8, and above 0.9 for UseReactive and
UseEither. For UAVs, the best UseWait recall was 0.70, and
precision — 0.72. Both recall and precision for UseReactive
and UseEither were between 0.8 and 0.85.

2) The Online Phase: Both the systems periodically evaluate
if adaptation is needed: When the systems observe a problem
(ξ) at run time, they execute the hybrid planning algorithm
we developed in [7]; the algorithm is formalized in the
supplement [14], and we summarize it here. To find a plan for
ξ, the algorithm first refers to the previous deliberative plan.
If this plan exists and contains the current state, it is applied
to the ξ — otherwise, a new deliberative plan is computed. In
the meantime, the algorithm needs to decide its instantaneous
response, which requires choosing a reactive planner ρr ∈ F
(i.e., either invoke ρdet/ρmdps or ρwait) until the deliberative
plan is ready. Regardless of the above decision, deliberative
planning is started simultaneously in order to eventually arrive
at a plan that is expected to yield higher utility than any reactive
approach. As discussed earlier, the structure of the plan enables
a smooth transition from a reactive to a deliberative plan, thus
taking care of PLNCRD. In the algorithm, the logic to pick an
appropriate reactive approach can be implemented by checking
predefined conditions (i.e., CB) on ξ, or by learning (i.e., LB)
which reactive approach is most suitable.

In the LB approach, the offline-trained classifier is used on
ξ to assign it to one of the three classes discussed above in
Section V-A1. If the returned class is UseWait or UseReactive,
the system invokes ρwait or ρdet/ρmdps, respectively. However,
if the class is UseEither, then the choice is not fully defined
by the profiling information. To deal with this ambiguity, we
consider two variants of the LB approach: LB-W chooses to
wait in the case of UseEither, and LB-R chooses UseReactive.
Both variants are studied in the evaluation.

B. Experimental Setup

The systems evaluates the need for adaptation at each minute,
and determines an action, if adaptation is needed. For the
profiling process, we configured the worst-case planning time
(td) for ρmdp as 1 minute, chosen as an over-approximation
after a large number of trial runs (which took between 35 and
55 seconds). For UAVs, the horizon for ρmdps and ρmdpl is 2
and 5 minutes, respectively. The values for other parameters,

the planning specifications, the data on planning delay, and
the size of the planning state space are included in [14].
Except aggregate utility (based on Formulas 1, and 2), all
the parameters (e.g, choice of reactive/deliberative planning,
instantiation of CB, LB-W, and LB-R) are independent. For
each trace/mission, we define higher effectiveness of a planning
approach as greater utility accrued over the trace/mission. The
objectives for the evaluation is to investigate: if (a) using the
LB/CB approach improves the effectiveness of HP compared
to its constituent approaches, and (b) the LB approach to solve
PLNSEL is more effective compared to the CB approach.

To meet these objectives, each trace/mission was evaluated
in seven modes: (i) non-wait reactive — only ρdet/ρmdps is
used (i.e., used ρdet for the cloud and ρmdps for the UAVs);
(ii) wait — only ρwait is used, which essentially means the
system does not adapt; (iii) deliberative — the system invokes
ρmdp/ρmdpl (i.e., used only deliberative planning ρmdp for the
cloud and ρmdpl for the team), and waits until a deliberative
plan is available; (iv) non-wait hybrid planning (NW-HP) —
when ρdet/ρmdps is always invoked until a deliberative plan
is ready; (v) condition-based HP — when a deliberative plan
is not available, ρdet and ρmdps is invoked only when the
predefined conditions are met as described in Section IV-A
and Section IV-B, respectively; (vi) LB-W HP — the LB
approach solves PLNSEL and invokes ρwait if classification
is uncertain; and (vii) LB-R HP — the same LB approach
solves PLNSEL, but invokes ρdet/ρmdps if classification is
uncertain. Non-wait reactive and wait modes represent the
two possible reactive modes given ρmdp/ρmdps and ρwait. The
CB approach that calls ρwait was not considered separately
since it is equivalent to the deliberative mode. In both the
systems, although the classifier performed well during the
cross-validation, comparison of the LB modes (i.e., LB-W and
LB-R) with NW-HP and deliberative mode will further indicate
whether the learned classifier was able to switch effectively
between the reactive approaches (i.e., ρwait and ρdet/ρmdps);
NW-HP and deliberative mode use only one reactive approach.

