Home   Research Publications Members Related Software
IndexBrowse   BibliographiesMy selection
 Search: in   (word length ≥ 3)
      Login
Publication no #403   Download bibtex file Type :   Html | Bib | Both
403
@PhdThesis{Barnes/Thesis/2013,
      AUTHOR = {Barnes, Jeffrey M.},
      TITLE = {Software Architecture Evolution},
      YEAR = {2013},
      SCHOOL = {Institute for Software Research, School of Computer Science, Carnegie Mellon University},
      PDF = {http://acme.able.cs.cmu.edu/pubs/uploads/pdf/CMU-ISR-13-118.pdf},
      ABSTRACT = {Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today’s software architects, however, have few techniques to help them plan such evolution. In particular, they have little assistance in planning alternatives, making trade-offs among these different alternatives, or applying best practices for particular domains. To address this, we have developed an approach for assisting architects in planning and reasoning about software architecture evolution. Our approach is based on modeling and analyzing potential evolution paths that represent different ways of evolving the system. We represent an evolution path as a sequence of transitional architectural states leading from the initial architecture to the target architecture, along with evolution operators that characterize the transitions among these states. We support analysis of evolution paths through the definition and application of constraints that express rules governing the evolution of the systemand evaluation functions that assess path quality. Finally, a set of these modeling elements may be grouped together into an evolution style that encapsulates a body of knowledge relevant to a particular domain of architecture evolution. We evaluate this approach in three ways. First, we evaluate its applicability to real-world architecture evolution projects. This is accomplished through case studies of two very different software organizations. Second, we undertake a formal evaluation of the computational complexity of verifying evolution constraints. Finally, we evaluate the implementability of the approach based on our experiences developing prototype tools for software architecture evolution.},
      NOTE = {Technical Report CMU-ISR-13-118},
      KEYWORDS = {Architecture Evolution}
}

Your name:
Email:
Comment:
    Created: 2013-12-11 16:08:09     Modified: 2013-12-11 16:09:30
Feedback: ABLE Webmaster
Last modified: Sat October 12 2019 16:15:32
        BibAdmin