
1

Developing Self-Adaptive Microservice Systems:
Challenges and Directions

Nabor C. Mendonça, Pooyan Jamshidi, David Garlan, and Claus Pahl

Abstract—A self-adaptive system can dynamically monitor and adapt its behavior to preserve or enhance its quality attributes under
uncertain operating conditions. This article identifies key challenges for the development of microservice applications as self-adaptive
systems, using a cloud-based intelligent video surveillance application as a motivating example. It also suggests potential new
directions for addressing most of the identified challenges by leveraging existing microservice practices and technologies.

Index Terms—self-adaptive systems, microservices, DevOps, continuous delivery.

F

1 INTRODUCTION

A self-adaptive system can monitor its behavior and change
its configuration or architecture at run time to preserve or
enhance its quality attributes (e.g., performance, reliability,
and security) under uncertain operating conditions (e.g.,
varying workloads, errors, and security threats) [1]. Despite
significant progress in developing self-adaptive systems in
recent years, only a handful of techniques, such as auto-
mated server management, cloud elasticity, and automated
data center management, have thus far found their way
to industrial applications [2]. For example, Kubernetes,1 a
modern container orchestration platform that is increasingly
being used to deploy and manage microservice applications
in the cloud [3] only provides autoscaling, i.e., the ability to
automatically change the number of instances of a service
and self-healing, i.e., the ability to automatically restart
failed service instances, as part of its native self-adaptation
capabilities.

The popularity of microservices in industry has naturally
sparked the interest of the research community. However,
most existing research on microservices focuses on general
architectural principles and migration guidelines (e.g., [4]).
Only a few works have addressed the specific challenges of
developing microservice applications as self-adaptive sys-
tems; nevertheless, even those works tend to be rather nar-
row in scope, offering only limited forms of adaptation (e.g.,
self-healing [5] and run-time placement adaptation [6]).

We believe the uptake of microservices and their en-
abling practices and technologies by industry brings a

• N. C. Mendonça is with the Post Graduate Program in Applied Informat-
ics, University of Fortaleza, Fortaleza, CE, Brazil.
E-mail: nabor@unifor.br

• P. Jamshidi is with the Computer Science and Engineering Department,
University of South Carolina, Columbia, SC, USA.
E-mail: pjamshid@cse.sc.edu

• D. Garlan is with the School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA.
E-mail: garlan@cs.cmu.edu

• C. Pahl is with the Faculty of Computer Science, Free University of Bozen-
Bolzano, Bozen-Bolzano, Italy.
E-mail: cpahl@unibz.it

1. https://kubernetes.io/

unique opportunity to narrow the gap between the state-
of-the-art and the state-of-the-practice in self-adaptive sys-
tems, and that both self-adaptive systems and microservice
communities have much to gain from each other.

On the one hand, recent progress in self-adaptive sys-
tems offers a control-oriented perspective that leverages a
large body of theoretical and practical results to enhance
microservice quality attributes using techniques such as
planners (e.g., to select the best possible adaptation strategy
for each microservice), machine learning (e.g., to learn new
adaptation strategies from past adaptation results), reason-
ing under uncertainty (e.g., to cope with noisy monitoring
data), and multi-objective optimization (e.g., to cater to mul-
tiple, possibly conflicting microservice requirements) [7]. On
the other hand, software characteristics such as independent
and frequent deployment, the need for a high degree of
automation, and complex run-time architectures [3] make
microservices a fertile ground to foster further research and
development on self-adaptive systems.

In this paper, we take a closer look into the interplay
between self-adaptive systems and microservices in order to
identify key challenges for the development of microservice
applications as self-adaptive systems. Our contributions are
as follows: (1) we describe a cloud-based intelligent video
surveillance application as an example of a self-adaptive
microservice system; (2) we identify and illustrate, in the
context of this example application, several challenges for
microservice development, delivery, and operations from
multiple self-adaptation perspectives; and (3) we discuss
potential new directions for addressing most of the key chal-
lenges identified for developing self-adaptive microservice
systems by leveraging existing microservice practices and
technologies.