C. Results

The results of our experiments show that on average (both
the LB and CB) hybrid planning outperforms its constituent
planners, but LB outperforms CB. Also, to aid software
engineers, we characterize the impact of constituent planners
on the performance of the hybrid planners.

1) Hybrid Planning Outperforms its Constituent Planners:
Our experiments in both systems indicate that HP provides
more utility than individual planning, as depicted in Figures 2
and 3. In Figure 2, the box-plots show the differences in accrued
utility (per trace/mission) when comparing pairs of planning
approaches. The boxes represent the median 50% of traces (in
terms of the difference between a pair of planners), with the
horizontal lines inside showing the median difference across
the traces. The whiskers show the minimum and maximum
difference in utilities. For example, the leftmost box compares
CB to only using reactive (i.e., ρdet/ρmdps). The lower edges
(i.e., the first quartile) of the six leftmost boxes are above zero,
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Figure 2: Utility differences per trace/mission added up for all
traces/missions. Each bar represents a sum of differences for a
pair of planning approaches.

indicating that for most of the traces/missions HP provides
equal-or-higher utility compared to non-hybrid approaches.
Specifically for the cloud-based system, CB, LB-W, and
LB-R show equal-or-higher utility than both reactive and
deliberative planners on 57 (66%), 60 (69%), and 57 (66%)
traces respectively (out of 87 total); moreover, for the respective
boxes, the positive whisker is longer than the negative one,
indicating higher maximum gain than loss when choosing HP.

Based on the estimator of true probability with a confidence
level of 95%, the true probability ranges for the three HP
approaches to match or improve over both non-hybrid planners
are (0.55; 0.76), (0.58; 0.80), and (0.55; 0.76). For the UAVs,
CB, LB-W, and LB-R show equal-or-higher utility than both
reactive and deliberative planners on 51 (71%), 55 (78%),
and 56 (80%) traces respectively (out of 70 total). The longer
negative whiskers for the 1st, 3rd, and 5th box-plot are explained
by the team being averse to destruction in reactive mode, which
avoids the threats at all costs; therefore, in certain missions
the team survives, but in HP modes it gets destroyed (i.e.,
mission failure), losing significant overall utility. Based on the
estimator of true probability with a confidence level of 95%,
the true probability ranges for CB, LB-W, and LB-R to match
or improve over both non-hybrid planners is (0.58; 0.82), (0.65;
0.89), and (0.67; 0.9), respectively.

We also found that it is unlikely that HP performs worse
than both reactive and deliberative planning; therefore, using
HP is less risky compared to reactive or deliberative planning.
Out of 87 traces, HP does worse than both non-hybrid planners
only in 1 (1%), 5 (6%), and 5 (6%) traces for CB, LB-W,

and LB-R planning, respectively. This leads us to, respectively,
(0,0.12), (0,0.16), and (0,0.16) probability ranges of both
reactive and deliberative planning outperforming HP according
to the estimator of true probability, with 95% confidence. For
the UAVs, HP does worse than both non-hybrid planners only
in 4 (6%), 2 (3%), and 2 (3%) missions respectively (out of 70
total). The true probability ranges for the three HP approaches
to match or improve over both non-hybrid planners are (0; 0.17),
(0; 0.15), and (0; 0.15). Therefore, when choosing between
deliberative, reactive, and HP, the latter is the least risky choice.
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Figure 3: Pairwise performance comparison of planning ap-
proaches. Each bar is for a pair of approaches, labeled with
the counts (out of the total traces/missions) of traces/missions
where the first approach provides higher/equal/lower utility
compared to the second approach in the pair.

2) Learning-based Outperforms Condition-based approach:
Our experiments show that LB provides more utility than CB
on average. In Figure 2, the 7th and 8th box is above zero,
indicating that for the majority of traces/missions LB does
equal-or-better than CB. Specifically, out of 87 traces, LB-W
and LB-R provided higher or equal utility for 70 (80%) and
62 (71%) traces, respectively. The estimator of true probability
suggests with a confidence of 95% that the true probability
range for the CB approach yielding higher utility than LB-W
and LB-R is (0.09,0.3) and (0.18,0.39), respectively. For
the UAV team, out of 70 missions, both LB-W and LB-R
provided higher or equal utility for all the 70 missions. With
a confidence of 95%, the true probability range for the CB
yielding higher utility is (0,0.12). Thus, it is less risky, and
in many cases advantageous, to use the LB over the CB.