2 MICROSERVICES

Microservices constitute an emerging architectural style that
builds on the well-established concept of modularization
but emphasizes technical boundaries (i.e., different address
and execution spaces) between software components [3].
Each module—each microservice—is developed around a
single business capability that offers access to its internal

ar
X

iv
:1

91
0.

07
66

0v
2 

 [
cs

.S
E

] 
 1

5 
N

ov
 2

01
9

https://kubernetes.io/


2

Fig. 1. (a) Microservice architecture for the edge-cloud intelligent video surveillance application; and (b) three continuous delivery pipelines for the
application’s face detection, video processing, and face recognition microservices, respectively (adapted from [8]).

logic and data through a well-defined network interface.
Due to their relative simplicity and small size, microservices
can be released often and adapted to different produc-
tion environments— from cloud data centers to resource-
constrained devices (e.g., IoT)—without much development
effort. This has a significant impact on improving software
agility, because each microservice becomes an independent
unit of development, deployment, versioning, scaling and
management [3].

Microservices are considered to be an enabler for emerg-
ing DevOps practices, such as continuous integration (CI)
and continuous delivery (CD), which aim to significantly
decrease the time between changing a system and trans-
ferring that change to the production environment [9]. To
achieve this level of agility, microservices are typically pack-
aged in lightweight containers (e.g., Docker2) and deployed
and managed using automated container orchestration tools
(e.g., Kubernetes). In particular, the use of fully automated
CD tools (e.g., Spinnaker3) enables the creation of inde-
pendent CD pipelines for each microservice. Having mul-
tiple CD pipelines running in parallel allows microservice
changes to be rapidly delivered into production since only
the affected microservice needs to be built and tested [8].

2. https://www.docker.com/
3. https://www.spinnaker.io/

3 A SELF-ADAPTIVE MICROSERVICE SYSTEM

We consider an edge-cloud intelligent video surveillance
application as an example of a self-adaptive microservice
system. The application’s goal is to alert users about the
presence and possibly the identification of humans in a
certain location via real-time analysis of video frames cap-
tured by one or more security cameras. Its architecture,
inspired by one of Amazon’s machine learning (ML) sample
solutions,4 is composed of several business, platform, and
infrastructure services, as shown in Figure 1(a).

Each security camera is deployed along with a ML-
based face detection edge service. 1 This service is a less
accurate yet more energy efficient version of a ML-based face
recognition service deployed in the cloud. The role of the face
detection edge service is to select relevant video frames (i.e.,
frames with detected human faces) to be asynchronously
transmitted to a video processing service in the cloud using
a cloud-provided streaming service. 2 The streaming service
offers a more scalable and reliable solution over the basic
HTTP Streaming protocol. The video processing service
in the cloud analyzes the received video frames 3 and
passes them as invocation parameters to the face recognition

4. https://aws.amazon.com/blogs/machine-learning/
create-a-serverless-solution-for-video-frame-analysis-and-alerting/

https://www.docker.com/
https://www.spinnaker.io/
https://aws.amazon.com/blogs/machine-learning/create-a-serverless-solution-for-video-frame-analysis-and-alerting/
https://aws.amazon.com/blogs/machine-learning/create-a-serverless-solution-for-video-frame-analysis-and-alerting/


MENDONÇA et al.: DEVELOPING SELF-ADAPTIVE MICROSERVICE SYSTEMS 3

service 4 in an attempt to recognize any person that might
be visible in them. If the face recognition service reports a
match, the video processing service sends out an SMS mes-
sage informing the application users’ mobile phones about the
match using a notification service. 5 6 The video processing
service then saves the analyzed video frames along with any
relevant information regarding the video recording (e.g.,
date, camera ID) and contents (e.g., names of the recognized
persons, match accuracy) in a storage service. 7 Application
users can use a Web-based User Interface (Web UI) to search
for and play back any analyzed video segment stored in
the cloud. This is done by invoking a video playback edge
service deployed somewhere closer to the user’s physical
location. 8 The video playback edge service, in turn, uses
the streaming service to communicate asynchronously with
a video playback service in the cloud. 9

The video surveillance application also relies on sev-
eral infrastructure services, such as a discovery service, an
authentication service, a monitoring service, and a container
orchestration service. 10 To avoid cluttering, the depiction of
the video surveillance application architecture in Figure 1(a)
omits interactions between business services and infrastruc-
ture services.

Following typical microservice practices, each service of
the video surveillance application is delivered in production
using its own independent CD pipeline. Figure 1(b) depicts
three possible CD pipelines for the face detection, video
processing, and face recognition services. Note how each
pipeline goes through different environments, from coding
to production, which represent the multiple development
stages (e.g., build, testing, canary release, and finally, full
production) of each service [9].

We envision multiple self-adaptation scenarios for this
example application, including the following:

• The video processing service may need to dynam-
ically change its number of deployed instances in
response to load variations;

• The face recognition service may need to dynami-
cally change its container image (e.g., to switch to a
less accurate version) under extreme load conditions;

• The video playback service may need to dynamically
change its quality attributes (e.g., its frame rate in
order to cope with latency fluctuations); and

• The CD pipeline for the video playback edge service
may need to dynamically adjust that service’s testing
parameters (e.g., to expedite the testing of its self-
healing capabilities during staging).

Enacting all of the foregoing different scenarios may
bring up a number of challenges for microsevice application
developers, which we discuss next.

4 CHALLENGES

We identify the main challenges facing the development of
self-adaptive microservice systems from four perspectives:
design space, control loop deployment, continuous delivery, and
testing.

4.1 Design Space
Designing self-adaptive systems involves making design
decisions about the environment while it is being observed
and about the system itself, and then selecting adaptation
mechanisms that are thereafter enacted [2]. In the context of
a microservice application, the design space for making self-
adaptation decisions is even more complex, due to the large
number of run-time components and their independent and
highly dynamic nature [3]. Thus, a first challenge is as
follows:

[C1] How to determine monitoring and adaptation
mechanisms to face the diversity of microservices’ qual-
ity attributes.

The case of the example video surveillance application
illustrates this challenge as the quality requirements and
adaptation needs of the ML face recognition service, which
handles only individual video frames and is invoked syn-
chronously from within the cloud, might be quite differ-
ent from those of the video playback edge service, which
handles the entire video segments and is invoked asyn-
chronously from outside the cloud. In particular, the former
would not have to monitor and adapt its communication
parameters (e.g., the request rate) at run time; in contrast,
this would be a critical requirement for the latter.

An additional challenge is the following:

[C2] How to identify and resolve potential conflicts
between the quality requirements of individual microser-
vices and those of the overall application when defining
their self-adaptive behaviors.

For instance, an important quality attribute of a face
recognition service, which typically works by comparing ex-
tracted facial features from a given image with facial images
within a database, is its recognition accuracy. However, high
accuracy in this kind of ML service inevitably implies high
processing and storage costs, which might conflict with the
application’s overall cost constraints.

The following is yet another challenge in this context:

[C3] How to reconcile the adaptation needs of individual
microservices and the overall application with the self-
adaptation capabilities offered by the underlying infras-
tructure management platform.

By way of illustration, while Kubernetes’ autoscaling
capabilities could be useful to improve the response time
of all cloud-based services deployed as part of the video
surveillance application, current Software Reliability En-
gineering (SRE) practices indicate that autoscaling alone
might not be enough to make strong guarantees about
a service’s performance, especially under high load.5 In
addition, Kubernetes does not yet support monitoring and
management of service communication characteristics at the
application layer (i.e., Layer 7), such as by establishing per
service rate limits and bandwidth quotas, which could be
useful to help manage the performance and communication
overhead of the video playback service.

5. https://landing.google.com/sre/

https://landing.google.com/sre/


4

Finally, the more recent Function-as-a-Service (FaaS) and
serverless computing cloud models,6 in which fined-grained
services are deployed as serverless functions that are trans-
parently managed and scaled by the cloud platform and
charged on a per usage basis, poses an additional challenge:

[C4] How to develop and manage self-adaptive mi-
croservice systems in hybrid deployment environments
that are composed of both serverful and serverless ser-
vices.

A case in point is encountered because some of the video
surveillance services (e.g., video processing) could be re-
implemented and re-deployed as serverless services using
an FaaS cloud platform, such as AWS Lambda.7 In that case,
application developers would not only have to reconcile
the adaptation requirements of both serverful and serverless
services with the self-adaptation capabilities of their respec-
tive management platforms but also to rethink their entire
DevOps and business strategies in order to account for
the significant technical and economical differences between
those two deployment models [10].