However, the magnitude of the utility difference between
CB and LB is smaller than that between HP and its constituent
planners. The reason is, in response to CB constraint violations,
reactive planners typically propose conservative measures such
as addServer, decreaseDimmer, and IncAlt2. These
actions decrease the worst-case utility loss, which is particularly



high for the second system due to the possibility of destruction.
In contrast to CB, despite not falling behind in performance, LB
enables the system to (automatically) learn when utility could
be gained by using reactive planning, even without violations.
Thus, we conclude that CB is more risk-averse, whereas the
LB is more opportunistic since it does not limit the use of
non-wait reactive planning to constraint violations.

Similar to CB, the outperformance of LB is less significant
compared to the NW-HP mode as shown in the right-most
two boxes, because in both systems invoking non-wait reactive
planner (i.e., ρdet or ρmdps), in general, was preferred over
using ρwait.2 However, compared to NW-HP modes, the LB
approach was able to automatically learn a classifier that
switches effectively between the reactive approaches.

3) Influence of Constituent Planners on Hybrid Planning:
Our evaluation shows that the performance of HP depends
on the performance of the following modes: (i) deliberative
planning, and (ii) the (relatively) effective reactive planners.
Below is the evidence and implications for software engineers.

Deliberative planning performance has a consistent positive
impact on the performance of HP. We observe a medium-to-
strong correlation (p < 0.01) between the deliberative mode
and each of the three HP modes. For the cloud system, the
Pearson correlation is 0.95 for CB, 0.97 for LB-W, and 0.95
for LB-R. For the UAVs team, the correlation is 0.6 for CB,
0.61 for LB-W, and 0.59 for LB-R. The interpretation of this
finding is that, once a deliberative plan is ready, it inevitably
takes over from any reactive plan, hence the performances of
HP and deliberative planning are tightly coupled.

To further investigate this correlation, we conducted chi-
square independence test, which also showed that the ability
of HP to perform better than or equal to its constituent planners
significantly depends (p < 0.01) on deliberative planning
performing better than or equal to reactive ρdet/ρmdps. For the
cloud-based system, the χ2 values for CB, LB-W, and LB-R
are 43.79, 32.38, and 19.02, indicating strong-to-moderate
dependency. For the UAVs, the χ2 values for CB, LB-W, and
LB-R are 18.97, 22.16, and 20.37 also indicating strong-to-
moderate dependency. This finding supports our assumption
that an effective deliberative planning approach is a foundation
for hybrid planning. As the chi-square test suggests, one should
prefer hybrid planning to reactive planning if deliberative
planning consistently provides higher or equal utility compared
to reactive approaches.

The performance of each reactive planner has a positive
impact on the performance of HP, moderated by the relative
performance of the reactive planner. We found that among
the reactive approaches, the more effective ones had a stronger
influence on the HP performance. To conclude this, we fit a
regression (the equation can be found in [14]) to the HP utility,
using deliberative and reactive utilities as independent variables.
Further, these explanatory variables were weighted with a ratio
of deliberative to NW-HP modes (for the deliberative utility)

2This fact is supported by the class imbalance of the labelled data, which
is skewed against using ρwait as presented in Section V-A; this indicates the
model checking was able to label the problems reasonably well.

and the inverse of that ratio (for the reactive utility). This ratio
characterizes the relative goodness of the wait planner and the
reactive planner, since these two planners represent the only
difference between the deliberative and NW-HP modes. For
both systems and all HP modes, the regression coefficients
for the weighed utilities were positive and non-zero with high
significance (p < 0.01). Our interpretation is that the more
effective reactive approaches are used more often, influencing
the HP performance more than those used rarely. The above
holds assuming that the classifier performs reasonably well
(in our evaluation this meant having precision/recall above 0.7
for all classes). Therefore, we suggest identifying the more
effective approaches (by comparing their utilities or respective
class counts in training data) and focusing the resources on
improving them further.

VI. DISCUSSION AND CONCLUSION

This paper proposes a general learning-based approach to
PLNSEL where problems can be classified if a domain is
predictable enough to do labeling. Its advantage is non-reliance
on domain expertise for specific conditions, and on average
it performs better than the CB approach. In part this is due
to the flexibility of learning to avoid risky invocations of
reactive planning that would fit the fixed conditions, and
taking advantage of adaptation opportunities that arise outside
of fixed conditions. Although finely-tuned conditions in the
CB approach can result in performance comparable to the
LB approach (as in some scenarios in our evaluation), these
qualitative benefits of the LB approach still hold.