4.2 Control Loop Deployment

Control loops are crucial elements necessary to realize the
run-time adaptation of software systems. A typical self-
adaptation control loop consists of four main activities,
namely Monitor, Analyze, Plan, and Execute, which share a
common Knowledge base, that are usually referred to as the
MAPE-K reference model [1]. Control loops can be designed
and deployed according to different control strategies—
from a single centralized control component managing the
whole system to multiple control components managing
different parts of the system and organized in a hierarchi-
cal or fully decentralized manner [2]. In the context of a
microservice application, where each microservice is inde-
pendently developed, deployed, and managed at run time,
selecting the appropriate control strategies poses additional
challenges.

The following constitutes an initial challenge in this
context:

[C5] How to determine the level of distribution, visibility,
and granularity necessary for deploying a microservice
application’s control components.

We see these three deployment dimensions as forming
a control loop’s deployment space for a microservice appli-
cation. The distribution dimension concerns the physical
allocation of control loop components to infrastructure re-
sources. The visibility dimension, in turn, concerns whether
the control loop components should be deployed at the
application level (i.e., fully visible to developers) or at the
infrastructure level (i.e., only partially visible to developers).
Finally, the granularity dimension concerns whether control
loop components should be deployed as a single monolithic

6. Mike Roberts (May 22, 2018). Serverless Architecture. Martin-
Fowler.com. Retrieved November 13, 2019, from https://martinfowler.
com/articles/serverless.html

7. https://aws.amazon.com/lambda/

service or decomposed into a collection of independently
developed and managed microservices.

Developing and deploying self-adaptive microservice
systems with those three dimensions in mind could help
to establish fundamental tradeoffs with respect to multiple
quality attributes. An example is deploying control loops for
each of the video surveillance application services in a fully
decentralized fashion, which would in turn increase their
overall reliability and scalability. Nevertheless, this strategy
would also make it harder to enforce application-wide adap-
tation constraints, as this would require each control loop to
coordinate its actions with the other control loops, thereby
reducing their autonomy. Similarly, deploying control loops
at the infrastructure level would help to promote a better
separation between business and management services at
run time, thus facilitating their reuse. Despite this benefit,
this strategy would also make control loops much harder
to customize for specific adaptation needs (e.g., managing
the expected accuracy of ML services), as most control loops
deployed at the infrastructure level support only a restricted
set of adaptation models and mechanisms [11]. Finally,
deploying control loop components as monolithic services
would greatly simplify their packaging and management at
run time. However, this strategy would also force all control
components to share the same version and release rate, thus
severely compromising their continuous improvement to
satisfy evolving adaptation needs.

Another challenge related to control loop deployment is
as follows:

[C6] How to reconcile the selected control loop deploy-
ment strategies with those supported by the underlying
infrastructure management platform.

As an example, in Kubernetes, self-healing and autoscal-
ing controllers are deployed in a mostly centralized manner,
as part of its master node. Therefore, if each microservice is
to be managed by a fully independent control loop, there
should be multiple instances of such types of controllers
deployed, one for each microservice. In addition, those
individual controllers might still have to coordinate their
actions at the application level in order to resolve potential
requirement conflicts, as discussed in Section 4.1, which
coordination Kubernetes currently does not support.

4.3 Continuous Delivery
We identify three main adaptation scenarios concerning
the use of CD practices and tools in the context of a self-
adaptive microservice system. The first scenario is the run-
time adaptation of the CD pipelines themselves. In that
regard, the following is a key challenge:

[C7] How to best determine the appropriate monitoring
and adaptation mechanisms that will dynamically adjust
the transition events and conditions across the stages of
each microservice CD pipeline.

An exemplar of this challenge is as follows: To create a
CD pipeline developers typically need to define the events
and conditions under which each stage of the pipeline can
be executed. This is usually done by manually expressing

https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://aws.amazon.com/lambda/


MENDONÇA et al.: DEVELOPING SELF-ADAPTIVE MICROSERVICE SYSTEMS 5

the trigger events and test requirements of each stage so
that the target application can be automatically progressed
from one stage to the next. In this scenario, a self-adaptive
pipeline would have to be able to monitor the application
behavior at each stage so as to dynamically adjust its trigger
events and/or test requirements to cope with uncertainties
during its execution (e.g., the application repeatedly failing
to meet the requirements of one particular stage due to the
necessary data or infrastructure resources being unavail-
able).

Yet another challenge related to this scenario is as fol-
lows:

[C8] How to reconcile the adaptation needs of each
microservice CD pipeline with the self-adaptation capa-
bilities offered by the underlying infrastructure and CD
management platforms.

Kubernetes offers a rollout operation that can be used to
illustrate this challenge. A rollout operation automatically
deploys a new service version without having to take the
current version down. This operation could be useful to
implement a canary release pipeline for each of the video
surveillance services. A canary release pipeline is respon-
sible for automatically deploying a new service version to
production in parallel with the most recent stable version of
that service so as to gradually replace instances of the stable
service version with instances of the new (canary) version
based on a given set of testing criteria [9]. However, this
solution would still require service developers to manually
invoke Kubernete’s rollout operation every time there’s a
new service version to be released. Alternatively, developers
could benefit from a full-fledged CD management tool (e.g.,
Spinnaker) to fully automate the execution of that canary
release pipeline. But even in that case, developers would
still need to provide the CD management tool with the exact
conditions and their trigger events required to deploy the
canary release into production.

The second scenario is the adaptation of the microser-
vices’ own adaptation requirements. In this scenario, a key
challenge faced is the following demand:

[C9] How to dynamically adjust the adaptation require-
ments of each microservice according to the needs of
each CD stage.

As an example, to streamline the testing of the autoscal-
ing capabilities of the video processing service, the CD plat-
form could automatically adjust that service’s performance
requirements during staging so as to trigger its autoscaling
features earlier and more often than during normal produc-
tion.

Finally, the third scenario concerns treating the self-
adaptation mechanisms of a self-adaptive microservice sys-
tem as first-class DevOps entities. In that respect, a further
challenge is addressing the following issue:

[C10] How to establish an effective strategy for continu-
ously delivering self-adaptation mechanisms in produc-
tion in the context of a self-adaptive microservice system.

By way of example, each self-adaptation mechanism
used by the video surveillance application (e.g., autoscal-
ing and self-healing) could be independently tested and
deployed in its own CD pipeline. Such a strategy would
allow a more systematic reuse of self-adaptation models and
mechanisms across business services, albeit at the expense
of having a more complex CD process.

4.4 Testing

Conducting extensive validation tests with microservices
before each deployment is not feasible due to the high
frequency of their releases. Instead, microservice quality
assurance is often compensated or even replaced by fine-
grained monitoring techniques in production environments
exposed to real workloads. In this way, failures can be
monitored and quickly corrected by pushing new releases
into production [8].

The following is a key challenge in this context:

[C11] How to determine testing models and mechanisms
to assess the fundamental quality attributes of each
microservice and of the overall application from a self-
adaptation perspective.

An example of this challenge in the context of the
video surveillance application is that developers may need
to select different testing mechanisms to assess the self-
adaptation features of different microservices (e.g., image
benchmarking and load generation for testing the autoscal-
ing features of the face recognition service and fault injection
for testing the self-healing features of the video playback
service). In addition, the need for those testing mechanisms
may vary across CD stages and pipelines (e.g., autoscaling
tests of the face recognition service may be run only during
staging while more critical self-healing tests of the video
playback service may be run all the way to production).

An additional challenge related to testing is the follow-
ing:

[C12] How to integrate the systematic testing of
microservices, including their self-adaptive behaviors,
within the context of existing CD practices.

The use of fault injection mechanisms to test a self-
adaptive system’s resiliency in production illustrates this
challenge. For example, the results of fault injection tests
created to assess the resiliency of the self-healing features of
the video playback service could be used by the underlying
CD platform as one of the criteria for deciding whether the
latest version of that service is ready to be promoted from
canary release to normal production.

5 NEW DIRECTIONS

We now suggest promising new directions to address most
of the challenges identified in the previous section.