Using model checking is fundamental to the proposed LB
approach as it determines the accurate labels of training
problems given the a priori uncertainty. Moreover, (multiple)
existing model checkers ease adoption, automation, and reuse
of the LB approach. Future work includes investigation of other
techniques to label problems and using unsupervised learning.

A. Threats to Validity

The internal validity of our study is threatened by three
potentially confounding factors. First, our objective function
for cross-validation (recall on UseWait) could lead to increased
performance of the LB approaches. This threat is mitigated
by precision and recall for other classes also being high for
our chosen classifier, and that the patterns are observed in
experiments with a broad range of classifier performances.
However, it is possible that the classifier could lead to higher
utility than that of LB-W and LB-R.

Second, the relative performances of the CB and LB
approaches are due to the specific conditions for triggering
reactive planning. Although this condition is tied to the system’s
utility function, it is possible to fine-tune it further, to approach
the theoretical limit of perfectly matching a situation to a
reactive approach. However, this fine-tuning is difficult in
practice due to the multi-dimensional utility function and
uncertainty in the external environment that leads to uncertainty
in (reactive) action outcomes. Therefore, we expect this tuning
to have a minor effect on the evaluation results.



Third, the performance of the LB and CB approaches may
depend on system parameters (e.g., server costs, ECM factors),
changing which might affect the penalties for poor quick
reactions. This threat is mitigated by two different test-beds
and hybrid planners, and a sizable set of traces/missions with
substantial variation, which leads to a robust assessment of
planner performance through cross-validation. In the authors’
knowledge, this is the largest set of traces ever used for
evaluation on a cloud-based system.

To measure effectiveness of planners, we use cumulative
utility functions (presented in Section IV). These functions
express conflicting goals, and similar functions are used to
measure performance of cloud-based systems/UAV teams in
related work [13]. Such utility functions are applicable when
there is a need to accumulate correct behavior while avoiding
undesirable behavior, by performing actions with uncertain
outcomes in uncertain environments (modeled as MDPs).

The external validity of our conclusions is threatened by
the use of only two systems and three reactive planners
(ρdet, ρmdps, and ρwait). In theory, the LB approach should
apply to any number of reactive approaches in set F , although
we evaluate using only two planners at a time. As a sanity
check, we compare the LB approach with deliberative only and
NW-HP mode; these modes are constrained to use only one
of the reactive approaches. The LB approach outperforming
them shows that the classifier switched effectively between
the reactive approaches. This conclusion is corroborated by
the precision/recall values from cross-validation. Furthermore,
labeled training data can be used to narrow down the set
of constituent planners. The interactions between a hybrid
planner and its constituent approaches are dependent on various
factors, including the utility function and assumptions behind
the approach. We expect these factors to hold for any utility
function that is accrued over states of traces/missions and
reflects that fast reactions are vital to the system’s goals, yet
the choice of when to react is not obvious.

We further mitigate the threat to validity by evaluating on
two well accepted testbeds (i.e., SWIM [4] and DartSim [5])
for self-adaptive research that differ in three significant ways:
● The ability to recover from poor/delayed actions: Even

if the cloud-based system fails to maintain the critical
response time constraint due to poor/delayed actions, it
can still recover back to a desired state later. However in
case of the UAV, a failure to avoid a crash (i.e., safety
constraint) will lead to a mission failure as illustrated by
the negative long whiskers in Figure 2.

● Different instantiations of hybrid planning: Reactive
planning for the cloud system ignores uncertainty, whereas
for UAVs it uses a reduced horizon and set of actions.

● Different proportions of class labels: The cloud system has
a large proportion of UseEither, whereas the UAV team
has a similar proportion of UseReactive and UseEither.

B. Conclusion

In the past, the promising idea of hybrid planning has
been studied from theoretical [2] and algorithmic [8], [6]

perspectives. In this paper, we improve its engineering aspects
by providing (i) a learning-based approach to planning selection,
which aims to replace domain-specific hard-coded conditions
for invoking reactive planning, and (ii) the correlation be-
tween the performance of hybrid planning and its constituent
planners. One of the barriers to adopting the learning based
approach is the difficulty in having a labeled set of training
planning problems. We overcome this in a novel way by using
probabilistic model checking to label the training problems.
Moreover, this enables the steps (including model checking) of
the learning-based approach to be automated. Our evaluation
uses two realistic systems from different domains and with
different combinations of planners indicating generality of
hybrid planning and the learning-based approach.
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