5.1 New Adaptation Mechanisms

Regarding challenges C1 and C3, a practical way of im-
plementing novel self-adaptation solutions tailored for the



6

context of microservice applications would be by extend-
ing the management API provided by current container
orchestration tools, like Kubernetes. To illustrate, one could
easily build on the rollout and rollback features provided by
Kubernetes to develop a self-adaptive service fallback mech-
anism that could be customized to meet different adaptation
requirements.

The basic idea is to create multiple fallback versions for
each microservice (e.g., a low fidelity version or a high
accuracy version) and pack them as separate Docker im-
ages. The self-adaptive fallback mechanism could then be
configured to use Kubernetes to automatically update the
current image of a given microservice to one of its fallback
images under certain system or environment conditions
(e.g., update the face recognition service to its high accuracy
image whenever the system is underutilized and rollback
that service to its original image whenever the load reaches
a certain threshold).

Similarly, one could build on the variety of
communication-related monitoring and management
features provided by the use of so-called service mesh
tools [3] to create novel connector-oriented self-adaptation
mechanisms. This is the case, for example, of using the
security management features of a service mesh tool like
Istio8 to provide a self-protection mechanism that will
automatically strengthen the encryption parameters of
the communication protocols being used by the video
surveillance application services under a security attack,
without the need to change or restart any service.

A service mesh could also be useful to dynamically
adjust the retry and circuit-breaking parameters [3] used by all
clients of an overloaded service so as to reduce the service’s
incoming traffic and thus prevent cascading failures from
propagating throughout the system. This feature could be
particularly useful for mission-critical self-adaptive systems.

Finally, specifically regarding challenge C2, application
developers may rely on recent microservice orchestration
languages (e.g., Jolie9) as the means for defining and enact-
ing application-aware adaptations. While this may provide
a possible solution, its adoption may be seen as counterin-
tuitive with respect to some well-established microservice
principles, such as the autonomy of each microservice team
to choose the implementation technologies that best fit their
needs and expertise [3].

5.2 New Control Loop Deployment Structures

From a control loop deployment perspective, as discussed
in the context of challenges C5 and C6, a microservice
system’s control components should ideally be deployed in
a fully decentralized fashion, with each microservice being
managed by its own local controller. The downside of this
solution is that it makes it harder for the local controllers
to monitor and manage application-wide quality attributes.
Although having a centralized controller dedicated to man-
aging application-level quality concerns would be a more
straightforward solution for this issue, its use would create
a single point of failure and ultimately could compromise

8. https://istio.io/
9. https://www.jolie-lang.org/

the application’s overall availability. In practice, microser-
vice developers may choose from a variety of intermediate
solutions between those two extremes, e.g., by logically
grouping services according to their business and/or quality
affinity and then having those services being collectively
managed by independent yet application-aware group con-
trollers organized in a hierarchical or fully decentralized
structure.

Another important issue is the decision about whether
microservice developers should have any responsibility in
developing and managing control components, as sug-
gested above. Having control components explicit in the
design and development of a self-adaptive microservice sys-
tem may contribute to further increase the system’s overall
complexity. In addition, this decision could compromise the
delivery autonomy of individual services, since service de-
velopers would have to negotiate before every new release
in case their code bases share the same control components.
We advocate the adoption of a middle ground solution:
having all control components developed, tested, and re-
leased as part of the underlying infrastructure management
platform yet still exposed to service developers during the
later phases of their services’ CD pipeline [11].

5.3 New Continuous Delivery Strategies
The question of how to integrate self-adaptation capabilities
with DevOps, discussed in the context of challenges C7–C9,
deserves special attention from self-adaptive microservice
system developers. Here we discuss two possible CD strate-
gies and their trade-offs.

One first strategy is to create a new dedicated CD
pipeline to deliver into production all self-adaptation com-
ponents used by the application. Having a dedicated self-
adaptation pipeline would have the advantage of running
it in parallel with the other business pipelines, and thus
preserve their autonomy. On the other hand, this solution
would prevent business developers from directly improving
the self-adaptation components used by their services, as
this would require negotiating with the developers respon-
sible for the self-adaptation pipeline. Moreover, this solution
would push critical integration tests to the end of each
business pipeline, as business developers would not have
immediate access to the latest version of their required self-
adaptation components.

A second strategy is to have separate business and self-
adaptation pipelines during the commit and build stages,
but have the self-adaptation pipeline integrated with the
other business pipelines as soon as they enter the testing
stage. In this case, self-adaptation components would still be
designed and developed by a separate team, but their test-
ing and deployment would be the responsibility of business
developers, as part of their business service pipelines. This
would have the benefit of avoiding delaying integration
tests in the business pipelines. However, as a side effect,
it could unnecessarily bloat all business pipelines, with
business developers now being responsible for testing both
business and self-adaptation components.

Those two strategies are but a small sample of the
spectrum of CD alternatives developers of self-adaptive
microservice systems can explore. In that direction, extend-
ing emerging Model-Driven Engineering (MDE) tools for

https://istio.io/
https://www.jolie-lang.org/


MENDONÇA et al.: DEVELOPING SELF-ADAPTIVE MICROSERVICE SYSTEMS 7

microservices (e.g., AjiL10) with CD support could be a
key enabler to automate the integration of self-adaptation
capabilities and DevOps.

5.4 New Testing Approaches
A number of recent testing approaches have been proposed
specifically for microservices both by industry (e.g., integra-
tion testing in production11) and by academia (e.g., trace-
based error prediction and fault localization [12]). A natural
new direction here, related to challenges C11 and C12, is to
systematically integrate those emerging testing approaches
within the context of a fully automated self-adaptive CD
pipeline. In this way, the results of both online and offline
tests could be incorporated as part of the set of dynamic
events and conditions used by the underlying CD platform
to automatically test a given microservice release across
multiple pipeline stages.

Yet another promising direction in this context is apply-
ing chaos engineering [13] principles to assess the resiliency
of a self-adaptive microservice system [14]. In that regard,
one could rely on such a tool as kube-monkey,12 which can
be used to randomly terminate service instances in a Ku-
bernetes cluster, to develop a kind of adversarial control loop,
whose main goal is to disturb the self-adaptive behavior of
a target microservice system. This adversarial control loop
could then leverage existing self-adaptation models and
techniques to monitor and respond to (i.e., counteract) the
microservice system’s adaptation actions, and thereby offer
a powerful mechanism to test the self-adaptive system’s
resiliency in production.

5.5 New Migration Strategies to Microservices
In recent years the migration from legacy monolithic ap-
plications to a microservice-based architecture has gained
considerable momentum, in both industry [15] and
academia [4]. However, questions such as when and how
to switch to the newly migrated microservice system are
still challenging. One popular migration strategy is apply-
ing the Strangler Fig Application pattern,13 in which the
functionalities implemented by the monolithic application
are gradually replaced by new microservices. In that regard,
an interesting new direction is to use a self-adaptive service
mesh to dynamically reroute traffic from the monolith to
the new services as they are delivered into production. This
would facilitate the task of introducing and testing new
services during the migration process, and also enable a
gradual decommission of the legacy infrastructure.

6 CONCLUSION

We have looked into a number of practical challenges facing
the development and delivery of self-adaptive microservice
systems. We have also suggested potential ways to address
most of those challenges, with a focus on current and emerg-
ing microservice practices and technologies. We hope our
ideas contribute to promote a better understanding of the

10. https://github.com/SeelabFhdo/AjiL
11. https://labs.spotify.com/2018/01/11/testing-of-microservices/
12. https://github.com/asobti/kube-monkey
13. https://martinfowler.com/bliki/StranglerFigApplication.html

interplay between self-adaptive systems and microservices,
thus providing a timely incentive for researchers, practition-
ers, and tool developers to tackle some of the issues raised
here as well as others that might arise.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] D. Weyns, Software Engineering of Self-Adaptive Systems: An Organ-
ised Tour and Future Challenges. Springer, 2017.

[3] P. Jamshidi et al., “Microservices: The journey so far and challenges
ahead,” IEEE Software, vol. 35, no. 3, pp. 24–35, 2018.

[4] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices archi-
tecture enables DevOps: Migration to a cloud-native architecture,”
IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.

[5] S. Rajagopalan and H. Jamjoom, “AppBisect: Autonomous healing
for microservice-based apps,” in 7th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud), 2015.

[6] A. R. Sampaio Jr et al., “Improving microservice-based appli-
cations with runtime placement adaptation,” Journal of Internet
Services and Applications, vol. 10, no. 1, pp. 1–30, 2019.

[7] A. Filieri et al., “Control strategies for self-adaptive software
systems,” ACM Transactions on Autonomous and Adaptive Systems,
vol. 11, no. 4, p. 24, 2017.

[8] R. Heinrich et al., “Performance engineering for microservices:
Research challenges and directions,” in Proc. of the 8th ACM/SPEC
on Int. Conf. Perf. Eng. Companion. ACM, 2017, pp. 223–226.

[9] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s
Perspective. Addison-Wesley Professional, 2015.

[10] G. Adzic and R. Chatley, “Serverless computing: Economic and ar-
chitectural impact,” in 11th Joint Meeting on Foundations of Software
Engineering (FSE). ACM, 2017, pp. 884–889.

[11] N. C. Mendonça et al., “Generality vs. reusability in architecture-
based self-adaptation: The case for self-adaptive microservices,” in
1st Int. Workshop on Architectural Knowledge for Self-Adaptive Systems
(AKSAS), 2018.

[12] X. Zhou et al., “Latent error prediction and fault localization for
microservice applications by learning from system trace logs,”
in 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2019, pp. 683–694.

[13] A. Basiri et al., “Chaos engineering,” IEEE Software, vol. 33, no. 3,
pp. 35–41, 2016.

[14] J. Cámara et al., “Robustness-driven resilience evaluation of self-
adaptive software systems,” IEEE Transactions on Dependable and
Secure Computing, vol. 14, no. 1, pp. 50–64, 2017.

[15] S. Newman, Monolith to Microservices: Evolutionary Patterns to
Transform Your Monolith. O’Reilly, 2019.

Nabor C. Mendonça is a professor of applied
informatics at the University of Fortaleza, Brazil.
From 2017 to 2018 he was a visiting scholar
in the School of Computer Science at Carnegie
Mellon University, US. His research interests
include software engineering, distributed sys-
tems, self-adaptive systems, and cloud comput-
ing. Mendonça received a Ph.D. in computing
from Imperial College London. Contact him at
nabor@unifor.br.

Pooyan Jamshidi is an assistant profes-
sor at the University of South Carolina, US.
His research interests include software engi-
neering, systems, and machine learning, with
a focus on the areas of machine-learning
systems. Jamshidi received a Ph.D. from
Dublin City University, Ireland. Contact him at
pjamshid@cse.sc.edu.

https://github.com/SeelabFhdo/AjiL
https://labs.spotify.com/2018/01/11/testing-of-microservices/
https://github.com/asobti/kube-monkey
https://martinfowler.com/bliki/StranglerFigApplication.html


8

David Garlan is a professor and associate
dean in the School of Computer Science at
Carnegie Mellon University, US. His research
interests include autonomous and self-adaptive
systems, software architecture, formal meth-
ods, explainablity, and cyberphysical systems.
Garlan received a Ph.D. in computer science
from Carnegie Mellon University. Contact him at
garlan@cs.cmu.edu.

Claus Pahl is a professor of computer science
at the Free University of Bozen-Bolzano, Italy,
where he heads the Software and Systems En-
gineering Group. His research interests include
software engineering in service and cloud com-
puting, specifically migration, architecture speci-
fication, dynamic quality, performance engineer-
ing, and scalability. Pahl received a Ph.D. in com-
puting from the University of Dortmund. Contact
him at cpahl@unibz.it.


	1 Introduction
	2 Microservices
	3 A Self-Adaptive Microservice System
	4 Challenges
	4.1 Design Space
	4.2 Control Loop Deployment
	4.3 Continuous Delivery
	4.4 Testing

	5 New Directions
	5.1 New Adaptation Mechanisms
	5.2 New Control Loop Deployment Structures
	5.3 New Continuous Delivery Strategies
	5.4 New Testing Approaches
	5.5 New Migration Strategies to Microservices

	6 Conclusion
	References
	Biographies
	Nabor C. Mendonça
	Pooyan Jamshidi
	David Garlan
	Claus Pahl


